A Scalable, Commodity Data Center Network Architecture

Mohammad Al-Fares
malfares@cs.ucsd.edu

Alexander Loukissas
aloukiss@cs.ucsd.edu

Amin Vahdat

vahdat@cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404

ABSTRACT

Today’s data centers may contain tens of thousands of computers
with significant aggregate bandwidth requirements. The network
architecture typically consists of a tree of routing and switching
elements with progressively more specialized and expensive equip-
ment moving up the network hierarchy. Unfortunately, even when
deploying the highest-end IP switches/routers, resulting topologies
may only support 50% of the aggregate bandwidth available at the
edge of the network, while still incurring tremendous cost. Non-
uniform bandwidth among data center nodes complicates applica-
tion design and limits overall system performance.

In this paper, we show how to leverage largely commodity Eth-
ernet switches to support the full aggregate bandwidth of clusters
consisting of tens of thousands of elements. Similar to how clusters
of commodity computers have largely replaced more specialized
SMPs and MPPs, we argue that appropriately architected and inter-
connected commodity switches may deliver more performance at
less cost than available from today’s higher-end solutions. Our ap-
proach requires no modifications to the end host network interface,
operating system, or applications; critically, it is fully backward
compatible with Ethernet, IP, and TCP.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network topology;
C.2.2 [Network Protocols]: Routing protocols

General Terms

Design, Performance, Management, Reliability

Keywords

Data center topology, equal-cost routing

INTRODUCTION

Growing expertise with clusters of commodity PCs have enabled
a number of institutions to harness petaflops of computation power
and petabytes of storage in a cost-efficient manner. Clusters con-
sisting of tens of thousands of PCs are not unheard of in the largest

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’08, August 17-22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

63

institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.

Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-
ery node in the cluster hosting the inverted index to return the most
relevant results [7]. Even between logically distinct clusters, there
are often significant communication requirements, e.g., when up-
dating the inverted index for individual clusters performing search
from the site responsible for building the index. Internet services
increasingly employ service oriented architectures [13], where the
retrieval of a single web page can require coordination and commu-
nication with literally hundreds of individual sub-services running
on remote nodes. Finally, the significant communication require-
ments of parallel scientific applications are well known [27, 8].

There are two high-level choices for building the communication
fabric for large-scale clusters. One option leverages specialized
hardware and communication protocols, such as InfiniBand [2] or
Myrinet [6]. While these solutions can scale to clusters of thou-
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are not natively
compatible with TCP/IP applications. The second choice lever-
ages commodity Ethernet switches and routers to interconnect clus-
ter machines. This approach supports a familiar management in-
frastructure along with unmodified applications, operating systems,
and hardware. Unfortunately, aggregate cluster bandwidth scales
poorly with cluster size, and achieving the highest levels of band-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster communication
systems follow the second approach. However, communication
bandwidth in large clusters may become oversubscribed by a sig-
nificant factor depending on the communication patterns. That is,
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving between
switches, potentially across multiple levels in a hierarchy, may
limit available bandwidth severely. Addressing these bottlenecks
requires non-commodity solutions, e.g., large 10Gbps switches and
routers. Further, typical single path routing along trees of intercon-
nected switches means that overall cluster bandwidth is limited by
the bandwidth available at the root of the communication hierarchy.

Even as we are at a transition point where 10Gbps technology is
becoming cost-competitive, the largest 10Gbps switches still incur
significant cost and still limit overall available bandwidth for the
largest clusters.

In this context, the goal of this paper is to design a data center
communication architecture that meets the following goals:

e Scalable interconnection bandwidth: it should be possible for
an arbitrary host in the data center to communicate with any
other host in the network at the full bandwidth of its local
network interface.

e Economies of scale: just as commodity personal computers
became the basis for large-scale computing environments,
we hope to leverage the same economies of scale to make
cheap off-the-shelf Ethernet switches the basis for large-
scale data center networks.

e Backward compatibility: the entire system should be back-
ward compatible with hosts running Ethernet and IP. That is,
existing data centers, which almost universally leverage com-
modity Ethernet and run IP, should be able to take advantage
of the new interconnect architecture with no modifications.

We show that by interconnecting commodity switches in a fat-
tree architecture, we can achieve the full bisection bandwidth of
clusters consisting of tens of thousands of nodes. Specifically, one
instance of our architecture employs 48-port Ethernet switches ca-
pable of providing full bandwidth to up 27,648 hosts. By leveraging
strictly commodity switches, we achieve lower cost than existing
solutions while simultaneously delivering more bandwidth. Our so-
lution requires no changes to end hosts, is fully TCP/IP compatible,
and imposes only moderate modifications to the forwarding func-
tions of the switches themselves. We also expect that our approach
will be the only way to deliver full bandwidth for large clusters
once 10 GigE switches become commodity at the edge, given the
current lack of any higher-speed Ethernet alternatives (at any cost).
Even when higher-speed Ethernet solutions become available, they
will initially have small port densities at significant cost.

2. BACKGROUND
2.1 Current Data Center Network Topologies

We conducted a study to determine the current best practices for
data center communication networks. We focus here on commodity
designs leveraging Ethernet and IP; we discuss the relationship of
our work to alternative technologies in Section 7.

2.1.1 Topology

Typical architectures today consist of either two- or three-level
trees of switches or routers. A three-tiered design (see Figure 1) has
a core tier in the root of the tree, an aggregation tier in the middle
and an edge tier at the leaves of the tree. A two-tiered design has
only the core and the edge tiers. Typically, a two-tiered design can
support between 5K to 8K hosts. Since we target approximately
25,000 hosts, we restrict our attention to the three-tier design.

Switches' at the leaves of the tree have some number of GigE
ports (48-288) as well as some number of 10 GigE uplinks to one or
more layers of network elements that aggregate and transfer packets
between the leaf switches. In the higher levels of the hierarchy there
are switches with 10 GigE ports (typically 32-128) and significant
switching capacity to aggregate traffic between the edges.

"We use the term switch throughout the rest of the paper to refer to
devices that perform both layer 2 switching and layer 3 routing.

We assume the use of two types of switches, which represent
the current high-end in both port density and bandwidth. The first,
used at the edge of the tree, is a 48-port GigE switch, with four 10
GigE uplinks. For higher levels of a communication hierarchy, we
consider 128-port 10 GigE switches. Both types of switches allow
all directly connected hosts to communicate with one another at the
full speed of their network interface.

2.1.2 Oversubscription

Many data center designs introduce oversubscription as a means
to lower the total cost of the design. We define the term over-
subscription to be the ratio of the worst-case achievable aggregate
bandwidth among the end hosts to the total bisection bandwidth of
a particular communication topology. An oversubscription of 1:1
indicates that all hosts may potentially communicate with arbitrary
other hosts at the full bandwidth of their network interface (e.g., 1
Gb/s for commodity Ethernet designs). An oversubscription value
of 5:1 means that only 20% of available host bandwidth is avail-
able for some communication patterns. Typical designs are over-
subscribed by a factor of 2.5:1 (400 Mbps) to 8:1 (125 Mbps) [1].
Although data centers with oversubscription of 1:1 are possible for
1 Gb/s Ethernet, as we discuss in Section 2.1.4, the cost for such
designs is typically prohibitive, even for modest-size data centers.
Achieving full bisection bandwidth for 10 Gb/s Ethernet is not cur-
rently possible when moving beyond a single switch.

2.1.3 Multi-path Routing

Delivering full bandwidth between arbitrary hosts in larger clus-
ters requires a “multi-rooted” tree with multiple core switches (see
Figure 1). This in turn requires a multi-path routing technique,
such as ECMP [19]. Currently, most enterprise core switches sup-
port ECMP. Without the use of ECMP, the largest cluster that can
be supported with a singly rooted core with 1:1 oversubscription
would be limited to 1,280 nodes (corresponding to the bandwidth
available from a single 128-port 10 GigE switch).

To take advantage of multiple paths, ECMP performs static load
splitting among flows. This does not account for flow bandwidth
in making allocation decisions, which can lead to oversubscription
even for simple communication patterns. Further, current ECMP
implementations limit the multiplicity of paths to 8-16, which is
often less diversity than required to deliver high bisection band-
width for larger data centers. In addition, the number of routing
table entries grows multiplicatively with the number of paths con-
sidered, which increases cost and can also increase lookup latency.

2.1.4 Cost

The cost for building a network interconnect for a large cluster
greatly affects design decisions. As we discussed above, oversub-
scription is typically introduced to lower the total cost. Here we
give the rough cost of various configurations for different number
of hosts and oversubscription using current best practices. We as-
sume a cost of $7,000 for each 48-port GigE switch at the edge
and $700,000 for 128-port 10 GigE switches in the aggregation and
core layers. We do not consider cabling costs in these calculations.

Figure 2 plots the cost in millions of US dollars as a function
of the total number of end hosts on the = axis. Each curve rep-
resents a target oversubscription ratio. For instance, the switching
hardware to interconnect 20,000 hosts with full bandwidth among
all hosts comes to approximately $37M. The curve corresponding
to an oversubscription of 3:1 plots the cost to interconnect end
hosts where the maximum available bandwidth for arbitrary end
host communication would be limited to approximately 330 Mbps.

Core

PR

ﬁ Aggregation

S S S & Fdee
SO SEEE

Figure 1: Common data center interconnect topology. Host to switch links are GigE and links between switches are 10 GigE.

40 T T
s 11 ——
2] 35 | 3:1
g Tl e
= Fat-tree &
= 30
g
g 25
2
= 20
(]
O 15 F
el
3 10
S L
E
0 == e el |
1000 10000

Number of hosts

Figure 2: Current cost estimate vs. maximum possible number
of hosts for different oversubscription ratios.

We also include the cost to deliver an oversubscription of 1:1 using
our proposed fat-tree architecture for comparison.

Overall, we find that existing techniques for delivering high lev-
els of bandwidth in large clusters incur significant cost and that
fat-tree based cluster interconnects hold significant promise for de-
livering scalable bandwidth at moderate cost. However, in some
sense, Figure 2 understates the difficulty and expense of employing
the highest-end components in building data center architectures.
In 2008, 10 GigE switches are on the verge of becoming commod-
ity parts; there is roughly a factor of 5 differential in price per port
per bit/sec when comparing GigE to 10 GigE switches, and this
differential continues to shrink. To explore the historical trend,
we show in Table 1 the cost of the largest cluster configuration
that could be supported using the highest-end switches available
in a particular year. We based these values on a historical study of
product announcements from various vendors of high-end 10 GigE
switches in 2002, 2004, 2006, and 2008.

We use our findings to build the largest cluster configuration that
technology in that year could support while maintaining an over-
subscription of 1:1. Table 1 shows the largest 10 GigE switch avail-
able in a particular year; we employ these switches in the core and
aggregation layers for the hierarchical design. Tables 1 also shows
the largest commodity GigE switch available in that year; we em-

65

Hierarchical design Fat-tree
Year | 10 GigE | Hosts ((Z,?gStE/ GigE Hosts ((Z,?gStE/
2002 28-port | 4,480 | $25.3K | 28-port 5,488 [$4.5K
2004 32-port | 7,680 | $4.4K | 48-port | 27,648 | $1.6K
2006 64-port | 10,240 | $2.1K | 48-port | 27,648 | $1.2K
2008 | 128-port | 20,480 | $1.8K [48-port | 27,648 | $0.3K

Table 1: The maximum possible cluster size with an oversub-
scription ratio of 1:1 for different years.

ploy these switches at all layers of the fat-tree and at the edge layer
for the hierarchical design.

The maximum cluster size supported by traditional techniques
employing high-end switches has been limited by available port
density until recently. Further, the high-end switches incurred pro-
hibitive costs when 10 GigE switches were initially available. Note
that we are being somewhat generous with our calculations for tra-
ditional hierarchies since commodity GigE switches at the aggre-
gation layer did not have the necessary 10 GigE uplinks until quite
recently. Clusters based on fat-tree topologies on the other hand
scale well, with the total cost dropping more rapidly and earlier (as
a result of following commodity pricing trends earlier). Also, there
is no requirement for higher-speed uplinks in the fat-tree topology.

Finally, it is interesting to note that, today, it is technically in-
feasible to build a 27,648-node cluster with 10 Gbps bandwidth
potentially available among all nodes. On the other hand, a fat-
tree switch architecture would leverage near-commodity 48-port 10
GigE switches and incur a cost of over $690 million. While likely
cost-prohibitive in most settings, the bottom line is that it is not
even possible to build such a configuration using traditional aggre-
gation with high-end switches because today there is no product or
even Ethernet standard for switches faster than 10 GigE.

2.2 Clos Networks/Fat-Trees

Today, the price differential between commodity and non-
commodity switches provides a strong incentive to build large-scale
communication networks from many small commodity switches
rather than fewer larger and more expensive ones. More than fifty
years ago, similar trends in telephone switches led Charles Clos to
design a network topology that delivers high levels of bandwidth
for many end devices by appropriately interconnecting smaller
commodity switches [11].

We adopt a special instance of a Clos topology called a fat-
tree [23] to interconnect commodity Ethernet switches. We orga-
nize a k-ary fat-tree as shown in Figure 3. There are £ pods, each
containing two layers of k/2 switches. Each k-port switch in the
lower layer is directly connected to k/2 hosts. Each of the remain-
ing k/2 ports is connected to k/2 of the k ports in the aggregation
layer of the hierarchy.

There are (k/2)? k-port core switches. Each core switch has one
port connected to each of k pods. The it port of any core switch
is connected to pod ¢ such that consecutive ports in the aggregation
layer of each pod switch are connected to core switches on (k/2)
strides. In general, a fat-tree built with k-port switches supports
k3 /4 hosts. In this paper, we focus on designs up to & = 48. Our
approach generalizes to arbitrary values for k.

An advantage of the fat-tree topology is that all switching ele-
ments are identical, enabling us to leverage cheap commodity parts
for all of the switches in the communication architecture.? Further,
fat-trees are rearrangeably non-blocking, meaning that for arbitrary
communication patterns, there is some set of paths that will satu-
rate all the bandwidth available to the end hosts in the topology.
Achieving an oversubscription ratio of 1:1 in practice may be diffi-
cult because of the need to prevent packet reordering for TCP flows.

Figure 3 shows the simplest non-trivial instance of the fat-tree
with k& = 4. All hosts connected to the same edge switch form their
own subnet. Therefore, all traffic to a host connected to the same
lower-layer switch is switched, whereas all other traffic is routed.

As an example instance of this topology, a fat-tree built from 48-
port GigE switches would consist of 48 pods, each containing an
edge layer and an aggregation layer with 24 switches each. The
edge switches in every pod are assigned 24 hosts each. The net-
work supports 27,648 hosts, made up of 1,152 subnets with 24
hosts each. There are 576 equal-cost paths between any given pair
of hosts in different pods. The cost of deploying such a network
architecture would be $8.64M, compared to $37M for the tradi-
tional techniques described earlier.

2.3 Summary

Given our target network architecture, in the rest of this paper we
address two principal issues with adopting this topology in Ethernet
deployments. First, IP/Ethernet networks typically build a single
routing path between each source and destination. For even sim-
ple communication patterns, such single-path routing will quickly
lead to bottlenecks up and down the fat-tree, significantly limiting
overall performance. We describe simple extensions to IP forward-
ing to effectively utilize the high fan-out available from fat-trees.
Second, fat-tree topologies can impose significant wiring complex-
ity in large networks. To some extent, this overhead is inherent
in fat-tree topologies, but in Section 6 we present packaging and
placement techniques to ameliorate this overhead. Finally, we have
built a prototype of our architecture in Click [21] as described in
Section 3. An initial performance evaluation presented in Section 5
confirms the potential performance benefits of our approach in a
small-scale deployment.

3. ARCHITECTURE

In this section, we describe an architecture to interconnect com-
modity switches in a fat-tree topology. We first motivate the need
for a slight modification in the routing table structure. We then de-
scribe how we assign IP addresses to hosts in the cluster. Next,

Note that switch homogeneity is not required, as bigger switches
could be used at the core (e.g. for multiplexing). While these likely
have a longer mean time to failure (MTTF), this defeats the cost
benefits, and maintains the same cabling overhead.

66

we introduce the concept of two-level route lookups to assist with
multi-path routing across the fat-tree. We then present the algo-
rithms we employ to populate the forwarding table in each switch.
We also describe flow classification and flow scheduling techniques
as alternate multi-path routing methods. And finally, we present
a simple fault-tolerance scheme, as well as describe the heat and
power characteristics of our approach.

3.1 Motivation

Achieving maximum bisection bandwidth in this network re-
quires spreading outgoing traffic from any given pod as evenly
as possible among the core switches. Routing protocols such as
OSPF2 [25] usually take the hop-count as their metric of “shortest-
path,” and in the k-ary fat-tree topology (see Section 2.2), there
are (k/2)? such shortest-paths between any two hosts on differ-
ent pods, but only one is chosen. Switches, therefore, concentrate
traffic going to a given subnet to a single port even though other
choices exist that give the same cost. Furthermore, depending on
the interleaving of the arrival times of OSPF messages, it is pos-
sible for a small subset of core switches, perhaps only one, to be
chosen as the intermediate links between pods. This will cause se-
vere congestion at those points and does not take advantage of path
redundancy in the fat-tree.

Extensions such as OSPF-ECMP [30], in addition to being un-
available in the class of switches under consideration, cause an
explosion in the number of required prefixes. A lower-level pod
switch would need (k/2) prefixes for every other subnet; a total of
K (k/2)? prefixes.

We therefore need a simple, fine-grained method of traffic dif-
fusion between pods that takes advantage of the structure of the
topology. The switches must be able to recognize, and give special
treatment to, the class of traffic that needs to be evenly spread. To
achieve this, we propose using two-level routing tables that spread
outgoing traffic based on the low-order bits of the destination IP
address (see Section 3.3).

3.2 Addressing

We allocate all the IP addresses in the network within the private
10.0.0.0/8 block. We follow the familiar quad-dotted form with
the following conditions: The pod switches are given addresses of
the form 10.pod.switch.1, where pod denotes the pod number (in
[0,k — 1]), and switch denotes the position of that switch in the
pod (in [0, k— 1], starting from left to right, bottom to top). We give
core switches addresses of the form 10.%.j.¢, where j and ¢ denote
that switch’s coordinates in the (k/2)? core switch grid (each in
[1, (k/2)], starting from top-left).

The address of a host follows from the pod switch it is connected
to; hosts have addresses of the form: 10.pod.switch.ID, where
1D is the host’s position in that subnet (in [2, k/2+1], starting from
left to right). Therefore, each lower-level switch is responsible for a
/24 subnet of k/2 hosts (for k& < 256). Figure 3 shows examples of
this addressing scheme for a fat-tree corresponding to £ = 4. Even
though this is relatively wasteful use of the available address space,
it simplifies building the routing tables, as seen below. Nonetheless,
this scheme scales up to 4.2M hosts.

3.3 Two-Level Routing Table

To provide the even-distribution mechanism motivated in Sec-
tion 3.1, we modify routing tables to allow two-level prefix lookup.
Each entry in the main routing table will potentially have an addi-
tional pointer to a small secondary table of (suffix, port) entries. A
first-level prefix is trerminating if it does not contain any second-
level suffixes, and a secondary table may be pointed to by more

Core

Edge

Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to

destination 10.2.0.3 would take the dashed path.

Prefix Output port
10.2.0.0/24 0
10.2.1.0/24 1
0.0.0.0/0 —> Suffix | Output port
0.0.0.2/8 2
0.0.0.3/8 3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1™032~™), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 0%27™1™). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k /2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation

We now describe how the two-level lookup can be implemented
in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

67

RAM
TCAM Address | Next hop | Output port
}8§?§ 00 10.2.0.1 0
<+ < ~ ™ Encoder 01 10.2.1.1 1
XXX.2 ’—‘_' 10 10.4.1.1 2
X.XX3 11 10.4.1.2 3

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm

The first two levels of switches in a fat-tree act as filtering traf-
fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

least-significant byte of the destination IP address). We employ the
host IDs as a source of deterministic entropy; they will cause traffic
to be evenly spread upward among the outgoing links to the core
switches®. This will also cause subsequent packets to the same host
to follow the same path, and therefore avoid packet reordering.

In the core switches, we assign terminating first-level prefixes
for all network IDs, each pointing to the appropriate pod containing
that network. Once a packet reaches a core switch, there is exactly
one link to its destination pod, and that switch will include a termi-
nating /16 prefix for the pod of that packet (10.pod.0.0/16, port).
Once a packet reaches its destination pod, the receiving upper-level
pod switch will also include a (10.pod.switch.0/24, port) prefix
to direct that packet to its destination subnet switch, where it is
finally switched to its destination host. Hence, traffic diffusion oc-
curs only in the first half of a packet’s journey.

It is possible to design distributed protocols to build the neces-
sary forwarding state incrementally in each switch. For simplicity
however, we assume a central entity with full knowledge of cluster
interconnect topology. This central route control is responsible for
statically generating all routing tables and loading the tables into
the switches at the network setup phase. Dynamic routing proto-
cols would also be responsible for detecting failures of individual
switches and performing path fail-over (see Section 3.8). Below,
we summarize the steps for generating forwarding tables at both
the pods and core switches.

Pod Switches.

In each pod switch, we assign terminating prefixes for subnets
contained in the same pod. For inter-pod traffic, we add a /0 pre-
fix with a secondary table matching host IDs. Algorithm 1 shows
the pseudo-code for generating the routing tables for the upper pod
switches. The reason for the modulo shift in the outgoing port is
to avoid traffic from different lower-layer switches addressed to a
host with the same host ID going to the same upper-layer switch.

For the lower pod switches, we simply omit the /24 subnet pre-
fix step, in line 3, since that subnet’s own traffic is switched, and
intra- and inter-pod traffic should be evenly split among the upper
switches.

Core Switches.

Since each core switch is connected to every pod (port ¢ is con-
nected to pod %), the core switches contains only terminating /16
prefixes pointing to their destination pods, as shown in Algorithm 2.
This algorithm generates tables whose size is linear in k. No switch
in the network contains a table with more than & first-level prefixes
or k/2 second-level suffixes.

Routing Example.

To illustrate network operation using the two-level tables, we
give an example for the routing decisions taken for a packet from
source 10.0.1.2 to destination 10.2.0.3, as shown in Figure 3. First,
the gateway switch of the source host (10.0.1.1) will only match
the packet with the /0 first-level prefix, and therefore will forward
the packet based on the host ID byte according to the secondary
table for that prefix. In that table, the packet matches the 0.0.0.3/8
suffix, which points to port 2 and switch 10.0.2.1. Switch 10.0.2.1
also follows the same steps and forwards on port 3, connected to
core switch 10.4.1.1. The core switch matches the packet to a ter-
minating 10.2.0.0/16 prefix, which points to the destination pod 2

3Since the tables are static, it is possible to fall short of perfect
distribution. We examine worst-case communication patterns in
Section 5

68

1 foreach pod x in [0,k — 1] do
2 foreach swirch z in [(k/2),k — 1] do
3 foreach subnet i in [0, (k/2) — 1] do
4 addPrefix(10.z.2.1, 10.2.3.0/24, 7);
5 end
6 addPrefix(10.x.z.1, 0.0.0.0/0, 0);
7 foreach host ID i in [2, (k/2) + 1] do
8 addSuffix(10.z.2.1, 0.0.0.7/8,
(1 — 2+ 2)mod(k/2) + (k/2));
9 end
10 end
11 end

Algorithm 1: Generating aggregation switch routing ta-
bles. Assume Function signatures addPrefix(switch, prefix,
port), addSuffix(switch, suffix, port) and addSuf fix adds
a second-level suffix to the last-added first-level prefix.

1 foreach j in [1, (k/2)] do

2 foreach i in [1, (k/2)] do

3 foreach destination pod x in [0, (k/2) — 1] do
4 addPrefix(10.k.5.,10.2.0.0/16, x);

5 end

6 end

7 end

Algorithm 2: Generating core switch routing tables.

on port 2, and switch 10.2.2.1. This switch belongs to the same
pod as the destination subnet, and therefore has a terminating pre-
fix, 10.2.0.0/24, which points to the switch responsible for that
subnet, 10.2.0.1 on port 0. From there, standard switching tech-
niques deliver the packet to the destination host 10.2.0.3.

Note that for simultaneous communication from 10.0.1.3 to an-
other host 10.2.0.2, traditional single-path IP routing would fol-
low the same path as the flow above because both destinations are
on the same subnet. Unfortunately, this would eliminate all of the
fan-out benefits of the fat-tree topology. Instead, our two-level ta-
ble lookup allows switch 10.0.1.1 to forward the second flow to
10.0.3.1 based on right-handed matching in the two-level table.

3.6 Flow Classification

In addition to the two-level routing technique described above,
we also consider two optional dynamic routing techniques, as they
are currently available in several commercial routers [10, 3]. Our
goal is to quantify the potential benefits of these techniques but
acknowledge that they will incur additional per-packet overhead.
Importantly, any maintained state in these schemes is soft and indi-
vidual switches can fall back to two-level routing in case the state
is lost.

As an alternate method of traffic diffusion to the core switches,
we perform flow classification with dynamic port-reassignment in
pod switches to overcome cases of avoidable local congestion (e.g.
when two flows compete for the same output port, even though
another port that has the same cost to the destination is underused).
We define a flow as a sequence of packets with the same entries
for a subset of fields of the packet headers (typically source and
destination IP addresses, destination transport port). In particular,
pod switches:

1. Recognize subsequent packets of the same flow, and forward
them on the same outgoing port.

2. Periodically reassign a minimal number of flow output ports
to minimize any disparity between the aggregate flow capac-
ity of different ports.

Step 1 is a measure against packet reordering, while step 2 aims
to ensure fair distribution on flows on upward-pointing ports in the
face of dynamically changing flow sizes. Section 4.2 describes our
implementation and flow distribution heuristic of the flow classifier
in more detail.

3.7 Flow Scheduling

Several studies have indicated that the distribution of transfer
times and burst lengths of Internet traffic is long-tailed [14], and
characterized by few large long-lived flows (responsible for most
of the bandwidth) and many small short-lived ones [16]. We argue
that routing large flows plays the most important role in determin-
ing the achievable bisection bandwidth of a network and therefore
merits special handling. In this alternative approach to flow man-
agement, we schedule large flows to minimize overlap with one
another. A central scheduler makes this choice, with global knowl-
edge of all active large flows in the network. In this initial design,
we only consider the case of a single large flow originating from
each host at a time.

3.7.1 Edge Switches

As before, edge switches locally assign a new flow to the least-
loaded port initially. However, edge switches additionally detect
any outgoing flow whose size grows above a predefined threshold,
and periodically send notifications to a central scheduler specifying
the source and destination for all active large flows. This represents
a request by the edge switch for placement of that flow in an un-
contended path.

Note that unlike Section 3.6, this scheme does not allow edge
switches to independently reassign a flow’s port, regardless of size.
The central scheduler is the only entity with the authority to order
a re-assignment.

3.7.2 Central Scheduler

A central scheduler, possibly replicated, tracks all active large
flows and tries to assign them non-conflicting paths if possible. The
scheduler maintains boolean state for all links in the network signi-
fying their availability to carry large flows.

For inter-pod traffic, recall that there are (k/2)? possible paths
between any given pair of hosts in the network, and each of these
paths corresponds to a core switch. When the scheduler receives
a notification of a new flow, it linearly searches through the core
switches to find one whose corresponding path components do not
include a reserved link.* Upon finding such a path, the scheduler
marks those links as reserved, and notifies the relevant lower- and
upper-layer switches in the source pod with the correct outgoing
port that corresponds to that flow’s chosen path. A similar search is
performed for intra-pod large flows; this time for an uncontended
path through an upper-layer pod switch. The scheduler garbage
collects flows whose last update is older than a given time, clear-
ing their reservations. Note that the edge switches do not block
and wait for the scheduler to perform this computation, but initially
treat a large flow like any other.

*Finding the optimal placement for all large flows requires either
knowing the source and destination of all flows ahead of time or
path reassignment of existing flows; however, this greedy heuris-
tic gives a good approximation and achieves in simulations 94%
efficiency for randomly destined flows among 27k hosts.

69

3.8 Fault-Tolerance

The redundancy of available paths between any pair of hosts
makes the fat-tree topology attractive for fault-tolerance. We pro-
pose a simple failure broadcast protocol that allows switches to
route around link- or switch-failures one or two hops downstream.

In this scheme, each switch in the network maintains a Bidirec-
tional Forwarding Detection session (BFD [20]) with each of its
neighbors to determine when a link or neighboring switch fails.
From a fault-tolerance perspective, two classes of failure can be
weathered: (a) between lower- and upper-layer switches inside a
pod, and (b) between core and a upper-level switches. Clearly, the
failure of a lower-level switch will cause disconnection for the di-
rectly connected hosts; redundant switch elements at the leaves are
the only way to tolerate such failures. We describe link failures
here because switch failures trigger the same BFD alerts and elicit
the same responses.

3.8.1 Lower- to Upper-layer Switches

A link failure between lower- and upper-level switches affects
three classes of traffic:

1. Outgoing inter- and intra-pod traffic originating from the
lower-layer switch. In this case the local flow classifier sets
the ‘cost’ of that link to infinity and does not assign it any
new flows, and chooses another available upper-layer switch.

2. Intra-pod traffic using the upper-layer switch as an interme-
diary. In response, this switch broadcasts a tag notifying all
other lower-layer switches in the same pod of the link fail-
ure. These switches would check when assigning new flows
whether the intended output port corresponds to one of those
tags and avoid it if possible.’

3. Inter-pod traffic coming into the upper-layer switch. The
core switch connected to the upper-layer switch has it as
its only access to that pod, therefore the upper-layer switch
broadcasts this tag to all its core switches signifying its in-
ability to carry traffic to the lower-layer switch’s subnet.
These core switches in turn mirror this tag to all upper-layer
switches they are connected to in other pods. Finally, the
upper-layer switches avoid the single affected core switch
when assigning new flows to that subnet.

3.8.2 Upper-layer to Core Switches

A failure of a link from an upper-layer switch to a core affects
two classes of traffic:

1. Outgoing inter-pod traffic, in which case the local routing ta-
ble marks the affected link as unavailable and locally chooses
another core switch.

2. Incoming inter-pod traffic. In this case the core switch broad-
casts a tag to all other upper-layer switches it is directly con-
nected to signifying its inability to carry traffic to that entire
pod. As before, these upper-layer switches would avoid that
core switch when assigning flows destined to that pod.

Naturally, when failed links and switches come back up and
reestablish their BFD sessions, the previous steps are reversed to
cancel their effect. In addition, adapting the scheme of Section 3.7
to accommodate link- and switch-failures is relatively simple. The
scheduler marks any link reported to be down as busy or unavail-
able, thereby disqualifying any path that includes it from consider-
ation, in effect routing large flows around the fault.

SWe rely on end-to-end mechanisms to restart interrupted flows

3.9 Power and Heat Issues

Besides performance and cost, another major issue that arises
in data center design is power consumption. The switches that
make up the higher tiers of the interconnect in data centers typi-
cally consume thousands of Watts, and in a large-scale data cen-
ter the power requirements of the interconnect can be hundreds of
kilowatts. Almost equally important is the issue of heat dissipation
from the switches. Enterprise-grade switches generate considerable
amounts of heat and thus require dedicated cooling systems.

14 r 80
F 70
12 = Power/Gbps (Watts)
k60
10 Heat/Gbps (BTU/hr) «
2 T
5 8 o
Q <
S F40 X
- 6 4 —
g L3 B
4)
k20
N | N
0 - Fo
oi® 20 0o b o
A O™ ™5 50 \O¥
N o0 A \ N &
s oo GO T e \a«“’“
50 o 6\?,@\‘

Figure 6: Comparison of power and heat dissipation.

In this section we analyze the power requirements and heat dis-
sipation in our architecture and compare it with other typical ap-
proaches. We base our analysis on numbers reported in the switch
data sheets, though we acknowledge that these reported values are
measured in different ways by different vendors and hence may not
always reflect system characteristics in deployment.

800 - - 8000
700 - . . . - 7000
B Hierarchical design
600 - - 6000
Fat-tree
500 - - 5000 =
| i =
2 400 4000 2
300 - 3000 2
200 - - 2000
100 - - 1000
0 - 0
Total power (kW) Total heat dissipation
(kBTU/hr)
Figure 7: Comparison of total power consumption and heat

dissipation.

To compare the power requirement for each class of switch, we
normalize the total power consumption and heat dissipation by the
switch over the total aggregate bandwidth that a switch can support
in Gbps. Figure 6 plots the average over three different switch mod-
els. As we can see, 10 GigE switches (the last three on the x-axis)
consume roughly double the Watts per Gbps and dissipate roughly
three times the heat of commodity GigE switches when normalized
for bandwidth.

Finally, we also calculated the estimated total power consump-
tion and heat dissipation for an interconnect that can support
roughly 27k hosts. For the hierarchical design, we employ 576

70

ProCurve 2900 edge switches and 54 Biglron RX-32 switches (36
in the aggregation and 18 in the core layer). The fat-tree architec-
ture employs 2,880 Netgear GSM 72528 switches. We are able to
use the cheaper NetGear switch because we do not require 10 GigE
uplinks (present in the ProCurve) in the fat-tree interconnect. Fig-
ure 7 shows that while our architecture employs more individual
switches, the power consumption and heat dissipation is superior
to those incurred by current data center designs, with 56.6% less
power consumption and 56.5% less heat dissipation. Of course, the
actual power consumption and heat dissipation must be measured
in deployment; we leave such a study to our ongoing work.

4. IMPLEMENTATION

To validate the communication architecture described in this pa-
per, we built a simple prototype of the forwarding algorithms de-
scribed in the previous section. We have completed a prototype
using NetFPGAs [24]. The NetFPGA contains an IPv4 router im-
plementation that leverages TCAMs. We appropriately modified
the routing table lookup routine, as described in Section 3.4. Our
modifications totaled less than 100 lines of additional code and in-
troduced no measureable additional lookup latency, supporting our
belief that our proposed modifications can be incorporated into ex-
isting switches.

To carry out larger-scale evaluations, we also built a prototype
using Click, the focus of our evaluation in this paper. Click [21] is a
modular software router architecture that supports implementation
of experimental router designs. A Click router is a graph of packet
processing modules called elements that perform tasks such as rout-
ing table lookup or decrementing a packet’s TTL. When chained
together, Click elements can carry out complex router functionality
and protocols in software.

4.1 TwoLevelTable

We build a new Click element, TivoLevelTable, which imple-
ments the idea of a two-level routing table described in Section 3.3.
This element has one input, and two or more outputs. The routing
table’s contents are initialized using an input file that gives all the
prefixes and suffixes. For every packet, the TwoLevelTable element
looks up the longest-matching first-level prefix. If that prefix is ter-
minating, it will immediately forward the packet on that prefix’s
port. Otherwise, it will perform a right-handed longest-matching
suffix search on the secondary table and forward on the correspond-
ing port.

This element can replace the central routing table element of
the standards-compliant IP router configuration example provided
in [21]. We generate an analogous 4-port version of the IP router
with the added modification of bandwidth-limiting elements on all
ports to emulate link saturation capacity.

4.2 FlowClassifier

To provide the flow classification functionality described in Sec-
tion 3.6, we describe our implementation of the Click element
FlowClassifier that has one input and two or more outputs. It
performs simple flow classification based on the source and desti-
nation IP addresses of the incoming packets, such that subsequent
packets with the same source and destination exit the same port
(to avoid packet reordering). The element has the added goal of
minimizing the difference between the aggregate flow capacity of
its highest- and lowest-loaded output ports.

Even if the individual flow sizes are known in advance, this prob-
lem is a variant of the NP-hard Bin Packing optimization prob-
lem [17]. However, the flow sizes are in fact not known a priori,
making the problem more difficult. We follow the greedy heuris-

tic outlined in Algorithm 3. Every few seconds, the heuristic at-
tempts to switch, if needed, the output port of at most three flows
to minimize the difference between the aggregate flow capacity of
its output ports.

// Call on every incoming packet

1 IncomingPacket (packet)

2 begin

3 Hash source and destination IP fields of packet;
// Have we seen this flow before?
if seen(hash) then

Lookup previously assigned port x;

Send packet on port x;

4
5
6
7 else
8 Record the new flow f;
9 Assign f to the least-loaded upward port x;
0 Send the packet on port x;
11 end
12 end
// Call every t seconds
13 RearrangeFlows ()

14 begin

15 for i=0to 2 do

16 Find upward ports pmaz and py,in with the largest and
smallest aggregate outgoing traffic, respectively;

17 Calculate D, the difference between py,az and poin;

18 Find the largest flow f assigned to port p,nqx Whose size
is smaller than D;

19 if such a flow exists then

20 Switch the output port of flow f to Pyin;

21 end

22 end

23 end

Algorithm 3: The flow classifier heuristic. For the experi-
ments in Section 5, ¢ is 1 second.

Recall that the FlowClassifier element is an alternative to the
two-level table for traffic diffusion. Networks using these elements
would employ ordinary routing tables. For example, the routing ta-
ble of an upper pod switch contains all the subnet prefixes assigned
to that pod like before. However, in addition, we add a /0 prefix to
match all remaining inter-pod traffic that needs to be evenly spread
upwards to the core layer. All packets that match only that prefix
are directed to the input of the FlowClassifier. The classifier tries
to evenly distribute outgoing inter-pod flows among its outputs ac-
cording to the described heuristic, and its outputs are connected
directly to the core switches. The core switches do not need a clas-
sifier, and their routing tables are unchanged.

Note that this solution has soft state that is not needed for correct-
ness, but only used as a performance optimization. This classifier
is occasionally disruptive, as a minimal number of flows may be
re-arranged periodically, potentially resulting in packet reordering.
However, it is also adaptive to dynamically changing flow sizes and
“fair’ in the long-term.’

4.3 FlowScheduler

As described in Section 3.7, we implemented the element
FlowReporter, which resides in all edge switches, and detects
outgoing flows whose size is larger than a given threshold. It sends
regular notifications to the central scheduler about these active
large flows.

The FlowScheduler element receives notifications regarding ac-
tive large flows from edge switches and tries to find uncontended

®Fair in the sense that initial placement decisions are constantly
being corrected since all flows’ sizes are continually tracked to ap-
proximate the optimal distribution of flows to ports.

71

paths for them. To this end, it keeps the binary status of all the links
in the network, as well as a list of previously placed flows. For any
new large flow, the scheduler performs a linear search among all
equal-cost paths between the source and destination hosts to find
one whose path components are all unreserved. Upon finding such
a path, the flow scheduler marks all the component links as reserved
and sends notifications regarding this flow’s path to the concerned
pod switches. We also modify the pod switches to process these
port re-assignment messages from the scheduler.

The scheduler maintains two main data structures: a binary array
of all the links in the network (a total of 4 * k * (k/2)? links), and
a hashtable of previously placed flows and their assigned paths.
The linear search for new flow placement requires on average 2 %
(k/2)? memory accesses, making the computational complexity of
the scheduler to be O(k®) for space and O(k?) for time. A typical
value for £ (the number of ports per switch) is 48, making both
these values manageable, as quantified in Section 5.3.

S. EVALUATION

To measure the total bisection bandwidth of our design, we gen-
erate a benchmark suite of communication mappings to evaluate
the performance of the 4-port fat-tree using the TwoLevelTable
switches, the FlowClassifier and the FlowScheduler. We compare
these methods to a standard hierarchical tree with a 3.6 : 1 oversub-
scription ratio, similar to ones found in current data center designs.

5.1 Experiment Description

In the 4-port fat-tree, there are 16 hosts, four pods (each with
four switches), and four core switches. Thus, there is a total of
20 switches and 16 end hosts (for larger clusters, the number of
switches will be smaller than the number of hosts). We multi-
plex these 36 elements onto ten physical machines, interconnected
by a 48-port ProCurve 2900 switch with 1 Gigabit Ethernet links.
These machines have dual-core Intel Xeon CPUs at 2.33GHz, with
4096KB cache and 4GB of RAM, running Debian GNU/Linux
2.6.17.3. Each pod of switches is hosted on one machine; each
pod’s hosts are hosted on one machine; and the two remaining ma-
chines run two core switches each. Both the switches and the hosts
are Click configurations, running in user level. All virtual links be-
tween the Click elements in the network are bandwidth-limited to
96Mbit/s to ensure that the configuration is not CPU limited.

For the comparison case of the hierarchical tree network, we
have four machines running four hosts each, and four machines
each running four pod switches with one additional uplink. The
four pod switches are connected to a 4-port core switch running on
a dedicated machine. To enforce the 3.6:1 oversubscription on the
uplinks from the pod switches to the core switch, these links are
bandwidth-limited to 106.67Mbit/s, and all other links are limited
to 96Mbit/s.

Each host generates a constant 96Mbit/s of outgoing traffic. We
measure the rate of its incoming traffic. The minimum aggregate in-
coming traffic of all the hosts for all bijective communication map-
pings is the effective bisection bandwidth of the network.

5.2 Benchmark Suite

We generate the communicating pairs according to the following
strategies, with the added restriction that any host receives traffic
from exactly one host (i.e. the mapping is 1-to-1):

e Random: A host sends to any other host in the network with
uniform probability.

e Stride(z): A host with index = will send to the host with index
(z + 1) mod 16.

Test Tree | Two-Level Table | Flow Classification | Flow Scheduling
Random 53.4% 75.0% 76.3% 93.5%
Stride (1) 100.0% 100.0% 100.0% 100.0%
Stride (2) 78.1% 100.0% 100.0% 99.5%
Stride (4) 27.9% 100.0% 100.0% 100.0%
Stride (8) 28.0% 100.0% 100.0% 99.9%
Staggered Prob (1.0, 0.0) | 100.0% 100.0% 100.0% 100.0%
Staggered Prob (0.5, 0.3) 83.6% 82.0% 86.2% 93.4%
Staggered Prob (0.2, 0.3) 64.9% 75.6% 80.2% 88.5%
Worst cases:

Inter-pod Incoming 28.0% 50.6% 75.1% 99.9%
Same-ID Outgoing 27.8% 38.5% 75.4% 87.4%

Table 2: Aggregate Bandwidth of the network, as a percentage of ideal bisection bandwidth for the Tree, Two-Level Table, Flow
Classification, and Flow Scheduling methods. The ideal bisection bandwidth for the fat-tree network is 1.536Gbps.

e Staggered Prob (SubnetP, PodP): Where a host will send
to another host in its subnet with probability SubnetP, and
to its pod with probability PodP, and to anyone else with
probability 1 — SubnetP — PodP.

e Inter-pod Incoming: Multiple pods send to different hosts in
the same pod, and all happen to choose the same core switch.
That core switch’s link to the destination pod will be oversub-
scribed. The worst-case local oversubscription ratio for this
caseis (k—1): 1.

e Same-ID Outgoing: Hosts in the same subnet send to dif-
ferent hosts elsewhere in the network such that the destina-
tion hosts have the same host ID byte. Static routing tech-
niques force them to take the same outgoing upward port.
The worst-case ratio for this case is (k/2) : 1. This is the
case where the FlowClassifier is expected to improve perfor-
mance the most.

5.3 Results

Table 2 shows the results of the above described experiments.
These results are averages across 5 runs/permutations of the bench-
mark tests, over 1 minute each. As expected, for any all-inter-pod
communication pattern, the traditional tree saturates the links to the
core switch, and thus achieves around 28% of the ideal bandwidth
for all hosts in that case. The tree performs significantly better the
closer the communicating pairs are to each other.

The two-level table switches achieve approximately 75% of the
ideal bisection bandwidth for random communication patterns.
This can be explained by the static nature of the tables; two hosts
on any given subnet have a 50% chance of sending to hosts with the
same host ID, in which case their combined throughput is halved
since they are forwarded on the same output port. This makes the
expectation of both to be 75%. We expect the performance for
the two-level table to improve for random communication with
increasing k as there will be less likelihood of multiple flows col-
liding on a single link with higher k. The inter-pod incoming case
for the two-level table gives a 50% bisection bandwidth; however,
the same-ID outgoing effect is compounded further by congestion
in the core router.

Because of its dynamic flow assignment and re-allocation, the
flow classifier outperforms both the traditional tree and the two-
level table in all cases, with a worst-case bisection bandwidth of
approximately 75%. However, it remains imperfect because the
type of congestion it avoids is entirely local; it is possible to cause
congestion at a core switch because of routing decisions made one
or two hops upstream. This type of sub-optimal routing occurs
because the switches only have local knowledge available.

72

The FlowScheduler, on the other hand, acts on global knowledge
and tries to assign large flows to disjoint paths, thereby achieving
93% of the ideal bisection bandwidth for random communication
mappings, and outperforming all other methods in all the bench-
mark tests. The use of a centralized scheduler with knowledge of
all active large flows and the status of all links may be infeasible for
large arbitrary networks, but the regularity of the fat-tree topology
greatly simplifies the search for uncontended paths.

In a separate test, Table 3 shows the time and space requirements
for the central scheduler when run on a modestly-provisioned
2.33GHz commodity PC. For varying k, we generated fake place-
ment requests (one per host) to measure the average time to process
a placement request, and the total memory required for the main-
tained link-state and flow-state data structures. For a network of
27k hosts, the scheduler requires a modest 5.6MB of memory and
could place a flow in under 0.8ms.

L | Hosts Avg Time/ | Link-state | Flow-state
Req (us) Memory Memory

4 16 50.9 64B 4KB
16 1,024 55.3 4KB 205 KB
24 | 3,456 116.8 14 KB 691 KB
32 8,192 237.6 33 KB 1.64 MB
48 | 27,648 754.43 111 KB 5.53 MB

Table 3: The flow scheduler’s time and memory requirements.

6. PACKAGING

One drawback of the fat-tree topology for cluster interconnects is
the number of cables needed to interconnect all the machines. One
trivial benefit of performing aggregation with 10 GigE switches is
the factor of 10 reduction in the number of cables required to trans-
fer the same amount of bandwidth up the hierarchy. In our proposed
fat-tree topology, we do not leverage 10 GigE links or switches
both because non-commodity pieces would inflate cost and, more
importantly, because the fat-tree topology critically depends upon
a large fan-out to multiple switches at each layer in the hierarchy to
achieve its scaling properties.

Acknowledging that increased wiring overhead is inherent to the
fat-tree topology, in this section we consider some packaging tech-
niques to mitigate this overhead. In sum, our proposed packag-
ing technique eliminates most of the required external wiring and
reduces the overall length of required cabling, which in turn sim-
plifies cluster management and reduces total cost. Moreover, this
method allows for incremental deployment of the network.

48 machines 48 machines 48 machines

To core switch

=
= ok
=

==
3

Il
L

M l M
48 machines 48 machines
[i}
= =-
=)l —
[=—=10 T g =i
From other pods
48 machines 48 switch [[48 machines
T] pod rack

2 switch core rack

BT §

Il —
= =5

ui M
——— 1
48 machines
[[4l i}
i}

Il
&

E

——1

—— ol

=1

M) M i}
48 machines

o 4 q 0 0 0

— 48x GigE links
GigE links

To core switch

——1 ——1
—— ot — ol
=1 =1
M i} M i} M i}
48 machines 48 machines 48 machines

Figure 8: Proposed packaging solution. The only external ca-
bles are between the pods and the core nodes.

We present our approach in the context of a maximum-capacity
27,648-node cluster leveraging 48-port Ethernet switches as the
building block of the fat-tree. This design generalizes to clusters
of different sizes. We begin with the design of individual pods that
make up the replication unit for the larger cluster, see Figure 8.
Each pod consists of 576 machines and 48 individual 48-port GigE
switches. For simplicity, we assume each end host takes up one
rack unit (1RU) and that individual racks can accommodate 48 ma-
chines. Thus, each pod consists of 12 racks with 48 machines each.

We place the 48 switches that make up the first two layers of the
fat-tree in each pod in a centralized rack. However, we assume the
ability to package the 48 switches into a single monolithic unit with
1,152 user-facing ports. We call this the pod switch. Of these ports,
576 connect directly to the machines in the pod, corresponding to
connectivity at the edge. Another 576 ports fan out to one port on
each of the 576 switches that make up the core layer in the fat-
tree. Note that the 48 switches packaged in this manner actually
have 2,304 total ports (48 *x 48). The other 1,152 ports are wired
internally in the pod switch to account for the required interconnect
between the edge and aggregation layers of the pod (see Figure 3).

We further spread the 576 required core switches that form the
top of the fat-tree across the individual pods. Assuming a total of
48 pods, each will house 12 of the required core switches. Of the
576 cables fanning out from each pod switch to the core, 12 will
connect directly to core switches placed nearby in the same pod.
The remaining cables would fan out, in sets of 12, to core switches
housed in remote pods. Note that the fact that cables move in sets
of 12 from pod to pod and in sets of 48 from racks to pod switches
opens additional opportunities for appropriate “cable packaging” to
reduce wiring complexity.

Finally, minimizing total cable length is another important con-
sideration. To do so, we place racks around the pod switch in two
dimensions, as shown in Figure 8 (we do not consider three di-
mensional data center layouts). Doing so will reduce cable lengths
relative to more “horizontal” layouts of individual racks in a pod.
Similarly, we lay pods out in a 7 x 7 grid (with one missing spot)

73

to accommodate all 48 pods. Once again, this grid layout will re-
duce inter-pod cabling distance to appropriate core switches and
will support some standardization of cable lengths and packaging
to support inter-pod connectivity.

We also considered an alternate design that did not collect the
switches into a central rack. In this approach, two 48-port switches
would be distributed to each rack. Hosts would interconnect to the
switches in sets of 24. This approach has the advantage of requiring
much shorter cables to connect hosts to their first hop switch and
for eliminating these cables all together if the racks were appro-
priately internally packaged. We discarded this approach because
we would lose the opportunity to eliminate the 576 cables within
each pod that interconnect the edge and aggregation layers. These
cables would need to crisscross the 12 racks in each pod, adding
significant complexity.

7. RELATED WORK

Our work in data center network architecture necessarily builds
upon work in a number of related areas. Perhaps most closely
related to our efforts are various efforts in building scalable inter-
connects, largely coming out of the supercomputer and massively
parallel processing (MPP) communities. Many MPP interconnects
have been organized as fat-trees, including systems from Thinking
Machines [31, 22] and SGI [33]. Thinking Machines employed
pseudo-random forwarding decisions to perform load balancing
among fat-tree links. While this approach achieves good load bal-
ancing, it is prone to packet reordering. Myrinet switches [6] also
employ fat-tree topologies and have been popular for cluster-based
supercomputers. Myrinet employs source routing based on prede-
termined topology knowledge, enabling cut-through low latency
switch implementations. Hosts are also responsible for load bal-
ancing among available routes by measuring round-trip latencies.
Relative to all of these efforts, we focus on leveraging commod-
ity Ethernet switches to interconnect large-scale clusters, showing
techniques for appropriate routing and packaging.

InfiniBand [2] is a popular interconnect for high-performance
computing environments and is currently migrating to data center
environments. InfiniBand also achieves scalable bandwidth using
variants of Clos topologies. For instance, Sun recently announced
a 3,456-port InfiniBand switch built from 720 24-port InfiniBand
switches arranged in a 5-stage fat-tree [4]. However, InfiniBand
imposes its own layer 1-4 protocols, making Ethernet/IP/TCP more
attractive in certain settings especially as the price of 10Gbps Eth-
ernet continues to drop.

Another popular MPP interconnect topology is a Torus, for in-
stance in the BlueGene/L [5] and the Cray XT3 [32]. A torus di-
rectly interconnects a processor to some number of its neighbors
in a k-dimensional lattice. The number of dimensions determines
the expected number of hops between source and destination. In an
MPP environment, a torus has the benefit of not having any dedi-
cated switching elements along with electrically simpler point-to-
point links. In a cluster environment, the wiring complexity of a
torus quickly becomes prohibitive and offloading all routing and
forwarding functions to commodity hosts/operating systems is typ-
ically impractical.

Our proposed forwarding techniques are related to existing
routing techniques such as OSPF2 and Equal-Cost Multipath
(ECMP) [25, 30, 19]. Our proposal for multi-path leverages
particular properties of a fat-tree topology to achieve good per-
formance. Relative to our work, ECMP proposes three classes of
stateless forwarding algorithms: (i) Round-robin and randomiza-
tion; (ii) Region splitting where a particular prefix is split into two
with a larger mask length; and (iii) A hashing technique that splits

flows among a set of output ports based on the source and desti-
nation addresses. The first approach suffers from potential packet
reordering issues, especially problematic for TCP. The second ap-
proach can lead to a blowup in the number of routing prefixes.
In a network with 25,000 hosts, this will require approximately
600,000 routing table entries. In addition to increasing cost, the
table lookups at this scale will incur significant latency. For this
reason, current enterprise-scale routers allow for a maximum of
16-way ECMP routing. The final approach does not account for
flow bandwidth in making allocation decisions, which can quickly
lead to oversubscription even for simple communication patterns.

8. CONCLUSIONS

Bandwidth is increasingly the scalability bottleneck in large-
scale clusters. Existing solutions for addressing this bottleneck cen-
ter around hierarchies of switches, with expensive, non-commodity
switches at the top of the hierarchy. At any given point in time, the
port density of high-end switches limits overall cluster size while
at the same time incurring high cost. In this paper, we present a
data center communication architecture that leverages commodity
Ethernet switches to deliver scalable bandwidth for large-scale
clusters. We base our topology around the fat-tree and then present
techniques to perform scalable routing while remaining backward
compatible with Ethernet, IP, and TCP.

Overall, we find that we are able to deliver scalable bandwidth at
significantly lower cost than existing techniques. While additional
work is required to fully validate our approach, we believe that
larger numbers of commodity switches have the potential to dis-
place high-end switches in data centers in the same way that clus-
ters of commodity PCs have displaced supercomputers for high-end
computing environments.

Acknowledgments

We wish to thank George Varghese as well as the anonymous ref-
erees for their valuable feedback on earlier drafts of this paper.

9. REFERENCES

[1] Cisco Data Center Infrastructure 2.5 Design Guide.
http://www.cisco.com/univercd/cc/td/doc/
solution/dcidg2l.pdf.

InfiniBand Architecture Specification Volume 1, Release 1.0.
http://www.infinibandta.org/specs.

Juniper J-Flow. http: //www.juniper.net/techpubs/
software/erx/junose6l/swconfig-routing-voll/
html/ip-jflow-stats-config2.html.

Sun Datacenter Switch 3456 Architecture White Paper.
http://www.sun.com/products/networking/
datacenter/ds3456/ds3456_wp.pdf.

M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa,

P. Heidelberger, S. Singh, B. Steinmacher-Burow, T. Takken, and
P. Vranas. Design and Analysis of the BlueGene/L Torus
Interconnection Network. IBM Research Report RC23025
(W0312-022), 3, 2003.

N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, and

J. Seizovic. Myrinet: A Gigabit-per-second Local Area Network.
Micro, IEEE, 15(1), 1995.

S. Brin and L. Page. The Anatomy of a Large-scale Hypertextual
Web Search Engine. Computer Networks and ISDN Systems, 30(1-7),
1998.

R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov.
Characteristics of Workloads used in High Performance and
Technical Computing. In International Conference on
Supercomputing, 2007.

[2

—

3

[t}

[4

=

[5]

[6

—

[7

—

(8]

74

[9]

(10]
(11]

[12]

(13]

[14]

[15]

[16]

(17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

L. Chisvin and R. J. Duckworth. Content-Addressable and
Associative Memory: Alternatives to the Ubiquitous RAM.
Computer, 22(7):51-64, 1989.

B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954, Internet Engineering Task Force, 2004.

C. Clos. A Study of Non-blocking Switching Networks. Bell System
Technical Journal, 32(2), 1953.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. USENIX Symposium on Operating Systems
Design and Implementation, 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels. Dynamo: Amazon’s Highly Available Key-Value Store.
ACM Symposium on Operating Systems Principles, 2007.

A. B. Downey. Evidence for Long-tailed Distributions in the Internet.
ACM SIGCOMM Workshop on Internet Measurement, 2001.

W. Eatherton, G. Varghese, and Z. Dittia. Tree Bitmap :
Hardware/Software IP Lookups with Incremental Updates.
SIGCOMM Computer Communications Review, 34(2):97-122, 2004.
S. B. Fred, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts.
Statistical Bandwidth Sharing: A Study of Congestion at Flow Level.
SIGCOMM Computer Communication Review, 2001.

M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
ACM SIGOPS Operating Systems Review, 37(5), 2003.

C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992, Internet Engineering Task Force, 2000.

D. Katz, D. Ward. BFD for IPv4 and IPv6 (Single Hop) (Draft).
Technical report, Internet Engineering Task Force, 2008.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The
Click Modular Router. ACM Transactions on Computer Systems,
18(3), 2000.

C. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman,

M. Ganmukhi, J. Hill, D. Hillis, B. Kuszmaul, M. Pierre, D. Wells,
et al. The Network Architecture of the Connection Machine CM-5
(Extended Abstract). ACM Symposium on Parallel Algorithms and
Architectures, 1992.

C. E. Leiserson. Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing. /EEE Transactions on
Computers, 34(10):892-901, 1985.

J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo. NetFPGA—An Open Platform for
Gigabit-rate Network Switching and Routing. In IEEE International
Conference on Microelectronic Systems Education, 2007.

J. Moy. OSPF Version 2. RFC 2328, Internet Engineering Task
Force, 1998.

F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for
Large Computing Clusters. In USENIX Conference on File and
Storage Technologies, 2002.

L. R. Scott, T. Clark, and B. Bagheri. Scientific Parallel Computing.
Princeton University Press, 2005.

SGI Developer Central Open Source Linux XFS. XFS: A
High-performance Journaling Filesystem.
http://oss.sgi.com/projects/xfs/.

V. Srinivasan and G. Varghese. Faster IP Lookups using Controlled
Prefix Expansion. ACM Transactions on Computer Systems (TOCS),
17(1):1-40, 1999.

D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast
Next-Hop Selection. RFC 2991, Internet Engineering Task Force,
2000.

L. Tucker and G. Robertson. Architecture and Applications of the
Connection Machine. Computer, 21(8), 1988.

J. Vetter, S. Alam, J. Dunigan, T.H., M. Fahey, P. Roth, and

P. Worley. Early Evaluation of the Cray XT3. In IEEE International
Parallel and Distributed Processing Symposium, 2006.

M. Woodacre, D. Robb, D. Roe, and K. Feind. The SGI Altix 3000
Global Shared-Memory Architecture. SGI White Paper, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

