Preliminaries

- We’ve seen the abstract concept of Bellman Equations
- Now we’ll talk about a way to solve the Bellman Equation: Value Function Iteration
- This is as simple as it gets!
Value Function Iteration

- Bellman equation:

\[
V(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V(y) \}
\]

- A solution to this equation is a function \(V \) for which this equation holds \(\forall \, x \)

- What we’ll do instead is to assume an initial \(V_0 \) and define \(V_1 \) as:

\[
V_1(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V_0(y) \}
\]

- Then redefine \(V_0 = V_1 \) and repeat

- Eventually, \(V_1 \approx V_0 \)
 - But \(V \) is typically continuous: we’ll discretize it
 - Make function continuous by connecting the dots
Aside: Approximating $f(x)$

$$f(x) = -x + 8\sin(x) + x^2$$
ASIDE: APPROXIMATING $f(x)$

$$f(x) = -x + 8\sin(x) + x^2$$
Aside: Approximating $f(x)$
Aside: Approximating $f(x)$
Aside: Approximating $f(x)$

The graph shows the function $f(x) = -x + 8\sin(x) + x^2$. The red line represents the function $f(x)$, the blue dashed line represents the interpolating space, and the red line with circular markers represents $f(\hat{x})$. The domain of x is from 0 to 5.
Aside: Approximating $f(x)$

The function $f(x) = -x + 8\sin(x) + x^2$ is plotted with three different lines:
- `f(x)` is shown as a dashed blue line.
- The interpolating space is marked with blue circles.
- `fhat(x)` is shown as a red line.

The graph ranges from $x = 0$ to $x = 5$ on the x-axis, and from $y = 0$ to $y = 14$ on the y-axis.
ASIDE: APPROXIMATING $f(x)$

$$f(x) = x + 8\sin(x) + x^2$$
ASIDE: APPROXIMATING f(x)

\[f(x) = -x + 8\sin(x) + x^2 \]
ASIDE: APPROXIMATING $f(x)$

\[f(x) = -x + 8\sin(x) + x^2 \]
Aside: Approximating $f(x)$

The graph shows the function $f(x) = -x + 8\sin(x) + x^2$ plotted over the interval $0 \leq x \leq 5$. The graph includes a dashed line representing $f(x)$, a dotted line representing the interpolating space, and a solid line representing $f(\hat{x})$.
ASIDE: APPROXIMATING \(f(x) \)

\[f(x) = -x + 8\sin(x) + x^2 \]
Aside: Approximating $f(x)$

$$f(x) = -x + 8\sin(x) + x^2$$

Graph showing the function $f(x)$ and its interpolating space $fhat(x)$.
Aside: Approximating $f(x)$
Aside: Approximating $f(x)$
Aside: Approximating $f(x)$

Graph showing $f(x) = -x + 8\sin(x) + x^2$ with interpolating space and $f(x)$. The graph is plotted from $x = 0$ to $x = 5$.
Basic Steps

1. Choose grid of states X and a stopping threshold ϵ
2. Assume an initial V_0 for each $x \in X$
3. For each $x \in X$, solve the problem:

$$\max_{y \in \Gamma(x)} \{ F(x, y) + \beta V_0(y) \}$$

4. Store the solution as $V_1(x)$
5. Redefine $V_0 = V_1$
6. Repeat steps 3-5 until $\text{abs}(V_1 - V_0) < \epsilon$.
7. Now, for all your relevant points, the Bellman equation holds
8. Solve the system one last time, storing the policy function
How do I solve the problem?

- Step 3 requires you to solve:

\[
\max_{y \in \Gamma(x)} \{ F(x, y) + \beta V_0(y) \}
\]

- How do we do it?
- How do we maximize?
- We’ll learn good ways
- For now, discretize all your choices like you discretized your states
- Pick best choice, store utility
- If you allow for choices to imply states that aren’t defined, interpolate linearly
Aside: Intuition for VFI

- In the iteration period, all future states are the same: we don’t care what happens.
- In a “cake-eating” example, this means eat everything.
- In such a scenario, we eat all the cake: we’re happier with more cake.
- When we iterate once more, now tomorrow is the last day on earth: we now prefer saving a little cake.
- When we iterate again, tomorrow’s tomorrow is the last day...
- Because we discount, as we iterate more, whatever we do on the last day matters less and less.
- Eventually, we’re all but immortal: \[\lim_{t \to \infty} \beta^t = 0 \]
Aside: Intuition for VFI

- In the iteration period, all future states are the same: we don’t care what happens.
- In a “cake-eating” example, this means eat everything.
- In such a scenario, we eat all the cake: we’re happier with more cake.
- When we iterate once more, now tomorrow is the last day on earth: we now prefer saving a little cake.
- When we iterate again, tomorrow’s tomorrow is the last day...
- Because we discount, as we iterate more, whatever we do on the last day matters less and less
- Eventually, we’re all but immortal: \(\lim_{t \to \infty} \beta^t = 0 \) (really, \(\lim_{t \to \infty} \beta^t u_2(x_t, x_{t+1})x_{t+1} = 0 \))
Let's do a concrete example

\[U(c_t) = \log(c_t) \]

\[c_t + i_t = k_t^0 \cdot 0.7 \]

\[k_{t+1} = 0.93k_t + i_t \]

- Discretize states
 - Minimum: \(\underline{k} = 0 \)
 - Maximum: \(\bar{k} = 0.93\bar{k} + \bar{k}^{0.7} \Rightarrow \bar{k} = 7075 \)
 - Choose 10 possible steps

- Allow choice of feasible discrete \(k \)
- Choose best, store it.
- Repeat
Solving in Matlab

alpha = 0.7;
delta = 0.07;
k_min = 0;
k_max = 7075;
k_num = 10;
k_space = linspace(k_min,k_max,k_num);
V_1 = 0.*k_space;
V_0 = V_1;
error = Inf;
while error > 1e-10
 for k_index = 1:k_num
 k = k_space(k_index);
kchoice_index = find(k_space < 0.93*k+k.^0.7);
k_choices = k_space(kchoice_index);
c_choices = 0.93*k+k.^0.7-k_choices;
utility = log(c_choices) + beta V_0(find(kchoice_index));
[V,ind] = max(utility);
V_1(k_index) = V;
k_best(k_index) = k_choices(ind);
 end
error = max(abs(V_1-V_0))
end
num_i = k_num
num_t = 50;
k_sim = NaN(num_i,num_t);
k_sim(:,1) = NaN(num_i,num_t);
for i = 1:num_i
 for t = 1:num_t
 k_sim(i,t+1) = k_best(find(k_space)==k_sim(i,t))
 end
end