Interactive Procedural Building Generation
Using Kaleidoscopic Iterated Function Systems

Tim McGraw

Purdue University

Abstract. We present an approach to designing and generating build-
ings at interactive rates. The system can run entirely on the GPU in
a fragment shader and results can be viewed in real time. High qual-
ity raycast or raytraced results can be efficiently visualized because the
buildings are represented as distance fields. By exploiting the visual com-
plexity of a class of fractals known as kaleidoscopic iterated function
systems (KIFS) we can generate detailed buildings reminiscent of ornate
architectural styles, such as Gothic and Baroque, with simpler rules than
grammar based methods.

1 Introduction

Many fractal images and surfaces are characterized by complex patterns that
repeat over multiple scales. Techniques such as escape-time formulas and iterated
function systems (IFS) can be used to create and explore these patterns. Familiar
fractals, such as the Sierpinski gasket and Menger sponge, have a structure
that can be easily deduced from the geometric rules for their construction. The
Menger sponge is constructed by starting with a single cube which is subdivided
into 27 equal sized smaller cubes. The cube from the center of the original cube
and the cubes from the middle of each face of the original cube are removed. This
process is repeated indefinitely for each remaining cube. At all scales the sponge
has the characteristic perforated box-like appearance shown in Figure (1). An
IFS construction of the sponge requires recursively applying affine mappings
to a set of points. It can also be generated using distance estimation methods
which rely on folding and scaling operations. But, as we shall see, a variety of
complex shapes can be obtained by subtly changing the generation rules. It is
less intuitive how the recursive construction of these modified Menger sponges
lead to the resulting array of patterns.

For many 3D fractals it is possible to estimate the distance to the surface from
a given point. This permits accelerated ray tracing algorithms and extraction of
isosurfaces of the distance estimate. Modeling arbitrary structures with fractals
requires the solution of a difficult inverse problem: finding the iterative process
which results in a given shape. The Collage Theorem [1] states general conditions
for the existence of a solution to this inverse problem and describes a general
approach to its construction. In 2D this has led to fractal image compression
algorithms, but general 3D solutions have been elusive.

2 Tim McGraw

Our approach to utilizing fractals in modeling 3D buildings is to warp a se-
lected volume of an IF'S fractal into another volume bounded by a rough building
shape. In this work a periodic mapping with local symmetry is specified in terms
of mod functions. The resulting shape can be visualized using ray tracing, or by
rasterizing a triangle mesh generated by isosurface extraction. Our approach
permits the user to select building parameters and instantly see the resulting
structure.

2 Related Work

Procedural modeling methods permit the generation of graphical content (e.g.
meshes or textures) by means of automatic or interactive algorithms. The reader
is referred to the survey by Smelik et al. [2] for an overview of the various
approaches to generating natural phenomena (such as terrain, plants, bodies of
water) and man made objects (buildings, roads, cities). The scale and scope of
building generation methods ranges from entire cities [3], to individual building
facades [4], and building interior layouts.

Fig. 1: Menger sponge (a) and KIFS (b) with ¢ = (0.93,0.93,0.33)

Much previous work on building generation has focused on grammar-based
approaches [5,6]. A common framework is to extrude a footprint shape into vol-
ume mass-model that defines the overall shape of the building. Then a sequence
of substitution rules governs how that model is divided into floors and how each
floor is divided to produce the building facade. The substitution process termi-
nates at simple primitives such as bricks, windows and doors. By contrast, our
method uses a simple arithmetic equation to divide the facade and the visual
complexity is achieved by using regions of fractals as our terminal primitives.

Our building modeling method is similar to the shape modeling process de-
scribed by McGraw and Herring [7], with several important distinctions. We
use a specific class of fractal IFS that is well-suited to creating building detail,
rather than the Mandelbox and Mandelbulb fractals. The periodic and symmet-
ric structure of most buildings, along with the simple bounding volumes that can

Interactive Procedural Building Generation 3

be expressed as unions of geometric primitives simplifies the process of mapping
the fractal onto the surface. By contrast, McGraw and Herring require the user
to interactively define a spline-based warp from the fractal domain onto a mesh
by positioning individual vertices.

Iterated function systems [8] are a method of generating points in a fractal
set by taking an input point set and repeatedly applying affine transformations
to it. Early computer graphics applications of IFSs [9] showed that relatively
small sets of transformations could approximate natural objects, such as leaves
and ferns as well as reproducing classical fractals such as the Cantor set and
Sierpinski gasket.

Fig.2: KIFS with s =
Ry = R, (/8)

The Kaleidoscopic IFS (KIFS) fractal described in algorithm (1) was de-
veloped by Knighty [10] while developing distance estimates for the 3D fractal
Sierpinksi tetrahedron and Menger sponge. The operations can be be seen as
an iterated sequence of folding operations (lines 5-10), rotations (lines 3, 11)
and uniform scaling about a center point given by ., y., 2. (lines 12-14). This
algorithm generates the Menger sponge for z, = y. = 2. = 1, s = 3 and
Ry = Ry = I. For other parameter values a rich set of features emerges, both
organic and synthetic looking, depending on parameter values. As can be seen
in Figure (2) the surface becomes sparse and disconnected for values of s > 3.
For R, with small rotation angles the surface becomes less regular and resembles
an ancient crumbling structure. Matrix Ro can change the rectilinear structure
into one with polygonal and star-like features. As with most fractal systems, a
good way to get a sense of the range of shapes is to experiment and explore
the parameter space. This is facilitated by a fast GPU implementation and a Ul
which permits parameter specification.

Hart et al. [11] introduced the idea of determining bounds on the distance
to a fractal surface to accelerate ray tracing. Knowing that the distance to a
surface is at least d we can safely step along a ray by distance d when iteratively
searching for the ray-surface intersection. The search is terminated when d falls
below some threshold. The process of real time rendering using such a raycasting
process is described by Quilez [12] in the context of modern graphics hardware.

4 Tim McGraw

Algorithm 1 Algorithm for computing the distance estimate to a KIFS fractal
from the point (z,y, z). The scale center parameters, z., Y., z., and scale factor,
s, are scalar values, and R;, Rs are rotation matrices. In our experiments we use
maximum iterations M = 6 and bailout threshold b = 1.5.
function dxirs(z,y, 2, Tc, Ye, Ze, S)
for i =0 to M do
[tyz]T = Rifzyz
T = ‘$|7 Y= ‘y|7 z= |Z|
if © —y < 0 then swap(x,y)

]T

end if

if x — 2z < 0 then swap(x,z)
end if

if y — z < 0 then swap(y,z)
end if

ey 2]" = Rolwyz2]”

=58 —xc) + Te, Yy = 5(Y — Ye) + Yo, 2 = 82

if 2 < z.(s—1)/2 then z =2z — z.(s — 1)

end if

r=ax%+ y2 + 22

if » > b then break

end if

end for

return (r*/2 — 2)s
end function

—1

The distance function representation also allows us to easily perform constructive
solid geometry (CSG) operations on shapes.

3 Methods

Our building creation system is integrated into a realtime raycasting renderer,
and the buildings are volumetrically represented as distance functions. Rays
are traced in a glsl fragment shader until they intersect the building, and then
lighting is computed. Building mass models are built from simple primitives,
such as 3D boxes. A box primitive has distance function

max(|x| - hxv |y| - hyv |Z‘ - hz) (1)

where x,y, z are point coordinates and hg, hy, h, are the half-widths of the box
along the x,y,z axes.

We give our users the selection of several building mass models created from
CSG operations on boxes. The union (U) and intersection (N) operations are
given by

U(A, B) = min(d,dp) (2)
N(A, B) = max(da,dp), (3)

Interactive Procedural Building Generation 5

(b) () (d)

Fig.3: KIFS detail (a), mass model outer shell (b), intersection of KIFS
and outer shell N(KIFS, Outer) (c), union of previous result with inner shell
U(Inner,N(KIFS, Outer))

where A, B are shapes and d4,dg are distances to A and B.

The mass models used in our system consist of an inner and outer shell. The
outer shell is the outermost extent of the building. Since we will later define an
infinite tiling of the KIF'S fractal, computing the intersection with this outer shell
restricts the building to a finite domain. The inner shell represents windows and
external walls. Computing the union of the fractal and the inner shell prevents
the user from seeing into the interior of the fractal, as demonstrated in Figure

(3).

o o o
R [} © [
.

Fractal Y-Coordinate
o
N

08 -06 04 -02 O 02 04 06 08 1
Building Y-Coordinate

, ©
ey

Fig. 4: Y-coordinate mapping function fo(y)

Our building generation technique is based on distance and coordinate trans-
formation of the KIFS system described in algorithm (1). If the distance to
the fractal surface is given by dgirs(x,y, z) then the distance to the modeled
building is g(dkirs(fi(z,2), f2(y), f3(x, z))) where y is the vertical axis of the
structure. The distance transformation g() is a series of CSG operations which
define the architectural mass model. Functions fi(x,2), f2(y) and f3(z,z) are
coordinate transformations which map regions of the KIFS to the surface of the
building.

6 Tim McGraw

The vertical coordinate transformation is given by

f2(y) = sy mod (y — yo, h)/h (4)

where the mod operation results in a periodic repetition of a part of the fractal
which creates the stories or levels of the building. The parameters yg, h define
a vertical slab of the KIFS, and s, defines how that slab is mapped onto the
building. In Figure (4) a graph of f2(y) is shown for a 6 story building with
sy=1,y0=0,h =1/3.

The building facade within each level is also periodic, but should permit
symmetry and repetition of regions. These features are realized by a more com-
plicated function using mod functions which is given in Algorithm (2). The
symmetry is evident in the appearance of triangle waves in the plot of fractal co-
ordinates in Figure (5), as opposed to the nonsymmetric repetition represented
by the sawtooth waves in Figure (4).

Algorithm 2 Algorithm for computing the building transformed coordinates,
zy = fi(z,2),2zr = fs3(x,y), and facade ids, id,,id,. The coordinates being
transformed are x, z; w,, w, is the repetition period of the pattern on the x-
and z-faces of the building, and rx = (73,1, 75,2, rz,3) control the widths and ids
within the pattern on the building x-faces. r, operates similarly.

function fs.(x, z, Wz, W, rx, rz)
x5 = |2 mod (z,ws)/ws — 1/2|
zf = [2mod (z,w.)/w. — 1/2|
idgy = 0,id, =0
for i =1 to 3 do
Ty =|xf—rail — T

b

zp=lzp = T2
if zy > 0 then id, =id, + 1

— Tz

end if
if z; > 0 thenid, =id. +1
end if
vy = laysl, 25 = |z
end for

return xy, zf, ids, id.
end function

An optional transformation of x, z coordinates supported by our system is
conversion to polar coordinates to create curvilinear building shapes. This trans-
formation, which generates cylindrical and curved buildings, is given by

2’ = sq(arctan(z,x) + cy) (5)
2 =s.(\22+ (2 — 20)%2 + ¢), (6)

where ¢y is a rotation angle, sy determines how much of a circular arc the building
subtends, ¢, s, control the inner and outer radii of the building. Examples of
the curvilinear building mass model and facade ids are shown in Figure (6).

Interactive Procedural Building Generation 7

Fractal X-Coordinate

-1 -08 -06 -04 02 O 02 04 06 08 1
Building X-Coordinate

Fig. 5: Fractal coordinates (top) and facade ids (bottom) computed from building
coordinates.

(a) (b)

Fig. 6: Building facade ids and floors colored on rectilinear mass model (a) and
curvilinear mass model (b) for r, =r, = (0.25,0.125,0.4).

8 Tim McGraw

The z ¢, 2z coordinates are subject to further scaling and translation based on
the building facade id, and then the distance function to the KIFS is evaluated.
These id dependent transformations permit each facade region to have a different
appearance by selecting from a different region of the KIF'S fractal.

Finally, the distance to the fractal is processed using CSG operations. Let
the building mass model be represented by inner and outer shells, and let the
distance to those shells be given by d;, d, respectively. Then g(dkps,d;, do) =
min(d;, max(d,, dkrs)). An outline of the entire modeling process is summarized
below.

Compute inner and outer shell distances d;, d, to building mass model.
Optionally warp ray coordinates (x,y, z) to polar coordinates.

Compute z¢ = fi1(x,2),y5 = f2(y), 25 = f3(x, z) and facade ids.

Perform facade dependent translation and scaling x5 = s,xy + t;,2f =
Syzf + 1.

Compute KIFS distance, dxrrg, to (xf,ys,2f).

6. Perform CSG operations with building mass model g(dxrs, d;, do)-

Ll e

o

4 Results

Our KIFS building generation system was implemented in C4++ and OpenGL
on a Dell Optiplex workstation with 3.4 GHz Intel Core i7-3770 CPU and 8GB
RAM, Nvidia GeForce GTX 750 Ti with 640 shader cores and 2 GB GDDR5
dedicated video RAM.

The set of parameters which determine the building appearance, and the
values used by our system are given below:

— Select mass model from list (3 choices)
Enable/disable curvilinear coordinates
e If enabled pick sy, cg, s, Cr
— Pick w,, w,,r,,r, for facade division
e We simplify by letting w, = w, and r, = r, which make the x- and
z-faces the same.
Pick (sg,ts, $»,t,) for each id for facade transformation
e We simplify by letting s, = s, = ayid + as,t, = t, = byid + b
— Pick KIFS parameters (x., yc, zc, S, R1, Ra).
o Wefix s=3,Ri =1,Ry = Ry(0)

This results in 13 parameters to specify a rectilinear building, and 4 more for a
curvilinear building.

KIFS Buildings generated in rectilinear and curved coordinates are shown in
Figures (7,8,9). Results were generated and rendered at between 24ms and 133
ms per frame (about 8 to 42 fps) in a 640 x 640 viewport.

The technique we presented has several limitations. Roofs and other features
are not automatically handled. Physically impossible structures with floating
blocks can be created. Our system can, however, be extended to handle more
general building styles, such as those with a ground floor which doesn’t match
the appearance of the other floors, at the expense of requiring more user input.

Interactive Procedural Building Generation 9

Fig. 7: Rectilinear (left) and curved (middle, right) KIFS buildings

Fig. 8: KIFS buildings with t-shaped (left, right) and h-shaped mass model foot-
prints.

Fig. 9: Additional KIFS building results

10 Tim McGraw

5 Conclusion and Future Work

In this paper we have described a method for procedurally generating complex
buildings by harnessing the ornate architectural patterns generated by kaleido-
scopic iterated function systems (KIFS). We described a domain transformation
method which permits periodic patterns and symmetry to be specified and con-
trolled by the designer. Our system can interactively generate and raycast the
resulting structures entirely on the GPU. The methods can be implemented in
a few hundred lines of fragment shader code. Preliminary results show that this
technique can efficiently produce plausible buildings. Future work will involve
developing additional tools and interfaces to support building generation; im-
proving support for irregular features, such as entrances and roofs; and user
studies to assess the usability of the system.

References

1. Barnsley, M.F., Ervin, V., Hardin, D., Lancaster, J.: Solution of an inverse problem
for fractals and other sets. Proceedings of the National Academy of Sciences of the
United States of America 83 (1986) 1975-1977

2. Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural mod-
elling for virtual worlds. Computer Graphics Forum 33 (2014) 31-50

3. Demir, 1., Aliaga, D.G., Benes, B.: Proceduralization of buildings at city scale. In:
2014 2nd International Conference on 3D Vision (3DV). Volume 1., IEEE (2014)
456-463

4. Miiller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling
of facades. In: ACM Transactions on Graphics. Volume 26., ACM (2007) 85

5. Aliaga, D.G., Rosen, P., Bekins, D.R.: Style grammars for interactive visualization
of architecture. IEEE Transactions on Visualization and Computer Graphics 13
(2007) 786-797

6. Miiller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling
of buildings. ACM Transactions On Graphics 25 (2006) 614-623

7. McGraw, T., Herring, D.: Shape modeling with fractals. In: Advances in Visual
Computing. Springer (2014) 540-549

8. Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of
fractals. In: Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences. Volume 399., The Royal Society (1985) 243-275

9. Demko, S., Hodges, L., Naylor, B.: Construction of fractal objects with iterated
function systems. In: ACM SIGGRAPH Computer Graphics. Volume 19., ACM
(1985) 271-278

10. Knighty: Kaleidoscopic (escape time) IFS. http://www.fractalforums.com/ifs-
iterated-function-systems/kaleidoscopic-(escape-time-ifs) (2010)

11. Hart, J.C., Sandin, D.J., Kauffman, L.H.: Ray tracing deterministic 3-d fractals.
ACM SIGGRAPH Computer Graphics 23 (1989) 289-296

12. Quilez, I.: Modeling with distance functions. http://www.iquilezles.org (2008)

13. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and Al in Games 3 (2011) 172-186

