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ABSTRACT
We present the design, implementation, and evaluation of CONGA,
a network-based distributed congestion-aware load balancing mech-
anism for datacenters. CONGA exploits recent trends including
the use of regular Clos topologies and overlays for network vir-
tualization. It splits TCP flows into flowlets, estimates real-time
congestion on fabric paths, and allocates flowlets to paths based
on feedback from remote switches. This enables CONGA to effi-
ciently balance load and seamlessly handle asymmetry, without re-
quiring any TCP modifications. CONGA has been implemented in
custom ASICs as part of a new datacenter fabric. In testbed exper-
iments, CONGA has 5× better flow completion times than ECMP
even with a single link failure and achieves 2–8× better through-
put than MPTCP in Incast scenarios. Further, the Price of Anar-
chy for CONGA is provably small in Leaf-Spine topologies; hence
CONGA is nearly as effective as a centralized scheduler while be-
ing able to react to congestion in microseconds. Our main thesis
is that datacenter fabric load balancing is best done in the network,
and requires global schemes such as CONGA to handle asymmetry.
Categories and Subject Descriptors: C.2.1 [Computer-Communication
Networks]: Network Architecture and Design
Keywords: Datacenter fabric; Load balancing; Distributed

1. INTRODUCTION
Datacenter networks being deployed by cloud providers as well

as enterprises must provide large bisection bandwidth to support
an ever increasing array of applications, ranging from financial ser-
vices to big-data analytics. They also must provide agility, enabling
any application to be deployed at any server, in order to realize
operational efficiency and reduce costs. Seminal papers such as
VL2 [18] and Portland [1] showed how to achieve this with Clos
topologies, Equal Cost MultiPath (ECMP) load balancing, and the
decoupling of endpoint addresses from their location. These de-
sign principles are followed by next generation overlay technolo-
gies that accomplish the same goals using standard encapsulations
such as VXLAN [35] and NVGRE [45].

However, it is well known [2, 41, 9, 27, 44, 10] that ECMP can
balance load poorly. First, because ECMP randomly hashes flows
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to paths, hash collisions can cause significant imbalance if there are
a few large flows. More importantly, ECMP uses a purely local de-
cision to split traffic among equal cost paths without knowledge of
potential downstream congestion on each path. Thus ECMP fares
poorly with asymmetry caused by link failures that occur frequently
and are disruptive in datacenters [17, 34]. For instance, the recent
study by Gill et al. [17] shows that failures can reduce delivered
traffic by up to 40% despite built-in redundancy.

Broadly speaking, the prior work on addressing ECMP’s short-
comings can be classified as either centralized scheduling (e.g.,
Hedera [2]), local switch mechanisms (e.g., Flare [27]), or host-
based transport protocols (e.g., MPTCP [41]). These approaches
all have important drawbacks. Centralized schemes are too slow
for the traffic volatility in datacenters [28, 8] and local congestion-
aware mechanisms are suboptimal and can perform even worse
than ECMP with asymmetry (§2.4). Host-based methods such as
MPTCP are challenging to deploy because network operators often
do not control the end-host stack (e.g., in a public cloud) and even
when they do, some high performance applications (such as low
latency storage systems [39, 7]) bypass the kernel and implement
their own transport. Further, host-based load balancing adds more
complexity to an already complex transport layer burdened by new
requirements such as low latency and burst tolerance [4] in data-
centers. As our experiments with MPTCP show, this can make for
brittle performance (§5).

Thus from a philosophical standpoint it is worth asking: Can
load balancing be done in the network without adding to the com-
plexity of the transport layer? Can such a network-based approach
compute globally optimal allocations, and yet be implementable in
a realizable and distributed fashion to allow rapid reaction in mi-
croseconds? Can such a mechanism be deployed today using stan-
dard encapsulation formats? We seek to answer these questions
in this paper with a new scheme called CONGA (for Congestion
Aware Balancing). CONGA has been implemented in custom ASICs
for a major new datacenter fabric product line. While we report on
lab experiments using working hardware together with simulations
and mathematical analysis, customer trials are scheduled in a few
months as of the time of this writing.

Figure 1 surveys the design space for load balancing and places
CONGA in context by following the thick red lines through the de-
sign tree. At the highest level, CONGA is a distributed scheme to
allow rapid round-trip timescale reaction to congestion to cope with
bursty datacenter traffic [28, 8]. CONGA is implemented within the
network to avoid the deployment issues of host-based methods and
additional complexity in the transport layer. To deal with asymme-
try, unlike earlier proposals such as Flare [27] and LocalFlow [44]
that only use local information, CONGA uses global congestion
information, a design choice justified in detail in §2.4.
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Figure 1: Design space for load balancing.

Next, the most general design would sense congestion on every
link and send generalized link state packets to compute congestion-
sensitive routes [16, 48, 51, 36]. However, this is an N-party pro-
tocol with complex control loops, likely to be fragile and hard to
deploy. Recall that the early ARPANET moved briefly to such
congestion-sensitive routing and then returned to static routing, cit-
ing instability as a reason [31]. CONGA instead uses a 2-party
“leaf-to-leaf” mechanism to convey path-wise congestion metrics
between pairs of top-of-the-rack switches (also termed leaf switches)
in a datacenter fabric. The leaf-to-leaf scheme is provably near-
optimal in typical 2-tier Clos topologies (henceforth called Leaf-
Spine), simple to analyze, and easy to deploy. In fact, it is de-
ployable in datacenters today with standard overlay encapsulations
(VXLAN [35] in our implementation) which are already being used
to enable workload agility [33].

With the availability of very high-density switching platforms
for the spine (or core) with 100s of 40Gbps ports, a 2-tier fabric can
scale upwards of 20,000 10Gbps ports.1 This design point covers
the needs of the overwhelming majority of enterprise datacenters,
which are the primary deployment environments for CONGA.

Finally, in the lowest branch of the design tree, CONGA is con-
structed to work with flowlets [27] to achieve a higher granularity
of control and resilience to the flow size distribution while not re-
quiring any modifications to TCP. Of course, CONGA could also
be made to operate per packet by using a very small flowlet inac-
tivity gap (see §3.4) to perform optimally with a future reordering-
resilient TCP.

In summary, our major contributions are:
• We design (§3) and implement (§4) CONGA, a distributed

congestion-aware load balancing mechanism for datacenters.
CONGA is immediately deployable, robust to asymmetries
caused by link failures, reacts to congestion in microseconds,
and requires no end-host modifications.

• We extensively evaluate (§5) CONGA with a hardware testbed
and packet-level simulations. We show that even with a single
link failure, CONGA achieves more than 5× better flow com-
pletion time and 2× better job completion time respectively
for a realistic datacenter workload and a standard Hadoop Dis-
tributed File System benchmark. CONGA is at least as good
as MPTCP for load balancing while outperforming MPTCP
by 2–8× in Incast [47, 12] scenarios.

• We analyze (§6) CONGA and show that it is nearly optimal
in 2-tier Leaf-Spine topologies using “Price of Anarchy” [40]

1For example, spine switches with 576 40Gbps ports can be paired
with typical 48-port leaf switches to enable non-blocking fabrics
with 27,648 10Gbps ports.

analysis. We also prove that load balancing behavior and the
effectiveness of flowlets depends on the coefficient of varia-
tion of the flow size distribution.

2. DESIGN DECISIONS
This section describes the insights that inform CONGA’s major

design decisions. We begin with the desired properties that have
guided our design. We then revisit the design decisions shown in
Figure 1 in more detail from the top down.

2.1 Desired Properties
CONGA is an in-network congestion-aware load balancing mech-

anism for datacenter fabrics. In designing CONGA, we targeted a
solution with a number of key properties:

1. Responsive: Datacenter traffic is very volatile and bursty [18,
28, 8] and switch buffers are shallow [4]. Thus, with CONGA,
we aim for rapid round-trip timescale (e.g., 10s of microsec-
onds) reaction to congestion.

2. Transport independent: As a network mechanism, CONGA
must be oblivious to the transport protocol at the end-host
(TCP, UDP, etc). Importantly, it should not require any modi-
fications to TCP.

3. Robust to asymmetry: CONGA must handle asymmetry due
to link failures (which have been shown to be frequent and
disruptive in datacenters [17, 34]) or high bandwidth flows
that are not well balanced.

4. Incrementally deployable: It should be possible to apply
CONGA to only a subset of the traffic and only a subset of
the switches.

5. Optimized for Leaf-Spine topology: CONGA must work
optimally for 2-tier Leaf-Spine topologies (Figure 4) that cover
the needs of most enterprise datacenter deployments, though
it should also benefit larger topologies.

2.2 Why Distributed Load Balancing?
The distributed approach we advocate is in stark contrast to re-

cently proposed centralized traffic engineering designs [2, 9, 23,
21]. This is because of two important features of datacenters. First,
datacenter traffic is very bursty and unpredictable [18, 28, 8]. CONGA
reacts to congestion at RTT timescales (∼100µs) making it more
adept at handling high volatility than a centralized scheduler. For
example, the Hedera scheduler in [2] runs every 5 seconds; but it
would need to run every 100ms to approach the performance of
a distributed solution such as MPTCP [41], which is itself out-
performed by CONGA (§5). Second, datacenters use very regu-
lar topologies. For instance, in the common Leaf-Spine topology
(Figure 4), all paths are exactly two-hops. As our experiments (§5)
and analysis (§6) show, distributed decisions are close to optimal in
such regular topologies.

Of course, a centralized approach is appropriate for WANs where
traffic is stable and predictable and the topology is arbitrary. For
example, Google’s inter-datacenter traffic engineering algorithm
needs to run just 540 times per day [23].

2.3 Why In-Network Load Balancing?
Continuing our exploration of the design space (Figure 1), the

next question is where should datacenter fabric load balancing be
implemented — the transport layer at the end-hosts or the network?
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Figure 2: Congestion-aware load balancing needs non-local in-
formation with asymmetry. Here, L0 has 100Gbps of TCP traf-
fic to L1, and the (S1, L1) link has half the capacity of the
other links. Such cases occur in practice with link-aggregation
(which is very common), for instance, if a link fails in a fabric
with two 40Gbps links connecting each leaf and spine switch.

The state-of-the-art multipath transport protocol, MPTCP [41],
splits each connection into multiple (e.g., 8) sub-flows and bal-
ances traffic across the sub-flows based on perceived congestion.
Our experiments (§5) show that while MPTCP is effective for load
balancing, its use of multiple sub-flows actually increases conges-
tion at the edge of the network and degrades performance in Incast
scenarios (Figure 13). Essentially, MPTCP increases the burstiness
of traffic as more sub-flows contend at the fabric’s access links.
Note that this occurs despite MPTCP’s coupled congestion control
algorithm [50] which is designed to handle shared bottlenecks, be-
cause while the coupled congestion algorithm works if flows are
in steady-state, in realistic datacenter workloads, many flows are
short-lived and transient [18].

The larger architectural point however is that datacenter fabric
load balancing is too specific to be implemented in the transport
stack. Datacenter fabrics are highly-engineered, homogenous sys-
tems [1, 34]. They are designed from the onset to behave like a
giant switch [18, 1, 25], much like the internal fabric within large
modular switches. Binding the fabric’s load balancing behavior to
the transport stack which already needs to balance multiple impor-
tant requirements (e.g., high throughput, low latency, and burst tol-
erance [4]) is architecturally unappealing. Further, some datacenter
applications such as high performance storage systems bypass the
kernel altogether [39, 7] and hence cannot use MPTCP.

2.4 Why Global Congestion Awareness?
Next, we consider local versus global schemes (Figure 1). Han-

dling asymmetry essentially requires non-local knowledge about
downstream congestion at the switches. With asymmetry, a switch
cannot simply balance traffic based on the congestion of its local
links. In fact, this may lead to even worse performance than a static
scheme such as ECMP (which does not consider congestion at all)
because of poor interaction with TCP’s control loop.

As an illustration, consider the simple asymmetric scenario in
Figure 2. Leaf L0 has 100Gbps of TCP traffic demand to Leaf
L1. Static ECMP splits the flows equally, achieving a throughput
of 90Gbps because the flows on the lower path are bottlenecked
at the 40Gbps link (S1, L1). Local congestion-aware load balanc-
ing is actually worse with a throughput of 80Gbps. This is be-
cause as TCP slows down the flows on the lower path, the link
(L0, S1) appears less congested. Hence, paradoxically, the local
scheme shifts more traffic to the lower link until the throughput
on the upper link is also 40 Gbps. This example illustrates a fun-
damental limitation of any local scheme (such as Flare [27], Lo-
calFlow [44], and packet-spraying [10]) that strictly enforces an
equal traffic split without regard for downstream congestion. Of
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Figure 3: Optimal traffic split in asymmetric topologies de-
pends on the traffic matrix. Here, the L1→L2 flow must adjust
its traffic through S0 based on the amount of L0→L2 traffic.
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Figure 4: CONGA architecture. The source leaf switch de-
tects flowlets and routes them via the least congested path to
the destination using congestion metrics obtained from leaf-to-
leaf feedback. Note that the topology could be asymmetric.

course, global congestion-aware load balancing (as in CONGA)
does not have this issue.

The reader may wonder if asymmetry can be handled by some
form of oblivious routing [32] such as weighted random load bal-
ancing with weights chosen according to the topology. For in-
stance, in the above example we could give the lower path half
the weight of the upper path and achieve the same traffic split as
CONGA. While this works in this case, it fails in general because
the “right” traffic splits in asymmetric topologies depend also on
the traffic matrix, as shown by the example in Figure 3. Here, de-
pending on how much L0→L2 traffic there is, the optimal split for
L1→L2 traffic changes. Hence, static weights cannot handle both
cases in Figure 3. Note that in this example, the two L1→L2 paths
are symmetric when considered in isolation. But because of an
asymmetry in another part of the network, the L0→L2 traffic cre-
ates a bandwidth asymmetry for the L1→L2 traffic that can only
be detected by considering non-local congestion. Note also that a
local congestion-aware mechanism could actually perform worse
than ECMP; for example, in the scenario in part (b).

2.5 Why Leaf-to-Leaf Feedback?
At the heart of CONGA is a leaf-to-leaf feedback mechanism

that conveys real-time path congestion metrics to the leaf switches.
The leaves use these metrics to make congestion-aware load bal-
ancing decisions based on the global (fabric-wide) state of conges-
tion (Figure 4). We now argue (following Figure 1) why leaf-to-leaf
congestion signaling is simple and natural for modern data centers.

Overlay network: CONGA operates in an overlay network con-
sisting of “tunnels” between the fabric’s leaf switches. When an
endpoint (server or VM) sends a packet to the fabric, the source
leaf, or source tunnel endpoint (TEP), looks up the destination end-



point’s address (either MAC or IP) to determine to which leaf (des-
tination TEP) the packet needs to be sent.2 It then encapsulates
the packet — with outer source and destination addresses set to the
source and destination TEP addresses — and sends it to the spine.
The spine switches forward the packet to its destination leaf based
entirely on the outer header. Once the packet arrives at the desti-
nation leaf, it decapsulates the original packet and delivers it to the
intended recipient.

Overlays are deployed today to virtualize the physical network
and enable multi-tenancy and agility by decoupling endpoint iden-
tifiers from their location (see [38, 22, 33] for more details). How-
ever, the overlay also provides the ideal conduit for CONGA’s leaf-
to-leaf congestion feedback mechanism. Specifically, CONGA lever-
ages two key properties of the overlay: (i) The source leaf knows
the ultimate destination leaf for each packet, in contrast to standard
IP forwarding where the switches only know the next-hops. (ii)
The encapsulated packet has an overlay header (VXLAN [35] in
our implementation) which can be used to carry congestion metrics
between the leaf switches.
Congestion feedback: The high-level mechanism is as follows.
Each packet carries a congestion metric in the overlay header that
represents the extent of congestion the packet experiences as it
traverses through the fabric. The metric is updated hop-by-hop
and indicates the utilization of the most congested link along the
packet’s path. This information is stored at the destination leaf on
a per source leaf, per path basis and is opportunistically fed back
to the source leaf by piggybacking on packets in the reverse di-
rection. There may be, in general, 100s of paths in a multi-tier
topology. Hence, to reduce state, the destination leaf aggregates
congestion metrics for one or more paths based on a generic iden-
tifier called the Load Balancing Tag that the source leaf inserts in
packets (see §3 for details).

2.6 Why Flowlet Switching for Datacenters?
CONGA also employs flowlet switching, an idea first introduced

by Kandula et al. [27]. Flowlets are bursts of packets from a flow
that are separated by large enough gaps (see Figure 4). Specifi-
cally, if the idle interval between two bursts of packets is larger
than the maximum difference in latency among the paths, then the
second burst can be sent along a different path than the first with-
out reordering packets. Thus flowlets provide a higher granularity
alternative to flows for load balancing (without causing reordering).

2.6.1 Measurement analysis
Flowlet switching has been shown to be an effective technique

for fine-grained load balancing across Internet paths [27], but how
does it perform in datacenters? On the one hand, the very high
bandwidth of internal datacenter flows would seem to suggest that
the gaps needed for flowlets may be rare, limiting the applicability
of flowlet switching. On the other hand, datacenter traffic is known
to be extremely bursty at short timescales (e.g., 10–100s of mi-
croseconds) for a variety of reasons such as NIC hardware offloads
designed to support high link rates [29]. Since very small flowlet
gaps suffice in datacenters to maintain packet order (because the
network latency is very low) such burstiness could provide suffi-
cient flowlet opportunities.

We study the applicability of flowlet switching in datacenters us-
ing measurements from actual production datacenters. We instru-
ment a production cluster with over 4500 virtualized and bare metal
hosts across ∼30 racks of servers to obtain packet traces of traffic
2How the mapping between endpoint identifiers and their locations
(leaf switches) is obtained and propagated is beyond the scope of
this paper.
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Figure 5: Distribution of data bytes across transfer sizes for
different flowlet inactivity gaps.

flows through the network core. The cluster supports over 2000
diverse enterprise applications, including web, data-base, security,
and business intelligence services. The captures are obtained by
having a few leaf switches mirror traffic to an analyzer without dis-
rupting production traffic. Overall, we analyze more than 150GB
of compressed packet trace data.

Flowlet size: Figure 5 shows the distribution of the data bytes ver-
sus flowlet size for three choices of flowlet inactivity gap: 250ms,
500µs, and 100µs. Since it is unlikely that we would see a gap
larger than 250ms in the same application-level flow, the line “Flow
(250ms)” essentially corresponds to how the bytes are spread across
flows. The plot shows that balancing flowlets gives significantly
more fine-grained control than balancing flows. Even with an in-
activity gap of 500µs, which is quite large and poses little risk of
packet reordering in datacenters, we see nearly two orders of mag-
nitude reduction in the size of transfers that cover most of the data:
50% of the bytes are in flows larger than ∼30MB, but this number
reduces to ∼500KB for “Flowlet (500µs)”.

Flowlet concurrency: Since the required flowlet inactivity gap is
very small in datacenters, we expect there to be a small number
of concurrent flowlets at any given time. Thus, the implementa-
tion cost for tracking flowlets should be low. To quantify this, we
measure the distribution of the number of distinct 5-tuples in our
packet trace over 1ms intervals. We find that the number of dis-
tinct 5-tuples (and thus flowlets) is small, with a median of 130 and
a maximum under 300. Normalizing these numbers to the aver-
age throughput in our trace (∼15Gbps), we estimate that even for
a very heavily loaded leaf switch with say 400Gbps of traffic, the
number of concurrent flowlets would be less than 8K. Maintaining
a table for tracking 64K flowlets is feasible at low cost (§3.4).

3. DESIGN
Figure 6 shows the system diagram of CONGA. The majority of

the functionality resides at the leaf switches. The source leaf makes
load balancing decisions based on per uplink congestion metrics,
derived by taking the maximum of the local congestion at the uplink
and the remote congestion for the path (or paths) to the destination
leaf that originate at the uplink. The remote metrics are stored in the
Congestion-To-Leaf Table on a per destination leaf, per uplink ba-
sis and convey the maximum congestion for all the links along the
path. The remote metrics are obtained via feedback from the des-
tination leaf switch, which opportunistically piggybacks values in
its Congestion-From-Leaf Table back to the source leaf. CONGA
measures congestion using the Discounting Rate Estimator (DRE),
a simple module present at each fabric link.

Load balancing decisions are made on the first packet of each
flowlet. Subsequent packets use the same uplink as long as the
flowlet remains active (there is not a sufficiently long gap). The
source leaf uses the Flowlet Table to keep track of active flowlets
and their chosen uplinks.
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Figure 6: CONGA system diagram.

3.1 Packet format
CONGA leverages the VXLAN [35] encapsulation format used

for the overlay to carry the following state:

• LBTag (4 bits): This field partially identifies the packet’s
path. It is set by the source leaf to the (switch-local) port num-
ber of the uplink the packet is sent on and is used by the des-
tination leaf to aggregate congestion metrics before they are
fed back to the source. For example, in Figure 6, the LBTag
is 2 for both blue paths. Note that 4 bits is sufficient because
the maximum number of leaf uplinks in our implementation is
12 for a non-oversubscribed configuration with 48 × 10Gbps
server-facing ports and 12× 40Gbps uplinks.

• CE (3 bits): This field is used by switches along the packet’s
path to convey the extent of congestion.

• FB_LBTag (4 bits) and FB_Metric (3 bits): These two fields
are used by destination leaves to piggyback congestion infor-
mation back to the source leaves. FB_LBTag indicates the
LBTag the feedback is for and FB_Metric provides its associ-
ated congestion metric.

3.2 Discounting Rate Estimator (DRE)
The DRE is a simple module for measuring the load of a link.

The DRE maintains a register, X , which is incremented for each
packet sent over the link by the packet size in bytes, and is decre-
mented periodically (every Tdre) with a multiplicative factor α be-
tween 0 and 1: X ← X × (1 − α). It is easy to show that X is
proportional to the rate of traffic over the link; more precisely, if
the traffic rate is R, then X ≈ R · τ , where τ = Tdre/α. The
DRE algorithm is essentially a first-order low pass filter applied to
packet arrivals, with a (1 − e−1) rise time of τ . The congestion
metric for the link is obtained by quantizing X/Cτ to 3 bits (C is
the link speed).

The DRE algorithm is similar to the widely used Exponential
Weighted Moving Average (EWMA) mechanism. However, DRE
has two key advantages over EWMA: (i) it can be implemented
with just one register (whereas EWMA requires two); and (ii) the
DRE reacts more quickly to traffic bursts (because increments take
place immediately upon packet arrivals) while retaining memory of
past bursts. In the interest of space, we omit the details.

3.3 Congestion Feedback
CONGA uses a feedback loop between the source and destina-

tion leaf switches to populate the remote metrics in the Congestion-

To-Leaf Table at each leaf switch. We now describe the sequence
of events involved (refer to Figure 6 for an example).

1. The source leaf sends the packet to the fabric with the LBTag
field set to the uplink port taken by the packet. It also sets the
CE field to zero.

2. The packet is routed through the fabric to the destination leaf.3

As it traverses each link, its CE field is updated if the link’s
congestion metric (given by the DRE) is larger than the current
value in the packet.

3. The CE field of the packet received at the destination leaf gives
the maximum link congestion along the packet’s path. This
needs to be fed back to the source leaf. But since a packet
may not be immediately available in the reverse direction, the
destination leaf stores the metric in the Congestion-From-Leaf
Table (on a per source leaf, per LBTag basis) while it waits for
an opportunity to piggyback the feedback.

4. When a packet is sent in the reverse direction, one metric from
the Congestion-From-Leaf Table is inserted in its FB_LBTag
and FB_Metric fields for the source leaf. The metric is cho-
sen in round-robin fashion while, as an optimization, favoring
those metrics whose values have changed since the last time
they were fed back.

5. Finally, the source leaf parses the feedback in the reverse packet
and updates the Congestion-To-Leaf Table.

It is important to note that though we have described the forward
and reverse packets separately for simplicity, every packet simul-
taneously carries both a metric for its forward path and a feedback
metric. Also, while we could generate explicit feedback packets,
we decided to use piggybacking because we only need a very small
number of packets for feedback. In fact, all metrics between a pair
of leaf switches can be conveyed in at-most 12 packets (because
there are 12 distinct LBTag values), with the average case being
much smaller because the metrics only change at network round-
trip timescales, not packet-timescales (see the discussion in §3.6
regarding the DRE time constant).

Metric aging: A potential issue with not having explicit feedback
packets is that the metrics may become stale if sufficient traffic does
not exit for piggybacking. To handle this, a simple aging mecha-
nism is added where a metric that has not been updated for a long
time (e.g., 10ms) gradually decays to zero. This also guarantees
that a path that appears to be congested is eventually probed again.

3.4 Flowlet Detection
Flowlets are detected and tracked in the leaf switches using the

Flowlet Table. Each entry of the table consists of a port number, a
valid bit, and an age bit. When a packet arrives, we lookup an entry
based on a hash of its 5-tuple. If the entry is valid (valid_bit ==
1), the flowlet is active and the packet is sent on the port indicated
in the entry. If the entry is not valid, the incoming packet starts
a new flowlet. In this case, we make a load balancing decision
(as described below) and cache the result in the table for use by
subsequent packets. We also set the valid bit.

Flowlet entries time out using the age bit. Each incoming packet
resets the age bit. A timer periodically (every Tfl seconds) checks
the age bit before setting it. If the age bit is set when the timer
checks it, then there have not been any packets for that entry in the
3If there are multiple valid next hops to the destination (as in Fig-
ure 6), the spine switches pick one using standard ECMP hashing.



last Tfl seconds and the entry expires (the valid bit is set to zero).
Note that a single age bit allows us to detect gaps between Tfl and
2Tfl. While not as accurate as using full timestamps, this requires
far fewer bits allowing us to maintain a very large number of entries
in the table (64K in our implementation) at low cost.

Remark 1. Although with hashing, flows may collide in the Flowlet
Table, this is not a big concern. Collisions simply imply some load
balancing opportunities are lost which does not matter as long as
this does not occur too frequently.

3.5 Load Balancing Decision Logic
Load balancing decisions are made on the first packet of each

flowlet (other packets use the port cached in the Flowlet Table).
For a new flowlet, we pick the uplink port that minimizes the max-
imum of the local metric (from the local DREs) and the remote
metric (from the Congestion-To-Leaf Table). If multiple uplinks
are equally good, one is chosen at random with preference given
to the port cached in the (invalid) entry in the Flowlet Table; i.e., a
flow only moves if there is a strictly better uplink than the one its
last flowlet took.

3.6 Parameter Choices
CONGA has three main parameters: (i)Q, the number of bits for

quantizing congestion metrics (§3.1); (ii) τ , the DRE time constant,
given by Tdre/α (§3.2); and (iii) Tfl, the flowlet inactivity timeout
(§3.4). We set these parameters experimentally. A control-theoretic
analysis of CONGA is beyond the scope of this paper, but our pa-
rameter choices strike a balance between the stability and respon-
siveness of CONGA’s control loop while taking into consideration
practical matters such as interaction with TCP and implementation
cost (header requirements, table size, etc).

The parametersQ and τ determine the “gain” of CONGA’s con-
trol loop and exhibit important tradeoffs. A large Q improves con-
gestion metric accuracy, but if too large can make the leaf switches
over-react to minor differences in congestion causing oscillatory
behavior. Similarly, a small τ makes the DRE respond quicker, but
also makes it more susceptible to noise from transient traffic bursts.
Intuitively, τ should be set larger than the network RTT to filter the
sub-RTT traffic bursts of TCP. The flowlet timeout, Tfl, can be
set to the maximum possible leaf-to-leaf latency to guarantee no
packet reordering. This value can be rather large though because of
worst-case queueing delays (e.g., 13ms in our testbed), essentially
disabling flowlets. Reducing Tfl presents a compromise between
more packet reordering versus less congestion (fewer packet drops,
lower latency) due to better load balancing.

Overall, we have found CONGA’s performance to be fairly ro-
bust with: Q = 3 to 6, τ = 100µs to 500µs, and Tfl = 300µs
to 1ms. The default parameter values for our implementation are:
Q = 3, τ = 160µs, and Tfl = 500µs.

4. IMPLEMENTATION
CONGA has been implemented in custom switching ASICs for

a major datacenter fabric product line. The implementation in-
cludes ASICs for both the leaf and spine nodes. The Leaf ASIC
implements flowlet detection, congestion metric tables, DREs, and
the leaf-to-leaf feedback mechanism. The Spine ASIC implements
the DRE and its associated congestion marking mechanism. The
ASICs provide state-of-the-art switching capacities. For instance,
the Leaf ASIC has a non-blocking switching capacity of 960Gbps
in 28nm technology. CONGA’s implementation requires roughly
2.4M gates and 2.8Mbits of memory in the Leaf ASIC, and con-
sumes negligible die area (< 2%).
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Figure 7: Topologies used in testbed experiments.
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Figure 8: Empirical traffic distributions. The Bytes CDF shows
the distribution of traffic bytes across different flow sizes.

5. EVALUATION
In this section, we evaluate CONGA’s performance with a real

hardware testbed as well as large-scale simulations. Our testbed ex-
periments illustrate CONGA’s good performance for realistic em-
pirical workloads, Incast micro-benchmarks, and actual applica-
tions. Our detailed packet-level simulations confirm that CONGA
scales to large topologies.

Schemes compared: We compare CONGA, CONGA-Flow, ECMP,
and MPTCP [41], the state-of-the-art multipath transport proto-
col. CONGA and CONGA-Flow differ only in their choice of
the flowlet inactivity timeout. CONGA uses the default value:
Tfl = 500µs. CONGA-Flow however uses Tfl = 13ms which is
greater than the maximum path latency in our testbed and ensures
no packet reordering. CONGA-Flow’s large timeout effectively
implies one load balancing decision per flow, similar to ECMP.
Of course, in contrast to ECMP, decisions in CONGA-Flow are
informed by the path congestion metrics. The rest of the parame-
ters for both variants of CONGA are set as described in §3.6. For
MPTCP, we use MPTCP kernel v0.87 available on the web [37].
We configure MPTCP to use 8 sub-flows for each TCP connection,
as Raiciu et al. [41] recommend.

5.1 Testbed
Our testbed consists of 64 servers and four switches (two leaves

and two spines). As shown in Figure 7, the servers are organized
in two racks (32 servers each) and attach to the leaf switches with
10Gbps links. In the baseline topology (Figure 7(a)), the leaf switches
connect to each spine switch with two 40Gbps uplinks. Note that
there is a 2:1 oversubscription at the Leaf level, typical of today’s
datacenter deployments. We also consider the asymmetric topology
in Figure 7(b) where one of the links between Leaf 1 and Spine 1 is
down. The servers have 12-core Intel Xeon X5670 2.93GHz CPUs,
128GB of RAM, and 3 2TB 7200RPM HDDs.

5.2 Empirical Workloads
We begin with experiments with realistic workloads based on

empirically observed traffic patterns in deployed datacenters. Specif-
ically, we consider the two flow size distributions shown in Fig-
ure 8. The first distribution is derived from packet traces from our
own datacenters (§2.6) and represents a large enterprise workload.
The second distribution is from a large cluster running data mining
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Figure 9: FCT statistics for the enterprise workload with the baseline topology. Note that part (a) is normalized to the optimal FCT,
while parts (b) and (c) are normalized to the value achieved by ECMP. The results are the average of 5 runs.
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Figure 10: FCT statistics for the data-mining workload with the baseline topology.

jobs [18]. Note that both distributions are heavy-tailed: A small
fraction of the flows contribute most of the data. Particularly, the
data-mining distribution has a very heavy tail with 95% of all data
bytes belonging to ∼3.6% of flows that are larger than 35MB.

We develop a simple client-server program to generate the traffic.
The clients initiate 3 long-lived TCP connections to each server
and request flows according to a Poisson process from randomly
chosen servers. The request rate is chosen depending on the desired
offered load and the flow sizes are sampled from one of the above
distributions. All 64 nodes run both client and server processes.
Since we are interested in stressing the fabric’s load balancing, we
configure the clients under Leaf 0 to only use the servers under
Leaf 1 and vice-versa, thereby ensuring that all traffic traverses the
Spine. Similar to prior work [20, 5, 13], we use the flow completion
time (FCT) as our main performance metric.

5.2.1 Baseline
Figures 9 and 10 show the results for the two workloads with

the baseline topology (Figure 7(a)). Part (a) of each figure shows
the overall average FCT for each scheme at traffic loads between
10–90%. The values here are normalized to the optimal FCT that
is achievable in an idle network. In parts (b) and (c), we break
down the FCT for each scheme for small (< 100KB) and large
(> 10MB) flows, normalized to the value achieved by ECMP. Each
data point is the average of 5 runs with the error bars showing the
range. (Note that the error bars are not visible at all data points.)

Enterprise workload: We find that the overall average FCT is sim-
ilar for all schemes in the enterprise workload, except for MPTCP
which is up to∼25% worse than the others. MPTCP’s higher over-
all average FCT is because of the small flows, for which it is up
to∼50% worse than ECMP. CONGA and similarly CONGA-Flow
are slightly worse for small flows (∼12–19% at 50–80% load), but
improve FCT for large flows by as much as ∼20%.

Data-mining workload: For the data-mining workload, ECMP is
noticeably worse than the other schemes at the higher load levels.
Both CONGA and MPTCP achieve up to ∼35% better overall av-

erage FCT than ECMP. Similar to the enterprise workload, we find
a degradation in FCT for small flows with MPTCP compared to the
other schemes.

Analysis: The above results suggest a tradeoff with MPTCP be-
tween achieving good load balancing in the core of the fabric and
managing congestion at the edge. Essentially, while using 8 sub-
flows per connection helps MPTCP achieve better load balancing,
it also increases congestion at the edge links because the multiple
sub-flows cause more burstiness. Further, as observed by Raiciu et
al. [41], the small sub-flow window sizes for short flows increases
the chance of timeouts. This hurts the performance of short flows
which are more sensitive to additional latency and packet drops.
CONGA on the other hand does not have this problem since it does
not change the congestion control behavior of TCP.

Another interesting observation is the distinction between the en-
terprise and data-mining workloads. In the enterprise workload,
ECMP actually does quite well leaving little room for improve-
ment by the more sophisticated schemes. But for the data-mining
workload, ECMP is noticeably worse. This is because the enter-
prise workload is less “heavy”; i.e., it has fewer large flows. In
particular, ∼50% of all data bytes in the enterprise workload are
from flows that are smaller than 35MB (Figure 8(a)). But in the
data mining workload, flows smaller than 35MB contribute only
∼5% of all bytes (Figure 8(b)). Hence, the data-mining workload
is more challenging to handle from a load balancing perspective.
We quantify the impact of the workload analytically in §6.2.

5.2.2 Impact of link failure
We now repeat both workloads for the asymmetric topology when

a fabric link fails (Figure 7(b)). The overall average FCT for both
workloads is shown in Figure 11. Note that since in this case the
bisection bandwidth between Leaf 0 and Leaf 1 is 75% of the orig-
inal capacity (3 × 40Gbps links instead of 4), we only consider
offered loads up to 70%. As expected, ECMP’s performance dras-
tically deteriorates as the offered load increases beyond 50%. This
is because with ECMP, half of the traffic from Leaf 0 to Leaf 1



0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

10	
   20	
   30	
   40	
   50	
   60	
   70	
  

FC
T	
  
(N
or
m
.	
  t
o	
  
O
p.

m
al
)	
  

Load	
  (%)	
  

ECMP	
  
CONGA-­‐Flow	
  
CONGA	
  
MPTCP	
  

(a) Enterprise workload: Avg FCT

0	
  

5	
  

10	
  

15	
  

20	
  

10	
   20	
   30	
   40	
   50	
   60	
   70	
  

FC
T	
  
(N
or
m
.	
  t
o	
  
O
p.

m
al
)	
  

Load	
  (%)	
  

ECMP	
  
CONGA-­‐Flow	
  
CONGA	
  
MPTCP	
  

(b) Data-mining workload: Avg FCT

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

0	
   2	
   4	
   6	
   8	
  

CD
F	
  

Queue	
  Length	
  (MBytes)	
  

ECMP	
  
CONGA-­‐Flow	
  
CONGA	
  
MPTCP	
  

(c) Queue length at hotspot

Figure 11: Impact of link failure. Parts (a) and (b) show that overall average FCT for both workloads. Part (c) shows the CDF of
queue length at the hotspot port [Spine1→Leaf1] for the data-mining workload at 60% load.
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Figure 12: Extent of imbalance between throughput of leaf up-
links for both workloads at 60% load.

is sent through Spine 1 (see Figure 7(b)). Therefore the single
[Spine1→Leaf1] link must carry twice as much traffic as each of
the [Spine0→Leaf1] links and becomes oversubscribed when the
offered load exceeds 50%. At this point, the network effectively
cannot handle the offered load and becomes unstable.

The other adaptive schemes are significantly better than ECMP
with the asymmetric topology because they shift traffic to the lesser
congested paths (through Spine 0) and can thus handle the offered
load. CONGA is particularly robust to the link failure, achieving
up to ∼30% lower overall average FCT than MPTCP in the en-
terprise workload and close to 2× lower in the data-mining work-
load at 70% load. CONGA-Flow is also better than MPTCP even
though it does not split flows. This is because CONGA proac-
tively detects high utilization paths before congestion occurs and
adjusts traffic accordingly, whereas MPTCP is reactive and only
makes adjustments when sub-flows on congested paths experience
packet drops. This is evident from Figure 11(c), which compares
the queue occupancy at the hotspot port [Spine1→Leaf1] for the
different schemes for the data-mining workload at 60% load. We
see that CONGA controls the queue occupancy at the hotspot much
more effectively than MPTCP, for instance, achieving a 4× smaller
90th percentile queue occupancy.

5.2.3 Load balancing efficiency
The FCT results of the previous section show end-to-end per-

formance which is impacted by a variety of factors, including load
balancing. We now focus specifically on CONGA’s load balanc-
ing efficiency. Figure 12 shows the CDF of the throughput im-
balance across the 4 uplinks at Leaf 0 in the baseline topology
(without link failure) for both workloads at the 60% load level.

The throughput imbalance is defined as the maximum throughput
(among the 4 uplinks) minus the minimum divided by the average:
(MAX − MIN)/AV G. This is calculated from synchronous
samples of the throughput of the 4 uplinks over 10ms intervals,
measured using a special debugging module in the ASIC.

The results confirm that CONGA is at least as efficient as MPTCP
for load balancing (without any TCP modifications) and is signifi-
cantly better than ECMP. CONGA’s throughput imbalance is even
lower than MPTCP for the enterprise workload. With CONGA-
Flow, the throughput imbalance is slightly better than MPTCP in
the enterprise workload, but worse in the data-mining workload.

5.3 Incast
Our results in the previous section suggest that MPTCP increases

congestion at the edge links because it opens 8 sub-flows per con-
nection. We now dig deeper into this issue for Incast traffic patterns
that are common in datacenters [4].

We use a simple application that generates the standard Incast
traffic pattern considered in prior work [47, 12, 4]. A client pro-
cess residing on one of the servers repeatedly makes requests for a
10MB file striped acrossN other servers. The servers each respond
with 10MB/N of data in a synchronized fashion causing Incast. We
measure the effective throughput at the client for different “fan-in”
values, N , ranging from 1 to 63. Note that this experiment does
not stress the fabric load balancing since the total traffic crossing
the fabric is limited by the client’s 10Gbps access link. The perfor-
mance here is predominantly determined by the Incast behavior for
the TCP or MPTCP transports.

The results are shown in Figure 13. We consider two mini-
mum retransmission timeout (minRTO) values: 200ms (the de-
fault value in Linux) and 1ms (recommended by Vasudevan et al. [47]
to cope with Incast); and two packet sizes (MTU ): 1500B (the
standard Ethernet frame size) and 9000B (jumbo frames). The plots
confirm that MPTCP significantly degrades performance in Incast
scenarios. For instance, withminRTO = 200ms, MPTCP’s through-
put degrades to less than 30% for large fan-in with 1500B packets
and just 5% with 9000B packets. Reducing minRTO to 1ms mit-
igates the problem to some extent with standard packets, but even
reducing minRTO does not prevent significant throughput loss
with jumbo frames. CONGA +TCP achieves 2–8× better through-
put than MPTCP in similar settings.

5.4 HDFS Benchmark
Our final testbed experiment evaluates the end-to-end impact of

CONGA on a real application. We set up a 64 node Hadoop clus-
ter (Cloudera distribution hadoop-0.20.2-cdh3u5) with 1 NameN-
ode and 63 DataNodes and run the standard TestDFSIO bench-
mark included in the Apache Hadoop distribution [19]. The bench-
mark tests the overall IO performance of the cluster by spawning
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Figure 13: MPTCP significantly degrades performance in In-
cast scenarios, especially with large packet sizes (MTU).

a MapReduce job which writes a 1TB file into HDFS (with 3-way
replication) and measuring the total job completion time. We run
the benchmark 40 times for both of the topologies in Figure 7 (with
and without link failure). We found in our experiments that the
TestDFSIO benchmark is disk-bound in our setup and does not pro-
duce enough traffic on its own to stress the network. Therefore, in
the absence of servers with more or faster disks, we also generate
some background traffic using the empirical enterprise workload
described in §5.2.

Figure 14 shows the job completion times for all trials. We
find that for the baseline topology (without failures), ECMP and
CONGA have nearly identical performance. MPTCP has some out-
lier trials with much higher job completion times. For the asymmet-
ric topology with link failure, the job completion times for ECMP
are nearly twice as large as without the link failure. But CONGA is
robust; comparing Figures 14 (a) and (b) shows that the link failure
has almost no impact on the job completion times with CONGA.
The performance with MPTCP is very volatile with the link fail-
ure. Though we cannot ascertain the exact root cause of this, we
believe it is because of MPTCP’s difficulties with Incast since the
TestDFSIO benchmark creates a large number of concurrent trans-
fers between the servers.

5.5 Large-Scale Simulations
Our experimental results were for a comparatively small topol-

ogy (64 servers, 4 switches), 10Gbps access links, one link failure,
and 2:1 oversubscription. But in developing CONGA, we also did
extensive packet-level simulations, including exploring CONGA’s
parameter space (§3.6), different workloads, larger topologies, vary-
ing oversubscription ratios and link speeds, and varying degrees of
asymmetry. We briefly summarize our main findings.

Note: We used OMNET++ [46] and the Network Simulation Cra-
dle [24] to port the actual Linux TCP source code (from kernel
2.6.26) to our simulator. Despite its challenges, we felt that cap-
turing exact TCP behavior was crucial to evaluate CONGA, espe-
cially to accurately model flowlets. Since an OMNET++ model of
MPTCP is unavailable and we did experimental comparisons, we
did not simulate MPTCP.

Varying fabric size and oversubscription: We have simulated
realistic datacenter workloads (including those presented in §5.2)
for fabrics with as many as 384 servers, 8 leaf switches, and 12
spine switches, and for oversubscription ratios ranging from 1:1 to
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(b) Asymmetric Topology (with link failure)
Figure 14: HDFS IO benchmark.
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(a) 10Gbps access links
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(b) 40Gbps access links
Figure 15: Overall average FCT for a simulated workload
based on web search [4] for two topologies with 40Gbps fab-
ric links, 3:1 oversubscription, and: (a) 384 10Gbps servers,
(b) 96 40Gbps servers.

5:1. We find qualitatively similar results to our testbed experiments
at all scales. CONGA achieves ∼5–40% better FCT than ECMP
in symmetric topologies, with the benefit larger for heavy flow size
distributions, high load, and high oversubscription ratios.
Varying link speeds: CONGA’s improvement over ECMP is more
pronounced and occurs at lower load levels the closer the access
link speed (at the servers) is to the fabric link speed. For exam-
ple, in topologies with 40Gbps links everywhere, CONGA achieves
30% better FCT than ECMP even at 30% traffic load, while for
topologies with 10Gbps edge and 40Gbps fabric links, the improve-
ment at 30% load is typically 5–10% (Figure 15). This is because
in the latter case, each fabric link can support multiple (at least 4)
flows without congestion. Therefore, the impact of hash collisions
in ECMP is less pronounced in this case (see also [41]).
Varying asymmetry: Across tens of asymmetrical scenarios we
simulated (e.g., with different number of random failures, fabrics
with both 10Gbps and 40Gbps links, etc) CONGA achieves near
optimal traffic balance. For example, in the representative scenario
shown in Figure 16, the queues at links 10 and 12 in the spine
(which are adjacent to the failed link 11) are ∼10× larger with
ECMP than CONGA.

6. ANALYSIS
In this section we complement our experimental results with anal-

ysis of CONGA along two axes. First, we consider a game-theoretic
model known as the bottleneck routing game [6] in the context of
CONGA to quantify its Price of Anarchy [40]. Next, we consider
a stochastic model that gives insights into the impact of the traffic
distribution and flowlets on load balancing performance.
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Figure 16: Multiple link failure scenario in a 288-port fabric
with 6 leaves and 4 spines. Each leaf and spine connect with
3× 40Gbps links and 9 randomly chosen links fail. The plots
show the average queue length at all fabric ports for a web
search workload at 60% load. CONGA balances traffic sig-
nificantly better than ECMP. Note that the improvement over
ECMP is much larger at the (remote) spine downlinks because
ECMP spreads load equally on the leaf uplinks.

6.1 The Price of Anarchy for CONGA
In CONGA, the leaf switches make independent load balancing

decisions to minimize the congestion for their own traffic. This un-
coordinated or “selfish” behavior can potentially cause inefficiency
in comparison to having centralized coordination. This inefficiency
is known as the Price of Anarchy (PoA) [40] and has been the sub-
ject of numerous studies in the theoretical literature (see [43] for a
survey). In this section we analyze the PoA for CONGA using the
bottleneck routing game model introduced by Banner et al. [6].

Model: We consider a two-tier Leaf-Spine network modeled as a
complete bipartite graph. The leaf and spine nodes are connected
with links of arbitrary capacities {ce}. The network is shared by
a set of users U . Each user u ∈ U has a traffic demand γu, to
be sent from source leaf, su, to destination leaf, tu. A user must
decide how to split its traffic along the paths P (su,tu) through the
different spine nodes. Denote by fup the flow of user u on path
p. The set of all user flows, f = {fup }, is termed the network
flow. A network flow is feasible if

∑
p∈P (su,tu) f

u
p = γu for all

u ∈ U . Let fp =
∑
u∈U f

u
p be the total flow on a path and fe =∑

p|e∈p fp be the total flow on a link. Also, let ρe(fe) = fe/ce
be the utilization of link e. We define the network bottleneck for a
network flow to be the utilization of the most congested link; i.e.,
B(f) , maxe∈E ρe(fe). Similarly, we define the bottleneck for
user u to be the utilization of the most congested link it uses; i.e.,
bu(f) , maxe∈E|fue >0 ρe(fe).

We model CONGA as a non-cooperative game where each user
selfishly routes its traffic to minimize its own bottleneck; i.e., it only
sends traffic along the paths with the smallest bottleneck available
to it. The network flow, f , is said to be at Nash equilibrium if
no user can improve its bottleneck given the choices of the other
users. Specifically, f is a Nash flow if for each user u∗ ∈ U and
network flow g = {gup } such that gup = fup for each u ∈ U\u∗, we
have: bu∗(f) ≤ bu∗(g). The game above always admits at least
one Nash flow (Theorem 1 in [6]). Note that CONGA converges
to a Nash flow because the algorithm rebalances traffic (between a
particular source/destination leaf) if there is a path with a smaller
bottleneck available.4 The PoA is defined as the worst-case ratio of
4Of course, this is an idealization and ignores artifacts such as
flowlets, quantized congestion metrics, etc.

(1) 

(1) 

(2) 

(2) 
(3) 

(3) 

Figure 17: Example with PoA of 2. All edges have capacity 1
and each pair of adjacent leaves send 1 unit of traffic to each
other. The shown Nash flow (with traffic along the solid edges)
has a network bottleneck of 1. However, if all users instead used
the dashed paths, the bottleneck would be 1/2.

the network bottleneck for a Nash flow and the minimum network
bottleneck achievable by any flow. We have the following theorem.

Theorem 1. The PoA for the CONGA game is 2.

PROOF. An upper bound of 2 can be derived for the PoA using
a similar argument to that of Corollary 2 (Section V-B) in Banner et
al. [6]. The proof leverages the fact that the paths in the Leaf-Spine
network have length 2. The corresponding lower bound of 2 for the
PoA follows from the example shown in Figure 17. Refer to the
longer version of this paper for details [3].

Theorem 1 proves that the network bottleneck with CONGA is at
most twice the optimal. It is important to note that this is the worst-
case and can only occur in very specific (and artificial) scenarios
such as the example in Figure 17. As our experimental evaluation
shows (§5), in practice the performance of CONGA is much closer
to optimal.

Remark 2. If in addition to using paths with the smallest conges-
tion metric, if the leaf switches also use only paths with the fewest
number of bottlenecks, then the PoA would be 1 [6], i.e., optimal.
For example, the flow in Figure 17 does not satisfy this condition
since traffic is routed along paths with two bottlenecks even though
alternate paths with a single bottleneck exist. Incorporating this cri-
teria into CONGA would require additional bits to track the num-
ber of bottlenecks along the packet’s path. Since our evaluation
(§5) has not shown much potential gains, we have not added this
refinement to our implementation.

6.2 Impact of Workload on Load Balancing
Our evaluation showed that for some workloads ECMP actually

performs quite well and the benefits of more sophisticated schemes
(such as MPTCP and CONGA) are limited in symmetric topolo-
gies. This raises the question: How does the workload affect load
balancing performance? Importantly, when are flowlets helpful?

We now study these questions using a simple stochastic model.
Flows with an arbitrary size distribution, S, arrive according to a
Poisson process of rate λ and are spread across n links. For each
flow, a random link is chosen. Let Nk(t) and Ak(t) respectively
denote the number of flows and the total amount of traffic sent on
link k in time interval (0, t); i.e., Ak(t) =

∑Nk(t)
i=1 ski , where

ski is the size of the ith flow assigned to link k. Let Y (t) =
min1≤k≤nA

k(t) and Z(t) = max1≤k≤nA
k(t) and define the

traffic imbalance:

χ(t) ,
Z(t)−W (t)

λE(S)
n

t
.

This is basically the deviation between the traffic on the maximum
and minimum loaded links normalized by the expected traffic on
each link. The following theorem bounds the expected traffic im-
balance at time t.



Theorem 2. Assume E(eθS) < ∞ in a neighborhood of zero:
θ ∈ (−θ0, θ0). Then for t sufficiently large:

E(χ(t)) ≤ 1√
λet

+O(
1

t
), (1)

where:

λe =
λ

8n logn
(
1 + ( σS

E(S)
)2
) . (2)

Here σS is the standard deviation of S.

Note: Kandula et al. [27] prove a similar result for the deviation of
traffic on a single link from its expectation while Theorem 2 bounds
the traffic imbalance across all links.

The proof follows standard probabilistic arguments and is given
in the longer version of this paper [3]. Theorem 2 shows that
the traffic imbalance with randomized load balancing vanishes like
1/
√
t for large t. Moreover, the leading term is determined by the

effective arrival rate, λe, that depends on two factors: (i) the per-
link flow arrival rate, λ/n; and (ii) the coefficient of variation of
the flow size distribution, σS/E(S). Theorem 2 quantifies the intu-
ition that workloads that consists mostly of small flows are easier to
handle than workloads with a few large flows. Indeed, it is for the
latter “heavy” workloads that we can anticipate flowlets to make a
difference. This is consistent with our experiments which show that
ECMP does well for the enterprise workload (Figure 9), but for the
heavier data mining workload CONGA is much better than ECMP
and is even notably better than CONGA-Flow (Figure 10).

7. DISCUSSION
We make a few remarks on aspects not covered thus far.

Incremental deployment: An interesting consequence of CONGA’s
resilience to asymmetry is that it does not need to be applied to
all traffic. Traffic that is not controlled by CONGA simply creates
bandwidth asymmetry to which (like topology asymmetry) CONGA
can adapt. This facilitates incremental deployment since some leaf
switches can use ECMP or any other scheme. Regardless, CONGA
reduces fabric congestion to the benefit of all traffic.
Larger topologies: While 2-tier Leaf-Spine topologies suffice for
most enterprise deployments, the largest mega datacenters require
networks with 3 or more tiers. CONGA may not achieve the opti-
mal traffic balance in such cases since it only controls the load bal-
ancing decision at the leaf switches (recall that the spine switches
use ECMP). However, large datacenter networks are typically orga-
nized as multiple pods, each of which is a 2-tier Clos [1, 18]. There-
fore, CONGA is beneficial even in these cases since it balances the
traffic within each pod optimally, which also reduces congestion
for inter-pod traffic. Moreover, even for inter-pod traffic, CONGA
makes better decisions than ECMP at the first-hop.

A possible approach to generalizing CONGA to larger topolo-
gies is to pick a sufficient number of “good” paths between each
pair of leaf switches and use leaf-to-leaf feedback to balance traf-
fic across them. While we cannot cover all paths in general (as we
do in the 2-tier case), the theoretical literature suggests that simple
path selection policies such as periodically sampling a random path
and retaining the best paths may perform very well [30]. We leave
to future work a full exploration of CONGA in larger topologies.
Other path metrics: We used the max of the link congestion met-
rics as the path metric, but of course other choices such as the sum
of link metrics are also possible and can easily be incorporated in
CONGA. Indeed, in theory, the sum metric gives a Price of An-
archy (PoA) of 4/3 in arbitrary topologies [43]. Of course, the

PoA is for the worst-case (adversarial) scenario. Hence, while the
PoA is better for the sum metric than the max, like prior work (e.g.,
TeXCP [26]), we used max because it emphasizes the bottleneck
link and is also easier to implement; the sum metric requires extra
bits in the packet header to prevent overflow when doing additions.

8. RELATED WORK
We briefly discuss related work that has informed and inspired

our design, especially work not previously discussed.
Traditional traffic engineering mechanisms for wide-area net-

works [15, 14, 42, 49] use centralized algorithms operating at coarse
timescales (hours) based on long-term estimates of traffic matri-
ces. More recently, B4 [23] and SWAN [21] have shown near
optimal traffic engineering for inter-datacenter WANs. These sys-
tems leverage the relative predictability of WAN traffic (operating
over minutes) and are not designed for highly volatile datacenter
networks. CONGA is conceptually similar to TeXCP [26] which
dynamically load balances traffic between ingress-egress routers
(in a wide-area network) based on path-wise congestion metrics.
CONGA however is significantly simpler (while also being near
optimal) so that it can be implemented directly in switch hardware
and operate at microsecond time-scales, unlike TeXCP which is
designed to be implemented in router software.

Besides Hedera [2], work such as MicroTE [9] proposes central-
ized load balancing for datacenters and has the same issues with
handling traffic volatility. F10 [34] also uses a centralized sched-
uler, but uses a novel network topology to optimize failure recovery,
not load balancing. The Incast issues we point out for MPTCP [41]
can potentially be mitigated by additional mechanisms such as ex-
plicit congestion signals (e.g., XMP [11]), but complex transports
are challenging to validate and deploy in practice.

A number of papers target the coarse granularity of flow-based
balancing in ECMP. Besides Flare [27], LocalFlow [44] proposes
spatial flow splitting based on TCP sequence numbers and DRB [10]
proposes efficient per-packet round-robin load balancing. As ex-
plained in §2.4, such local schemes may interact poorly with TCP
in the presence of asymmetry and perform worse than ECMP. De-
Tail [52] proposes a per-packet adaptive routing scheme that han-
dles asymmetry using layer-2 back-pressure, but requires end-host
modifications to deal with packet reordering.

9. CONCLUSION
The main thesis of this paper is that datacenter load balancing is

best done in the network instead of the transport layer, and requires
global congestion-awareness to handle asymmetry. Through exten-
sive evaluation with a real testbed, we demonstrate that CONGA
provides better performance than MPTCP [41], the state-of-the-
art multipath transport for datacenter load balancing, without im-
portant drawbacks such as complexity and rigidity at the transport
layer and poor Incast performance. Further, unlike local schemes
such as ECMP and Flare [27], CONGA seamlessly handles asym-
metries in the topology or network traffic. CONGA’s resilience
to asymmetry also paid unexpected dividends when it came to in-
cremental deployment. Even if some switches within the fabric
use ECMP (or any other mechanism), CONGA’s traffic can work
around bandwidth asymmetries and benefit all traffic.

CONGA leverages an existing datacenter overlay to implement a
leaf-to-leaf feedback loop and can be deployed without any modifi-
cations to the TCP stack. While leaf-to-leaf feedback is not always
the best strategy, it is near-optimal for 2-tier Leaf-Spine fabrics that
suffice for the vast majority of deployed datacenters. It is also sim-



ple enough to implement in hardware as proven by our implemen-
tation in custom silicon.

In summary, CONGA senses the distant drumbeats of remote
congestion and orchestrates flowlets to disperse evenly through the
fabric. We leave to future work the task of designing more intricate
rhythms for more general topologies.
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