Leo: Online Traffic Classification at Multi-Terabit Line Rate

Syed Usman Jafri
Purdue University

Sanjay Rao
Purdue University

Abstract

Online traffic classification enables critical applications such
as network intrusion detection and prevention, providing
Quality-of-Service, and real-time IoT analytics. However,
with increasing network speeds, it has become extremely chal-
lenging to analyze and classify traffic online. In this paper,
we present Leo, a system for online traffic classification at
multi-terabit line rates. At its core, Leo implements an on-
line machine learning (ML) model for traffic classification,
namely the decision tree, in the network switch’s data plane.
Leo’s design is fast (can classify packets at switch’s line rate),
scalable (can automatically select a resource-efficient design
for the class of decision tree models a user wants to support),
and runtime programmable (the model can be updated on-the-
fly without switch downtime), while achieving high model
accuracy. We implement Leo on top of Intel Tofino switches.
Our evaluations show that Leo is able to classify traffic at line
rate with nominal latency overhead, can scale to model sizes
more than twice as large as state-of-the-art data plane ML
classification systems, while achieving classification accuracy
on-par with an offline traffic classifier.

1 Introduction

In recent years, there have been increasing calls for a "self-
driving" network [8—10], i.e., a network driven by real-time
analytics performed on data at line-rate guided by program-
matic control. Self-driving networks can help in tasks such as
anomaly detection (e.g., identifying and isolating malicious
traffic), and performance monitoring and repair (e.g., identi-
fying flows that see sub-optimal traffic, and rerouting them).
A key component of such self-driving networks is the need to
run machine learning (ML) inferencing algorithms. For exam-
ple, network security applications rely on ML algorithms for
classifying applications and devices (e.g., [oT device) [19],
and detecting anomalous patterns [13, 17].

Traditionally, ML inference algorithms today are run off the
network path. For instance, Intrusion Detection Systems (IDS)
typically require exporting network data to an off-path IDS
device, which runs necessary ML models and flags anoma-
lies. On the one hand, the bandwidth needed to export data
from routers is significant. On the other hand, reaction times
to take action to resolve security issues is slow and of the
order of minutes. Other systems such as Intrusion Prevention
require individual packets to be sent off-path and only packets
deemed safe are then forwarded. Doing so can incur signif-
icant latencies for all packets, which limits the wide-spread
adoption of such intrusion prevention devices.

Mohit Tawarmalani
Purdue University

Vishal Shrivastav
Purdue University

The recent advent of programmable switches offers the
unique opportunity of running ML inference algorithms di-
rectly on the data plane [24]. For instance, a lighter weight
ML model run on a switch could let the vast majority of traffic
pass through the switch without delays, with only a smaller
portion of the traffic routed to the control plane, where the traf-
fic could be inspected with more sophisticated traffic models.
While programmable switches offer promise, there are several
challenges as well. First, switches are significantly resource
constrained in terms of computation (ALU resources), mem-
ory, and pipeline stages. Second, while ML models change
frequently, switches offer limited runtime programmability,
with many changes requiring a switch reboot.

In this paper, we take a key step towards running ML in-
ference algorithms in the data plane. We focus on decision
trees given they are widely used in traffic classification, are
interpretable, and since they only require features (e.g., com-
parisons, conditions) that are already available on existing
programmable switches. Further, although there is ongoing
research on new hardware support for switches [20,23,25],
our focus is on realizing decision trees on existing switches
for ease of deployability considerations.

‘We make the following contributions:

e We analyze initial proposals [5,12,22,24,26], notably [5,24]
to support decision trees on programmable switch pipelines.
The majority of these approaches [5, 12,22] follow the natural
dependencies of a decision tree, implying they are bottle-
necked by the number of stages in a switch for larger trees.
While [24,26] decouples the number of switch stages from
tree dependencies, we show that its memory requirements are
prohibitive whether SRAM or TCAM is used (§3).

e We present Leo, a system that provisions a programmable
switch pipeline to support an entire class of trees in a runtime
programmable fashion (e.g., all trees with depth < D and at
most L leaves). Leo exploits the fact that although the deci-
sion tree itself could be large, any individual data packet only
encounters a small subset of tree nodes. Further, it selectively
flattens portions of a decision tree to judiciously trade off
memory and ALU requirements on the one hand, and the
number of stages on the other hand. To achieve these goals,
we have developed sub-tree multiplexing as part of Leo which
allows multiple sub-trees in a decision tree to be multiplexed
into an execution layer with ALUs whose features and con-
straints can be programmed at runtime. This simultaneously
allows programmability across trees, and reduces resource
requirements for a given tree.

e We present worst-case bounds on resource requirements

(e.g., table sizes) with Leo, to ensure it can sufficiently
provision for all trees in a class. We show that unlike
IIsy [24,26] Leo achieves attractive worst-case bounds on
memory requirements, while requiring significantly fewer
stages than [5, 12,22].

e Our evaluations on Intel Tofino [2] switches show (i) Leo
support much larger models than existing approaches —e.g.,
it supports complete trees of depth 10 with SRAM, while
existing approaches are limited to depth 5 trees; with TCAMs,
Leo supports trees of depth 22 with upto 1024 leaves; (ii)
on real IDS datasets, Leo achieves classification accuracies
comparable to a control plane solution, and significantly bet-
ter than accuracies achieved with prior work [5, 12,26] and
(iii) evaluations on a real programmable switch testbed show
that classification latencies with Leo are 500X lower than
performing classification in the router control plane. Overall,
the results show Leo is a viable approach to support packet
classification in the data plane.

2 Background and Motivation

ML for traffic classification. Consider Intrusion Detection
and Prevention systems (IDS and IPS) systems, which match
network flows to patterns to identify potential anomalies.
IPS systems inspect individual data packets synchronously
and take necessary preventive action on malicious traffic
(e.g., block traffic). In contrast, IDS systems operate asyn-
chronously over traffic exported from the data plane. While
many IDS/IPS systems rely on rules based on packet payload,
the increasing trend towards encrypted traffic has spurred
interest in behavioral systems that do not rely on packet
payloads. Instead these systems only rely on models of net-
work flow statistics (e.g., packet size distributions, inter-arrival
times etc.). Behavioral models may also serve as an initial
coarse filter that flags potentially malicious traffic to a rule-
based systems that performs more detailed inspection. Al-
though we use intrusion detection and prevention as our pri-
mary motivating example, many other use cases such as IoT
device identification, application classification and QoE infer-
ence [13,17,19] benefit from ML classification models.

Why traffic classification in data plane? With increasing
network speeds, the amount of data that needs to be analyzed
per unit time has also increased. For example, a single state-
of-the-art switch can receive multi-terabits of data per second.
Unfortunately, implementing traffic classification in the con-
trol plane or remote servers incurs high response latency,
which might be unacceptable for synchronous systems such
as IPS that require packet processing on the critical path. Our
measurements on a real router testbed show that while it only
takes few hundreds of nanoseconds to process a packet in the
switch’s data plane, it could take hundreds of microseconds
to simply send a packet to the switch’s local control plane
and back. Further, the bandwidth of the data path between a
switch’s local control and the data plane is typically a few 10s
of Gbps (implemented using PCle bus). However, the data

plane of state-of-the-art switches runs at multi-Tbps. Thus,
even for an asynchronous system such as an IDS, it is not
possible to analyze and classify each packet going through the
network using the control plane. The alternative is to heavily
sample packets, or report digests over longer epochs, which
can reduce accuracies and responsiveness. Using a remote
server for analysis and classification suffers from the same
limitations, namely high latency for classification and server
bandwidth acting as bottleneck. These factors motivate us to
explore running traffic classification in the data plane.
Programmable switches. Network data plane support for
ML inference is facilitated by the recent emergence of pro-
grammable switches which allow the architect to deploy
programs that are executed on each data packet. Many pro-
grammable switches today follow the Protocol Independent
Switch Architecture (PISA) data plane model and comprise
a parser, processing pipeline, and deparser, which are each
programmable [4]. The processing is done by a pipeline of
a fixed number of stages [6, 7] that execute on every clock
cycle. Each stage consists of:
e Match tables, which specify the packet header fields to
match against, and the corresponding action (e.g., rewrite a
packet header field). Match tables may be supported using
(1) SRAMs which only support exact matches; or (ii) TCAMs
which support wild card matches (e.g, all packets with source
port 80, and arbitrary destination port). TCAMs are more
flexible, but they are power hungry and more expensive.
o Registers and ALUs. Registers store small amounts of state
that persists across packets (e.g., to implement packet coun-
ters). Stateful ALUs involve registers and allow computations
across packets. Stateless ALUs only take other packet headers
as inputs. Computation is limited to fields within a packet.
In addition, each switch consists of a Packet Header Vector
(PHV) which contains packet header fields, and metadata used
to communicate intermediate results across stages.

3 Design goals and prior work limitations

In this paper, we focus on decision trees for ML classification
given that they are widely used, and are easy to interpret un-
like "black-box" approaches such as neural networks. Further,
the simplicity of a decision tree model (e.g., unlike neural net-
works, decision trees do not require complex ALU operations
such as multiplication) makes them amenable for implemen-
tation on existing high-speed data plane architectures. In the
rest of this section, we discuss our design goals in mapping
decision trees to programmable switch data planes, and why
prior attempts [5, 12,22,24,26] fall short.

In mapping an ML structure to the data plane, our goals
are:

Support a class of models in a runtime programmable
Jashion. ML policy changes over time as new data is available
and models are retrained. Unfortunately, existing switches
offer limited runtime programmability (i.e., ability to make
changes without rebooting a switch). For instance, while the

Not limited Low Low

Runtime Implementable
Prog by tree in ApSIC switch ALU [memory
dependency usage usage
Infocom [22] X X X
pForest [5] X X
SwitchTree [12] X X
sy [24,26] X
Leo

Table 1: Comparing Leo to prior work. §3 presents analysis to
show the high memory requirements of IIsy, and we analyze
Leo’s resource requirements in §6.

entries of match tables can be modified at runtime by the con-
trol plane, the inputs of an ALU cannot. Ideally, any approach
must support an entire class of decision trees without requir-
ing a router reboot (e.g., all trees with a particular depth).
Support sufficiently large models for high accuracy. The
accuracy of classification depends on factors such as tree
depth and the number of leaves. Figure | shows for a real
IDS dataset (details in §7) that deeper trees achieve higher
accuracy despite using the same number of decision nodes.

0.91

S 081 —e— Depth 8

o —e— Depth 10
—

o 0.7 Depth 12

32 64 128 256 512
Leaves

Figure 1: Impact of increasing depth for the same number of
leaves using CICIDS-2017 dataset.

Resource efficient for all ML models in a class. The re-
sources required in programmable switches must be accept-
able in terms of resources such as ALUs, SRAM, TCAM, and
the number of stages. Further, since we are provisioning for a
class of ML models (e.g., all decision trees with a particular
depth), the mapping must be such that the worst-case bounds
for mapping for all models within the class is acceptable in
terms of resource requirements. The worst-case bounds must
scale acceptably -e.g., with the number of leaf nodes in a
decision tree, or with tree depth.

Prior work and limitations. Unfortunately, existing ap-
proaches [5, 12,22, 24, 26] to support decision trees in the
data plane fall short of the above goals. First, the majority
of these works [5, 12,22] follow a natural strategy, which in-
volves mapping the hierarchical structure of decision trees to
the programmable switch pipeline. This requires at least one
(and possibly more) stages per tree level. Consequently, tree
depth is bottlenecked by the number of pipeline stages. The
results are further exacerbated given our analysis above which
indicates that sparse and deeper trees are more important to

<
T Fase

I 1 I 1 I 1 I 1
Lo e e L Jles Tw [[|
(a)

TCAM SRAM | o

Code 1, Code 2, ..., Code 6 # of entries

2 0 | 2 0 00°0™ 2 L
i 00*1* 2 L

Similar features : : 01*+0* 2 Ls

6 0 table for
18 0 o1 > L

Fo...Fs
with 2 codes each 19 1 >
LS

oy
0
o
e q

NN

i 2
L
27 1 N

28 2 24 L

Z|Z|33|33

N|=

2 Ly

29 2

32 2

(b)

Figure 2: Illustrating IIsy’s approach for an example deci-
sion tree with 6 features each with a maximum value of 32.
Feature F1 appears twice and hence its values are mapped
to three code words, while other features are mapped to two
code words. The final table has entries for all code word com-
binations. The rules are shown for a TCAM, but the number
of entries needed with an SRAM is also shown.

improve classification accuracy. Besides this central limita-
tion, some of these works are not runtime programmable (e.g.,
[22] uses simple conditionals, and even a minor change would
require rebooting the switch to deploy recompiled code), and
have high ALU usage (e.g., [22] uses an ALU per decision
tree node), while others [5, 12] have only been implemented
on software BMv2 switches.

While IIsy [24, 26] addresses many of these short-

comings, we analyze it extensively below, and show that its
memory requirements can be prohibitive, whether SRAM
or TCAM is used. Table 3 summarizes existing schemes.
Leo addresses these limitations with a design that is runtime
programmable, not constrained by tree dependencies, has ac-
ceptable memory and ALU usage, and implemented on a
hardware switch. In the rest of the section, we show IIsy has
unacceptably high memory requirements.
Analyzing memory requirements with IIsy. IIsy [24,26]
seeks to break intrinsic tree dependencies by (i) a table per
feature which maps feature values into a smaller set of code
words. The mapping is such that the final classification result
is the same for all values of a feature that share the same code
word, no matter what the values of other features are. A final
classification table looks at every possible combination of
code words across features, and maps them to a classification
result. We present two results to show that IIsy’s memory
requirements grow exponentially with the number of features,
whether SRAM or TCAM is used.

Proposition 1 Consider the requirement that I1sy must sup-

port all trees with a depth D or lower, involving any subset
of N pre-determined features with each feature taking values
in the range [0,K] in a runtime programmable fashion. Then,
the total SRAM that must be provisioned to achieve this goal
grows exponentially with N.

Proof sketch. To derive conservative bounds on the size of the
combination table, consider a complete decision tree of depth
D where each feature appears in the same number of decision
tree nodes. Let I = 2P — 1 denote the number of internal nodes.
The total number of decision nodes that involve each feature
is %, requiring % + 1 codewords per feature. Since the combi-
nation table includes combinations of all possible codewords
associated with each feature, the total size is (ﬁ + 1)V which
is exponential in N. Further, each feature table requires K en-
tries since each table explicitly enumerates all values of every
feature. Thus, NK total entries is needed across the tables. In
practice, some savings is possible owing to default rules (see
Appendix A.1). Accounting for this, we obtain the following
conservative bound on the the total number of SRAM entries,
where the first term is the requirement for feature tables, and
the second term the requirement for the combination table.

2b 1
2D

2P 1

N
N +1) 6]

K
N (K=[551)+ (
We next show IIsy’s memory requirements grow exponen-
tially even with TCAMs. focusing on the combination table

since this is most crucial to the analysis.

Proposition 2 There exist a family of decision trees with
O(N? + NK) leaves which require at least O(1g" (K — 1))
TCAM rules with ITsy, where N is the number of features,
and each feature has values that could range from 1... K

Proof sketch. The proof is based on a family of decision trees
shown in Figure 15 in the Appendix for the general case with
N features (F] ... Fy) with each feature having values ranging
from 1...K. To provide more intuition, Figure 3 shows a
geometric representation for the special case with N = 3, and
K = 4, where the highlighted cubes correspond to the leaves
of the corresponding decision tree.

The intuition behind the tree construction is as follows.
First, the decision tree nodes has leaves for each value of
a feature F; when all other features are at their maximum
value K. This forces IIsy to use a distinct code word for
each value of every feature. Next, the decision tree has leaf
nodes which correspond to regions where some of the features
can take multiple possible values. These nodes will require
a large number of code word combinations with IIsy since
it is forced to use a distinct code word for each feature value.
For example, in Figure 3, IIsy requires K = 4 code words
for each feature (owing to the decision tree nodes shown by
the small cubes). While the inner cube (A,) which captures
the region where all features are < K corresponds to a single
decision tree node, it would requires (K — 1)* combinations

Figure 3: Visualizing the general decision tree for three fea-
tures.

with IIsy. Likewise, each of the regions Aj 5, Ay 1, and B
(where exactly one feature is K) correspond to single decision
tree nodes but would each require (K — 1)? different code
word combinations. Even if a default rule were used for the
inner cube, 3 * (K — 1)? code word combinations must still be
explicitly covered, which would require at least 3m> TCAM
entries where m = [log(K — 1)]|. We defer the details of the
proof for the general case to the Appendix §A.2 along with
models for estimating the size of the feature and combination
tables that must be provisioned for a TCAM implementation.

Implications. Using equation (1), a complete tree of Depth 6
using 9 16-bit features requires over 103 SRAM entries with
IIsy. Using the analysis in Appendix §A.2. we can construct
a tree with only 200 leaves that needs over 10° TCAM entries

4 Leo Design

In this section, we present the design of Leo, a resource-
efficient and runtime programmable system that enables data
plane traffic classification on PISA switch pipelines.

4.1 Abstraction

Having a well-defined abstraction for a decision tree model is
crucial to provide the right balance between flexibly switch-
ing between different decision trees at runtime and worst-case
resource and performance overhead. The two extreme abstrac-
tions of supporting a specific decision tree and supporting all
possible decision trees compromises either on flexibility or
on resource constraint respectively. To that end, Leo provides
the following abstraction for a decision tree model: to support
any tree from a ''class'’ of decision trees specified by the
three tuple (D, L, F) where D is the maximum tree depth,
L is the maximum number of leaves, and F is the set of
features that the tree nodes can use, subject to the switch
resource constraints while allowing for switching between
trees of the same class at runtime without switch downtime.

User

l

(D=4,L=16,F={f1, f2, 13, f4, 15, 16, {7, 18, f9, {10, f11, f12, f13, f14, 15})
¥

Leo Compiler
1. Chooses a representative tree structure

2. Provisions resources for the representative tree in the switch data plane

2 ﬁcket in Map Switch Data Plane
g By R e——
g e Y -~ — i i]El[l EJ[
g e YY) - ——
o

- Write ----*

\ Switch Control Plane \

Figure 4: Workflow of Leo. Given a user specified (D, L, F)
class, Leo chooses a representative decision tree for that class
and maps it to the switch pipeline using multiplexed ALUs
and SRAM/TCAM tables (Figure 9). The table inputs are con-
figured at runtime by the switch control plane to implement
different decision trees in the class (D, L, F') (Figure 16).

The user can specify a decision tree model to map to the
switch pipeline using the tuple (D, L, F). Leo’s compiler will
try to find a mapping that can express any tree in the given
class, subject to the switch resource constraints. However, the
compiler will return a failed mapping if one or more trees
in the given class could not be mapped within the resource
constraints of the switch pipeline. If the mapping is successful,
the user can choose any tree from the given class to run on
the switch, and can switch between trees within the same
class at runtime. Note that at any given time, the switch runs
exactly one tree from the given class. The above abstraction is
general enough to also express other common abstractions for
a decision tree model. For example, (D,2PF) can express
all decision trees with depth D or smaller.

4.2 Design Overview

The workflow for Leo’s design is shown in Figure 4.

Representative decision tree. Given a (D,L,F) specifica-
tion, Leo provisions for a single decision tree structure at
compile time that can be multiplexed at runtime to implement
any tree in the class. We refer to this tree as a representative
decision tree A natural choice for a representative decision
tree structure would be a complete tree of depth D (and 2P
leaves), as any tree structure with depth < D would simply
be a sub-tree of the complete tree. For example, in Figure 4,
for the (D = 4,L = 16, F) class, Leo’s compiler chooses a
complete decision tree of depth 4 as the representative tree
structure. However, for classes where L < 2P, this approach
over-provisions the resources. In §6, we discuss how Leo

reduces the resources to provision by also considering the
maximum number of leaves L within the (D,L, F) class.
Mapping Representative Tree to Switch. Next, the compiler
efficiently maps the tree structure to the switch pipeline. In
doing so, it addresses two key challenges.

Challenge 1. The ability to update the features and con-
straints of the representative decision tree nodes at runtime to
implement different trees in a (D, L, F) class.

Challenge 2. The ability to support decision tree classes
with large D (depth) and L (leaves), subject to the resource
constraints of the switch.

Leo solves these challenges with two novel techniques it
introduces called decision tree node multiplexing(§4.3) and
sub-tree flattening and multiplexing (§4.4)

Runtime reconfiguration. Finally, at runtime, the switch
control plane configures the feature and constraint values
in each node of the representative decision tree structure to
implement a specific decision tree in the class (D, L, F) (§4.5).

4.3 Decision Tree Node Multiplexing

An internal node of a decision tree is implemented using an
ALU whose inputs are a feature value f € F and a constraint
c. The output is the result of a comparison (e.g., f < ¢). The
set of features F' are defined by the user as part of Leo’s
abstraction (D, L, F'), and are stored either in the packet header
vector (for stateless features, e.g., TCP SYN flag) or inside
the switch registers (for stateful features, e.g., TCP packet
count). The constraints are stored in the switch memory and
are populated (and updated at runtime) by the control plane.

To support different
decision trees in a given

Feature
(D,L,F) class, Leo al- Multiplexen
lows that any internal 8|
node in the decision tree § —

can take any of the F
features and any con-
straint value as inputs
for the conditional state-
ments. To achieve this,
Leo implements an inter-
nal node of the represen-
tative decision tree using
a multiplexed ALU, an
abstraction of which is
shown in Figure 5. Con-
ceptually, this comprises a (i) feature multiplexer, that can
select any of the features at runtime from the set F'; (ii) a
constraint multiplexer, that can select any of the stored con-
straints; and (iii) an ALU that operates on the selected feature
and constraint. We discuss concrete implementation in §5.
Supporting all conditional statements. At compile time,
each node in the representative decision tree implements a
statement of the form f < ¢. However, a decision tree can
have other conditionals (e.g., f > c or f < ¢). Unfortunately,

ALU

|><c§|_l—>|><c§|

ALU implementing
feature < constraint

Constraints

Constraint
Multiplexer Select

Figure 5: An abstract multi-
plexed ALU.

.True_ False. _— -
N D VI PO O P R

Figure 6: Transforming a > node to an equivalent < node.

Depth 0 fl

ALU

Depth 1

Depth 2

D: 00 ID: 01 ID: 10
[3<3] [f4<4] [f5<5] [f6<6]

000 60O

Depth 3

Figure 7: Mapping a decision tree to the switch pipeline using
only one multiplexed ALU per tree depth.

the ALU operations in PISA pipelines cannot be changed at
runtime. Instead, Leo transforms a more general decision tree
into an equivalent version with only f < ¢ conditions offline
(Figure 6). Specifically, (i) An x < C condition is converted
into x < C+ 1 while an x > C is converted into x > C — 1. (ii)
x > C is transformed into x < C by simply swapping the left
and right sub-trees of the node. Both these transformations
maintain the behavior of the original conditions.

4.4 Sub-Tree Flattening and Multiplexing

A naive mapping of a representative decision tree structure to
the switch pipeline would require a multiplexed ALU for each

tree node implementing the conditional decision at that node.

This can be as high as 2° — 1 ALUs to support a complete
representative decision tree of depth D. However, we observe
that at runtime a given packet would access exactly one tree
node at a given tree depth. The tree node that the packet
accesses at depth d would be decided by the path the packet
takes through the tree, which, in turn, can be decided by the
combination of the {ID, decision output} of the decision tree
node accessed at depth d — 1. For example, in Figure 7, if the
ID of the node accessed at depth 1 was 0 and the decision
output of that node was 1, then the node that will be accessed

| O1=f4<5 02=15<3 03=16<6

01][02[03] ID o1]/02[03] ID

0 1 oo oA oo x[A

o o[1]A 0 [1 * | B

f5<3 f6 <6 0 1 0 B 1 * 0 C

Ol 11 01 11 0 1 1 B 1 * | 1 D

A B c D 1 g ? g Boolean TCAM Table

1 1 0| C
1 1 1| D

Boolean SRAM Table

Figure 8: Encoding a decision sub-tree using a boolean table.
The boolean table could be stored either in SRAM or TCAM.

at depth 2 will have ID 01. To implement this (Figure 7), Leo
only needs to provision one multiplexed ALU per tree depth
d. The combination of the node output and node ID at depth
d — 1 (shown as Prev ID in Figure 7) is used as the select
value for the MUX at depth d to configure the ALU with the
correct decision tree node parameters (feature and constraint).
Hence, for a D depth tree, only D ALUs are needed.

While the above design requires significantly fewer ALUs
compared to the naive design, unfortunately, it does not scale
to trees with larger depths. This is because we require one
ALU for each tree depth, and the ALU at a given depth could
be configured only once we have the outputs of the ALUs
from the lower tree depths. This inherent dependency means
that ALU at each depth must be mapped to a different switch
pipeline stage, thus requiring D + 1 pipeline stages to imple-
ment a tree of depth D (Figure 7). In programmable switches,
the number of pipeline stages can be as few as ~10. To over-
come this bottleneck, Leo uses two key insights.

First, Leo generalizes the unit of mapping from a single
decision tree node as above to a sub-tree of size k nodes.
Further, Leo notes that a sub-tree of size k within a decision
tree can be represented using a boolean table by encoding
all possible combinations of the outputs of the decision nodes
within the sub-tree. This is illustrated in Figure 8. Hence,
assuming sufficient resources per switch pipeline stage, one
could implement an entire sub-tree of size k by calculating
the output of each decision node in the sub-tree in parallel
(using k multiplexed ALUs), and next matching those outputs
against the boolean table(s) to figure the output of the entire
decision sub-tree. We call this sub-tree flattening.

Figure 9 illustrates the idea where the representative tree is
partitioned into layers, each layer comprised of similar sub-
trees. Using similar insights as earlier, we observe that for any
layer, exactly one sub-tree is executed at runtime as decided
by the path the packet takes through the tree. For example,
in Figure 9, exactly one of the four sub-trees (of size k = 3)
in layer 2 will be executed. Leo generalizes the idea of node
multiplexing to sub-tree multiplexing, by provisioning for
exactly one sub-tree per layer. Given a sub-tree multiplexing
unit of size k nodes (which is always a complete binary tree

Layer 1 0 1
f2<7 3<8
Layer2 o 1 0 J
ID:OO ID: 01 ID:10 o> ID: 11
0 1) 1 0 1 0 1
[e<2] [fo<3]||[fl0<4]| [f11<5]||[t12<6] [113<7]||[f14<8] [f15<9]

1] 1 0 3 3 2 | e e G e

Layer 3

3 03 Stage 1
= e =
1 7

| —
o1|02|03| D5

6
0 0 * 00 7
0 1 * 01

5]
1 * 0 10 6

7
1 x| l11 8

]
l l l l Stage 3
P{;" E1|E2|E3| ID PI’S" E1|E2|E3| ID PI'S" E1|E2|E3| ID Plrg" E1|E2|E3| ID
00 |o|o|x|ci|| ot |o|o|«|cs|[10]0]|o|x|cof|l11|0]|o0 | |Ci3
00 | 0|1 |«|ca|| ot |o|1]x]|cell 10 |0|1]x]|ctofl 11|01 |x |Cl4
00 |1]«|o|c3|[ot |1|x]o0]|c7|[10[1]|%]o0]|cit|| 11 |1]|« |0]cCt5
00 | 1] % |1 call ot |1]%]1]cs|| 10 |1|x]1]|cr2||11]1|*|1]|cte

Figure 9: Illustrating sub-tree flattening and multiplexing (with sub-tree size k = 3) for a representative (complete) decision tree
of depth D = 4 from Figure 4. As mentioned in §4.4, it requires [D/[loga(k)]] + 1 = 3 switch pipeline stages to map the tree.

in Leo) and n such blocks of sub-trees at layer i, Leo only
provisions for one sub-tree of size k (i.e., k multiplexed ALUs).
In Figure 9, there are n = 4 blocks of sub-trees of size k =3
in layer i = 2. Hence, Leo only provisions k = 3 multiplexed
ALUs for i = 2. While the figure shows all layers having
k =3, Leo allows for different layers to be associated with
different sized sub-trees (and hence k may vary across layers).

Finally, similar to Figure 7, to decide which sub-tree (or leaf
node) at layer i to choose, Leo requires the id and the outputs
of the sub-tree at layer i — 1. The combination of the {ID,
decision outputs} from layer i — 1 is fed to the feature and
constraint multiplexers at layer i to choose the right feature
and constraint value for each multiplexed ALU. Note that
in Figure 9, we don’t need the ID of the node at layer 1 to
configure the multiplexers at layer 2; only the decision outputs
of the sub-tree at layer 1 (shown as 01, 02, O3 in the figure)
are needed. This is because there is only one sub-tree at layer
1. However, at layer 2, we have 4 sub-trees, and hence in
Figure 9, the leaf node at layer 3 is selected using both the ID
of the sub-tree accessed at layer 2 (shown as Prev ID in the
figure) plus the decision outputs from that sub-tree.

Using complete sub-trees of size k > 1 nodes as the unit of
flattening in every layer, Leo only requires [D/[loga(k)]]+ 1
pipeline stages to implement a complete decision tree of depth
D, as illustrated in Figure 9.

4.5 Runtime Programmability

The inputs to the building blocks of a representative decision
tree in Leo, namely the feature and constraint multiplexers and
the boolean table, can be configured and updated at runtime
via the switch control plane without any switch downtime.
Thus, by changing the inputs to these building blocks appro-
priately at runtime, one could implement any decision tree

within a given (D,L,F) class. (Figure 16 in the Appendix
presents an example of a different tree mapped to the same
representative structure in Figure 9).

Handling transient state during runtime tree updates.
One key issue with using the control plane for runtime tree
updates is that it can take several clock cycles to update all
the tree nodes while transitioning from one decision tree
to another. Hence, packets arriving during the update might
encounter an inconsistent tree state. To handle this, Leo main-
tains two copies of the representative decision tree. At any
given time, exactly one of those trees is marked as active, and
all incoming packets are directed through the active tree. In
order to transition to a new decision tree, the control plane
configures the nodes of the inactive decision tree, and once
the new tree is configured, it is marked as active, while the
previously active tree is marked inactive. Switching the status
of a tree from active to inactive and vice-versa is an atomic
operation, as it only requires writing to a single register entry
storing the tree id of the active tree. Thus, future incoming
packets smoothly transition to the new decision tree without
encountering any inconsistent state. The approach doubles the
switch resources required to support a representative decision
tree, but we show in §7 that the costs are acceptable.

5 Leo Implementation

We present details of our implementation in PISA ASICs.

Implementing Multiplexed ALUs. Figure 9 shows the fea-
ture and constraint multiplexers, and the Boolean SRAM/T-
CAM table as distinct components. We however implemented
all of them using the same Match/Action table (MAT), with
the comparison performed using the stateless ALU in the ac-
tion field. For concreteness, layer 2 of Figure 9 is implemented
as 3 MATs, one per Multiplexed ALU, which respectively pro-

duce the results E'1, E2, and E3. The MAT which outputs E'1
has F 4 2 possible actions. F' of the actions (one per feature)
involve (i) executing a condition of the form E1 = f < c,
where f is an appropriate feature in the packet’s header or
metadata, and c is the relevant constraint loaded in the ta-
ble memory as an action parameter; and (ii) assigning the
ID field for the next layer based on another action parame-
ter. The other two actions include a (i) NoOp, which simply
disables the multiplexed ALU when a tree of smaller depth
is installed; and (ii) SetLeaf, which terminates a path in
the tree by writing the class label to the packet header. The
MATs that compute £2 and E3 are similar, except that they
do not compute the ID field (it suffices one MAT in each layer
computes the ID field for the next layer).

Ideally, the operation E'1 = f < c is realizable in the state-
less ALU. However, we were unable to compare a memory-
read parameter (i.e. the constraint) with a header/metadata
(i.e. a feature) in a single processing stage. We instead imple-
mented the comparison as E1 = f — ¢ in a single stage. The
condition is met if E1 is negative which involves checking
that the Most Significant Bit (MSB) of E'1 is 1. We achieve
this with TCAMs using wildcard matching (of the form 1 s %)
for E'1 in the next layer Boolean Table, realizing each layer in
a single switch stage. With SRAMs, we used an extra stage
to extract the MSB of E1, needing two stages per layer.

Choice of k. While larger k can reduce the number of stages,
we typically used k = 3. Increasing k beyond 3 is constrained
by the limit that PISA switches place on the number of header
fields within each container group. Two header fields can be
used together in an ALU operation only if they are in the
same group (e.g., in Figure 9, the different features, and the
outputs O and E of each layer are part of the same group). We
reuse output headers with £ = 1. When k > 1, neighboring
layers must use different output headers as multiple MAT's
in a layer rely on the output headers of the previous layer.
Hence, we reuse across alternate layers (odd layers use inputs
E and outputs O, with the opposite for even layers), and our
implementation requires IFl+2k header fields where IFl is the
number of features. An increase in k reduces the number of
features possible. A potential trade-off that we defer for future
investigation is to implement each layer in two stages: (i) a
first that determines an ID; and (ii) a second that uses the ID
for the multiplexed ALUs. This would reduce the number
of header fields in each container group to |F |+ k and allow
more features, at the expense of more stages per layer.
Handling stateful features. Stateful features requires allo-
cating per-flow memory. We augment the Leo abstraction to
include a target on the number of flows M that are to be sup-
ported. Leo maps stateful features to 8-bit or 16-bit registers
based on the feature. Features may be discretized to fit the
desired budget — e.g., packet lengths are divided by 64 (using
bit shifts) which allows lengths ranging from 64 bytes to 16
KB to be represented in 64 byte units using a 8-bit budget.
We discuss how other features are discretized in §A.3.3).

Stage 1 Stage 2 Stage 3 Stage 4

Egress Root @ [) [] [] Degcision
”””””””””””””” [[) [) @<« — Tree
Ingress e - ° ® Node
| o
[] @
o3
[]
[]
[]
Flow
[State

Figure 10: Illustration of how Leo maximally utilizes the
resources in each physical stage by mapping the feature tables
to the ingress pipeline and decision tree to the egress pipeline.

We store stateful features in separate SRAM register ta-
bles indexed by flow ids. The flow id is calculated as a hash
over its 5-tuple. In PISA switches, each packet first traverses
through an ingress pipeline followed by an egress pipeline.
Each physical pipeline stage serves as both an ingress and an
egress stage, with its resources shared between the ingress
and egress. In Leo, we map the tables containing flow state
to the ingress pipeline and the decision tree to the egress
pipeline (Figure 10) to maximally utilize pipeline resources.
This is motivated by the fact that when mapping the decision
tree, many stages consume minimal memory resource (espe-
cially the first few stages corresponding to the top tree levels
with fewer internal nodes). Thus Leo could use the remaining
resources in those physical stages to store flow state in the
ingress. Alternatively, if we had mapped both the flow state
and the decision tree to the ingress pipeline, then the inherent
dependency that the flow state must be accessed before the
decision tree logic would mean that Leo could not use the
resources left in each stage after mapping the decision tree
nodes. This optimization is useful in scaling Leo to a large
number of flows with stateful features (§7).

6 Leo Analysis

We next discuss how to provision a representative tree in Leo
that can support all trees in the (D, L, F) class. This requires
getting an upper bound on the requirements for every resource
across all possible trees in that class.

The number of rules in each Leo table depends on the
number of tree states that are multiplexed. For example, in
Figure 9, each Mux in layer 2 (resp. layer 3) would multiplex
across 4 (resp. 16) possible states. Let k; denote the sub-
tree multiplexing unit size in layer i (generalizing the above
discussion which assumed k; = k for all layers). Then, each
execution layer produces k; + 1 possible outcomes for each
of the states multiplexed by the layer. Thus, the maximum
number of states multiplexed in layer i (which we denote by
R;) is at most R;_; x (k; + 1). Given a (D,L,F) specification,
the total number of leaves, and hence the number of internal
nodes at each tree level does not exceed L. Thus, the number
of states multiplexed by any layer is at most L, reducing the

entries to be provisioned. We now have:

1 ifi<l1
Ri=4q | . 2
min(L, Ri—y * (k;+1)) otherwise

If TCAM is used, the number of entries needed in each mux
in layer i is simply R;, the number of multiplexed states. If
an SRAM is used, the number of entries is R;_1 * 251 as it
depends on the multiplexed states in the previous layer, and
the possible combinations of the k;_; outputs of layer i — 1.
Since k values are typically small, this is just a small constant
factor of the TCAM rules.

Total memory requirement. When k; = k in each layer, and
we provision for complete trees, the total entries to provision
for all tables across all layers (there are k tables per layer)
is (k-+ 1)I + 1 with TCAM and 2¥1 4 1 with SRAM. Here, I
is the number of internal nodes = 2 — 1. When k = 3 as in
Figure 9, the total entries are 4/ + 3 with TCAM and 87+ 3
with SRAM. In contrast, Equation (1) shows for IIsy, the
SRAM entries goes as (I/N + 1)V, where N is the number of
features, while TCAM entries are also exponential in N when
I is polynomial. Further, when given a limit L on the number
of leaves, and for k = 3, a comfortable upper bound in memory
requirements is 1 + DL/2 with TCAM, and 1+ 4DL with

SRAM, with the more general expression being 1+ %

with TCAM, and 1 4 loinETDfl) with SRAM.

7 Evaluation

Our evaluations address several questions: (i) What classes
of decision trees can be supported by Leo, and how does this
compare to other approaches in terms of tree size, the number
of stages and rules? (§7.1). (ii) What classification accuracies
are achievable on real traffic data-sets using decision trees
that Leo can support? (§7.2). (iii) How does the decision tree
accuracy vary with the number of flows and stateful features?
(§7.3). (iii)) What are the benefits of implementing decision
trees in the data plane? (§7.4).

To answer these questions, we implement Leo, and other
schemes using P4 [3], and analyze resource requirements on
a Tofino switch. We also evaluate Leo with a control plane
solution in a real tested involving a Tofino switch. We evaluate
accuracies on publicly available intrusion detection datasets.

7.1 Leo vs. Other Data plane Tree Schemes

Schemes compared. We compare Leo with tree-based ap-
proaches [5,12,22] and IIsy [24,26]. Unfortunately, as dis-
cussed in §3, existing tree-based approaches are either not
runtime programmable [22], or have only been implemented
on software switches. For instance, we experimented with the
publicly available code of SwitchTree [12] (an extension of
pForest [5]) and found it does not compile on the TNA [2]
hardware switch. Instead, we modify Leo to mimic these ap-
proaches. Our implementation contains several optimizations

not present in [5, 12] and is an optimistic bound on the per-
formance of these approaches. Unlike Leo, none of the prior
works guarantee correct decision tree execution during a tran-
sient period when a tree update is in progress. Hence, we refer
to them as pFor/SwTree-NT and IIsy-NT. We also imple-
ment a variant of Leo where we disable the mechanisms to
ensure correct transient performance, which we call Leo-NT.

Methodology and metrics. We compare schemes with re-
spect to their ability to support all trees within a given class
(D,L,F) that constrains the maximum depth D, maximum
number of leaves L, and feature set F'. We vary the class spec-
ifications across our experiments. For any given class, and for
all schemes, we must estimate the memory to be provisioned
at compile time for each table used in the scheme. This is
needed since the goal is to support all trees within a class in a
runtime programmable manner and since table sizes cannot
be dynamically changed. This requires estimating the worst-
case requirement across all decision trees within a class for
each table with every scheme. For Leo and pFor/SwTree, we
obtain these requirements using the analysis in §6. IIsy does
not discuss how to assign sizes to its tables. Thus to guarantee
programmability within each class, we utilize the analysis
that we presented in §3 (and detailed in §A.1 and §A.2).

Our main metrics include (i) whether a given specification
can be realized on an actual hardware switch (we focus on the
Tofino Native Architecture (TNA) [2] used in Intel’s Tofino
line of switch ASICs); (ii) when the specification can be re-
alized, the total number of SRAM or TCAM entries and the
number of stages that the scheme requires. We implement all
schemes using P44 targeting TNA and consider a specifica-
tion met on successful compilation. All P4 code was compiled
using version 9.11.1 of the Intel Barefoot SDK.

We focus on the resource requirements of the decision tree
alone, and explore per-flow state requirements in §7.3. For
Leo and pFor/SwTree-NT, the number of features is limited
by the number of headers within each container group (§5).
pFor/SwTree-NT can support a maximum of 15 features,
while Leo can support upto 10 features for k = 3, and 15 fea-
tures for k = 1. With Leo and pFor/SwTree-NT, the memory
requirements for the decision tree logic does not grow with
the number of features (§6). In contrast, the memory require-
ments of IIsy-NT grows exponentially with the number of
features (§3). In the rest of this section, we compare resource
requirements by keeping the number of features fixed with all
schemes. Appendix §A.3.1 analyzes the maximum tree depth
that can be supported as the number of features change. Fi-
nally, our classification accuracy experiments (§7.2) explore
different combinations of features and depth for each scheme,
and report the best operating point for that scheme.

Results with SRAM. Figure 1 1(a) presents results for classes
of the form (D, 2P F), which indicates that all trees of depth
D or lower must be supported. We varied D while keeping the
number of features fixed at 10. All schemes were constrained
to only using SRAM. First, pFor/SwTree-NT can only meet

Leo —A— Leo-NT —#— lIsy-NT = —e— pFor/SwTree-NT

D6
(truncated)

161

Infeasible

14
D6

12

101

Stages required

D4

&~ [e)] [oe]
f s s

103 104 105 105 107

SRAM entries reaquired
(a)

0+ T
10! 102

Leo —A— Leo-NT —#— lIsy-NT —e— pFor/SwTree-NT

D11

16 D14

Infeasible
D15

D14 /
(Leo-NT) £

D13
(Leo)

D10

Stages required

103 104 105

TCAM entries reauired
(b)

107

Figure 11: Table entries required to support a programmable class of complete decision trees using SRAM and TCAM. Designs
needing more than 12 stages are infeasible on a Tofino switch [7]. Note the logarithm scale on x-axis.

the specification upto D = 5, and it is unable to support depth
6 trees. This is because the approach is constrained by the
number of switch stages. Second, Leo is able to support trees
twice as deep as those supported by pFor/SwTree-NT, and
can support all depth 10 trees. Further it requires half as many
stages for the same depth. While the total memory require-
ment is higher, it is modest in an absolute sense, and this is
an acceptable trade-off. Third, the memory requirements with
IIsy-NT [24,26] are several orders of magnitude more than
Leo. Supporting all depth 5 trees requires over 1.9M entries,
which is 10000 more than Leo (which requires 182 entries).
IIsy is unable to support trees greater than depth 5 owing to
the memory requirement. Finally, although Leo uses twice as
much SRAM than Leo-NT, the table sizes are still small, and
there is no impact on the classes of trees supported.

Results with TCAM. Figure 11(b) presents similar results
as above but now implementing all tables in all schemes
with TCAM. First, all schemes can support larger trees with
TCAM, but Leo still outperforms — pFor/SwTree and IIsy
can support depth 10 trees, but Leo can support any depth
13 tree. Second, for the same specification, Leo requires half
as many stages as pFor/SwTree, and an order of magnitude
fewer TCAM entries (for depth 10, the requirement with IIsy
is 18x that of Leo). Third, the higher memory requirements
of Leo limit it to depth 13 trees (versus depth 14 for Leo-NT),
owing to both lower TCAM memory available per stage, and
the larger memory requirements at higher tree depth. However,
Leo can still support larger trees with a bound on the number
of leaves with negligible impact on classification accuracy as
we will see later. Finally, Leo and pFor/SwTree-NT require

fewer stages for the same depth with TCAM relative to SRAM.

This is because of our optimizations with TCAMs to avoid an

10

extra computation stage for each layer (§5)

Exploiting bounds on the number of leaves. While the
earlier results indicate Leo (resp. Leo-NT) can support all
complete trees upto depth 13 (resp. 14), we next explore
specifications that bound both the number of leaves and tree
depth. This is beneficial given our analysis in Figure | which
shows that accuracy greatly improves with tree depth, but
is less sensitive to the number of leaves for a given depth.
Figure 13 shows the maximum number of leaves that can
be supported for different tree depths, and indicates that Leo
(and Leo-NT) can support deeper trees given a constraint on
the number of leaves. For instance, Leo can support depth
22 trees given a specification that the tree has at most 1024
leaves This is because Leo provisions fewer TCAM entries
in each layer exploiting knowledge of the leaf constraint. The
maximum number of leaves reduces with tree depth because
for larger depths there are fewer available stages (and hence
TCAM table space). In contrast, IIsy, and pFor/SwIree can
support at most depth 10 trees as discussed earlier. While
Leo allows fewer leaves than Leo-NT (see Appendix for more
discussion), the number of leaves is still high and there is
practically no impact on classification accuracy (§7.2).

7.2 Classification Accuracy on Real Datasets

Intrusion detection datasets. We used two publicly available
and widely used intrusion detection datasets: (i) CICIDS-
2017 (CICIDS): The dataset [17] consists of multiple attack
classes along with a single benign class. Since some attack
classes have very little data, we merge the 9 least populated at-
tack classes into a single class resulting in a total of 7 classes.
The dataset consists of 78 flow and packet level features. How-
ever, not all of these can be deployed on the hardware (e.g.
means and percentiles that require division, etc.). Thus, we

1.0

/

.. B B A A A
§ 0.8 R .. /. /. B
Ry
el 28 m Jd
‘A B B B B

pFor/SwTree-NT IlIsy-NT Leo-NT Control Plane

e o o
. 7 7
17 7 a e a

90 T : . T
pFor/SwTree-NT llsy-NT Leo Leo-NT Control Plane

(b)

Figure 12: Classification accuracy of the best performing, hardware-supported tree class for each scheme when implemented
using (a) SRAM and (b) TCAM. We assume all switch stages are available for the decision tree logic, and do not account
for memory requirements of stateful flow features for all schemes (we explore impact of flow state in 7.3.) The control plane
implementation is independent of SRAM and TCAM, and hence the accuracy is the same across figures (a) and (b) — Note the

y-axis has different scale in figures (a) and (b).

Leo

" 15000+ —— Leo-NT

9]
%10000‘

et

5000 L= 2048

0 Y

20 21 22

Figure 13: Leo can support tree classes beyond depth 13 with
a bound on the number of leaves.

only select 42 switch-compatible features for our evaluation;
and (ii) UNSW-NB15(NB15): This dataset [13] also consists
of real user traffic interspersed with generated attacks. We
use this dataset to classify traffic as malicious or benign. It
contains 49 flow and packet level features, out of which we
use 22 switch-compatible features.

Training. We use Python3’s scikitlearn library to train the
decision trees. The CART algorithm was used along with the
Shannon entropy loss function. We enabled class weighting
to alleviate issues due to imbalance. To find the best set of
features for an experiment, we use the Mean Decrease in
Impurity (MDI) score and eliminate one least-scored feature
recursively until we arrive at the target number of features
for an experiment. We experimented with Permutation Impor-
tance score and found no difference in accuracy compared to
MDI. 75% of the dataset was used for training, and 25% for
testing. All results are reported on the test set.

Metrics. We report the average of the per class F1 scores
which ensures the accuracy for all classes including those
with relatively low samples is considered. Given the highly
imbalanced nature of the dataset (most samples are benign),
alternative metrics that weigh by the number of samples pro-
vide a highly optimistic view of accuracy for all schemes. For

11

each scheme, we evaluated a range of (D, L, F) tree classes
that are supported on the switch, we then selected the best per-
forming class for each scheme and present them in Figure 12.
Our comparisons include an idealized scheme (Control Plane)
which gives an upper bound on the accuracy of the decision
tree model for each dataset (by allowing large trees that use
all dataset features).

Results. For CICIDS and SRAM, Leo outperforms both
IIsy-NT and pFor/SwTree-NT achieving an average F1
score of 0.94 which is much higher than the 0.75 of IIsy-NT
and 0.67 of pFor/SwTree-NT. With TCAM, IIsy-NT and
pFor/SwTree-NT support depth 10 trees and thus improve to
a 0.94 F1 score, while Leo outperforms both by managing a
0.98, due to its ability to support a depth 22 tree.

For the NB15 dataset, using SRAM Leo outperforms both
pFor/SwTree-NT and IIsy-NT by achieving an average F1
score of 0.92(versus 0.88). Using TCAM, Leo continues to
outperform the others while managing to achieve identical
accuracy as the control plane. Notice, that all schemes perform
better with the NB15 dataset because of the smaller number of
classes. The Appendix presents a breakdown of the F1 score
per class for all schemes. We also show results for the NB15
dataset with multiple classes. Our results show similar trends
— Leo outperforms IIsy-NT and pFor/SwTree-NT for each
class while performing close to the control plane solution.

7.3 Number of concurrent flows supported

Stateful per-flow features must fit into the memory budget of
the switch (§5). Supporting more flows reduces the bits per
flow (and which features can be supported), thereby impacting
classification accuracy. We explore these issues next.

Methodology and metrics. We experimentally determine the
maximum switch memory that can be configured as regis-
ters. Given a target M on the number of flows, we determine
the budget for per-flow state, and then find different config-

=
<)
=
o

F1 score
o o
o
F1 score
o o
o ©

o
N
o
N

CICIDS-2017
UNSW-NB15

CICIDS-2017
UNSW-NB15

0

0.6 T T T
262K 524K 1.04M 2.1M
(144) (112) (56) (24)
Num. flows // Max. bits per flow

(b)

.6 T T T
262K 524K 1.04M 2.1M

(144) (112) (56) (24)

Num. flows // Max. bits per flow

(a)

Figure 14: Impact of per-flow state on Leo classification ac-
curacy using (a) SRAM and (b) TCAM.

urations of stateful features that can meet the budget. For
example, a 24-bit budget can be configured as (16-bit * 1 +
8-bit * 1) OR (16-bit * 0 + 8-bit * 3). For each valid configu-
ration, we rank features by their MDI feature importance, and
greedily select the top features that fit the configuration. We
compute the F1 score achieved for each valid configuration
and report the F1 score of the best performing configuration.
Results. Figure 14(a) and 14(b) summarize how classifica-
tion accuracy varies with the number of flows for SRAM and
TCAM respectively. The X-Axis corresponds to the number
of flows to be supported, and the corresponding budget on
per-flow state (e.g., supporting 1.04 M flows imposes a bud-
get of 56 bits per flow). The leftmost points match accuracy
levels shown in Figures 12(a) and 12(b). Leo can support
1.04M concurrent flows with modest degradation, with aver-
age F1 score decreasing from 0.94 to 0.86 for SRAM, and
decreasing from 0.98 to 0.92 for TCAM and CICIDS. For
NB15, F1 scores decrease from 0.92 to 0.91 for SRAM, and
are practically unchanged for TCAM. This is because we
use the dataset for binary classification of traffic as benign
or malicious, an easier classification problem. Table 2 in
the Appendix summarizes the features used when supporting
1.04M flows for all 4 configurations.

7.4 Leo vs. Control Plane

To evaluate the benefits of implementing decision trees in
the data plane versus control plane, we deploy Leo on an
Intel Tofino [2] EdgeCore Wedge-100BF-32x [15] switch.
We train decision trees of varying depths using the CICIDS
dataset allowing the control plane to utilize the complete set
of 78 features while restricting Leo to 10. We use tcpreplay
to replay packets from select flows from the dataset to ensure
similar characteristics of the original traffic are maintained.
Besides classification, the switch also implements L2 forward-
ing. We capture timestamps at the switch ingress and egress
to accurately measure the processing delay.

The control plane experiment involves forwarding the
packet to the switch CPU for inference with no other function-
ality in the data plane (besides IPv4 match-based forwarding)
while the data plane experiment uses Leo.

12

We find (see Figure 23 in the Appendix) that Leo is on
average 500 faster than the control plane implementation of
the same decision tree class. Leo takes about 500 nanoseconds
to completely apply a 1024-leaf tree for inference to every
packet. This re-asserts the point that a control plane inference
scheme is not capable of per-packet classification at multi-
terabit line rates. On the other hand, Leo can not only do per-
packet classification, but also achieve accuracy comparable
to an idealized control plane scheme for real datasets (§7.2).

8 Related Work

Beyond [5,12,22,26]. N3IC [18] implements a binary neural
network in the NICs with the goal of accelerating traffic anal-
ysis at the edge rather than per-packet in-network traffic anal-
ysis. Taurus [20] extends PISA pipelines with a new hardware
module implementing a map-reduce abstraction to run neural
networks. Unlike Taurus, Leo focuses on efficiently map-
ping ML inference to existing PISA pipelines, thus enabling
data plane ML inference on commercially available hardware.
Given training data, a recent work, Homonculus [21], trains
an ML model that achieves a given accuracy while meeting
the constraints of a switch. Neither Taurus nor Homoncu-
lus support runtime programmability. In contrast, our focus
is on runtime programmability, and provisioning sufficient
resources so all models in a given class can be supported. Re-
cent work [23] explores support for runtime programmability
for a general class of packet processing programs. In contrast,
we only focus on providing runtime programmability for ML
inference programs, without hardware changes.

ATP [11] and SwitchML [16] do in-network aggregation
in the data plane to accelerate ML training. In contrast, Leo
focuses only on ML inference in the data plane, and assumes
that ML training is done offline using standard techniques.
Finally, there have also been recent works that use a hybrid
of control and data plane for traffic analysis. FastFE [1] and
DAD [14] both implement ML inference in the control plane
and extract feature values in the data plane. As shown in §7.4,
such an approach cannot do per-packet traffic analysis.

9 Conclusion

We have presented Leo, a system for online decision tree
classification in the data plane. Given a specification of a
class of trees. Leo supports any tree in that class at run-
time. Leo reduces resource requirements for a given tree
through sub-tree multiplexing, and supports decision trees
to be changed at runtime by allowing features and constraints
to be re-programmed. Leo support trees with 2x the depth
of prior data plane solutions, resulting in much better clas-
sification accuracies comparable to a control plane solution.
Evaluations on a real programmable switch testbed show clas-
sification latencies with Leo are 500 lower than a control
plane approach. Overall, the results show Leo is a viable
approach to support packet classification in the data plane.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Jiasong Bai, Menghao Zhang, Guanyu Li, Chang Liu,
Mingwei Xu, and Hongxin Hu. FastFE: Accelerat-
ing ML-Based Traffic Analysis with Programmable
Switches. In Proceedings of the Workshop on Secure
Programmable Network Infrastructure (SPIN), 2020.

Intel Barefoot Networks. P4-16 Intel Tofino
Native Architecture. https://github.com/
barefootnetworks/Open-Tofino/blob/master/
PUBLIC_Tofino-Native-Arch.pdf. Accessed:
05/04/2023.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming Protocol-Independent
Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87-95, jul 2014.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hard-
ware for SDN. SIGCOMM Comput. Commun. Rev.,
43(4):99-110, aug 2013.

Coralie Busse-Grawitz, Roland Meier, Alexander Diet-
miiller, Tobias Biihler, and Laurent Vanbever. pForest:
In-Network Inference with Random Forests. https:
//arxiv.org/abs/1909.05680,2019.

The P4 Language Consortium. P4-16 Language Specifi-
cation. https://p4.org/pd-spec/docs/P4-16-v1.
2.2.pdf. Accessed: 05/04/2023.

Vladimir Gurevich and Andy Fingerhut. P4-16
Programming for Intel® Tofino™ using Intel P4
Studio™. Open Network Foundation. https://
opennetworking.org/wp-content/uploads/2021/
05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf.
Accessed: 05/04/2023.

Arthur Selle Jacobs, Ricardo José Pfitscher,
Ronaldo Alves Ferreira, and Lisandro Zambenedetti
Granville. Refining Network Intents for Self-Driving
Networks. In Proceedings of the Afternoon Workshop
on Self-Driving Networks, Self DN 2018, page 15-21,
New York, NY, USA, 2018. Association for Computing
Machinery.

Patrick Kalmbach, Johannes Zerwas, Péter Babarczi,
Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid.
Empowering Self-Driving Networks. In Proceedings
of the Afternoon Workshop on Self-Driving Networks,
SelfDN 2018, page 8—14, New York, NY, USA, 2018.
Association for Computing Machinery.

13

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk,
Arsany Basta, Martin Reisslein, and Stefan Schmid.
Adaptable and Data-Driven Softwarized Networks: Re-
view, Opportunities, and Challenges. Proceedings of the
IEEE, 107(4):711-731, 2019.

ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network Aggregation for Multi-tenant Learn-
ing. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 741-761.
USENIX Association, April 2021.

Jong-Hyouk Lee and Kamal Singh. SwitchTree: In-
network Computing and Traffic Analyses with Random
Forests. Neural Computing and Applications, 11 2020.

Nour Moustafa and Jill Slay. UNSW-NB15: a com-
prehensive data set for network intrusion detection sys-
tems (UNSW-NBI15 network data set). In 2015 Military
Communications and Information Systems Conference
(MilCIS), pages 1-6, 2015.

Francesco Musumeci, Valentina Ionata, Francesco
Paolucci, Filippo Cugini, and Massimo Tornatore.
Machine-learning-assisted DDoS attack detection with
P4 language. In ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020.

EdgeCore Networks. EdgeCore Wedge 100BF-
32X. https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&1d=335. Accessed:
05/04/2023.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling Distributed Machine Learning with
In-Network Aggregation. In /8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 785-808. USENIX Association, April
2021.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghor-
bani. Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization. pages
108-116, 01 2018.

Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Gianni Antichi, Paolo Costa,
Hamed Haddadi, and Roberto Bifulco. Re-architecting
Traffic Analysis with Neural Network Interface Cards.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), 2022.

Arunan Sivanathan, Hassan Habibi Gharakheili, Franco
Loi, Adam Radford, Chamith Wijenayake, Arun Vish-
wanath, and Vijay Sivaraman. Classifying IoT Devices

https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://arxiv.org/abs/1909.05680
https://arxiv.org/abs/1909.05680
https://p4.org/p4-spec/docs/P4-16-v1.2.2.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.2.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335

[20]

[21]

[22]

[23]

[24]

[25]

[26]

in Smart Environments Using Network Traffic Char-
acteristics. IEEE Transactions on Mobile Computing,
18(8):1745-1759, 2019.

Tushar Swamy, Alexander Rucker, Muhammad Shahbaz,
Ishan Gaur, and Kunle Olukotun. Taurus: A Data Plane
Architecture for per-Packet ML. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 22, page 1099-1114, New York, NY,
USA, 2022. Association for Computing Machinery.

Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muham-
mad Shahbaz, and Kunle Olukotun. Homunculus: Auto-
Generating Efficient Data-Plane ML Pipelines for Dat-
acenter Networks. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 3, ASPLOS 2023, page 329-342, New York, NY,
USA, 2023. Association for Computing Machinery.

Bruno Missi Xavier, Rafael Silva Guimaraes, Giovanni
Comarela, and Magnos Martinello. Programmable
Switches for in-Networking Classification. In /EEE
INFOCOM 2021 - IEEE Conference on Computer Com-
munications, pages 1-10, 2021.

Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo,
Yonatan Piasetzky, Arvind Krishnamurthy, and Ang
Chen. Runtime Programmable Switches. In 79th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 651-665, Renton, WA,
April 2022. USENIX Association.

Zhaoqi Xiong and Noa Zilberman. Do Switches Dream
of Machine Learning? Toward In-Network Classifica-
tion. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets * 19, page 25-33, New York,
NY, USA, 2019. Association for Computing Machinery.

Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson,
Dan R. K. Ports, Amedeo Sapio, Marco Canini, and
Nam Sung Kim. Unlocking the Power of Inline Floating-
Point Operations on Programmable Switches. In 79th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 683—700, Renton, WA,
April 2022. USENIX Association.

Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim
Kaupmees, Riyad Bensoussane, Antoine Bernabeu,
Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
IIsy: Practical In-Network Classification. https://
arxiv.org/abs/2205.08243,2022.

14

A Appendix
A.1 IIsy with SRAM.

We present a detailed explanation of Equation | elaborating
on how default rules are handled. We obtain conservative
lower bounds on the size of feature tables and combination
tables. To obtain a lower bound on requirements, it suffices
to construct a single tree in the class of trees that are to be
supported that needs a given amount of memory. Since the
combination table, and each of the feature tables are provi-
sioned independently, we present below separate example
trees that trigger a minimum memory requirement for each of
the tables.

Feature Table. Consider a decision tree of depth D based
on only one of the N features, which could take values in the
range [0, K]. For an SRAM, IIsy must explicitly enumerate
every value, and map the value to a code word which requires
a table of size K. Some savings could be obtained with a
default rule since the values in the largest interval need not
be explicitly enumerated. A complete tree with depth D has
I =2P — 1 internal nodes, and partitions the possible feature
values into / + 1 intervals. Consider a tree where all intervals
have the same length [HLJ The number of SRAM rules re-
quired in the feature table for this tree is K — [”Ll] indicating
at least so much memory is required.

Combination Table. To derive conservative bounds on the
size of the combination table, consider a complete decision
tree of depth D where each feature appears in the same number
of decision tree nodes. Let I = 2P — 1 denote the number
of internal nodes. The total number of decision nodes that
involve each feature is ﬁ, requiring % + 1 codewords per
feature. Since the combination table includes combinations of
all possible codewords associated with each feature, the total
size is (4 -+ 1)V which is exponential in N. A default rule
could take away entries corresponding to one leaf. Since there
are 2P leaves in a depth D tree, taking away combinations
corresponding to one of the leaves will still require at least a
fraction 2[2)51 of the remaining combinations. Thus, the total
number of entries in the combination table is at least:

2b_1 2P
— %

55 (+1)N

3

Equation 1 follows by combining the two terms.

A2 IIsy with TCAM
A.2.1 Proof sketch of Proposition 2

We complete the discussion of the proof sketch for the general
case. The proof is based on a family of decision trees shown
in Figure 15 for the general case with N features (F; ... Fy)
with each feature having values ranging from 1 ... K.

As discussed earlier, the intuition behind the tree construc-
tion is as follows. First, the decision tree nodes has leaves for
each value of a feature F; when all other features are at their

https://arxiv.org/abs/2205.08243
https://arxiv.org/abs/2205.08243

False

q,——

Ve Recurswely Y

-

t reé)ea::for N
=S ol

A!Ieast1
- butnot all of
L Fy oy ==

Figure 15: A decision tree that requires exponential TCAM
entries with IIsy.

maximum value K. This forces IIsy to use a distinct code
word for each value of every feature. Next, the decision tree
has leaf nodes which correspond to regions where some of
the features can take multiple possible values. These nodes
will require a large number of code word combinations with
IIsy since it is forced to use a distinct code word for each
feature value.

In more detail, consider the left sub-tree of the root (feature
F; < K). We have three cases based on other features:

(i) All other features are K (Blue sub-cloud). Here, a dif-
ferent action is chosen depending on the value of Fj, forcing
IIsy to pick a different codeword for each value of F'1.

(i1) All other features are < K (left most node Ay_1). Al-
though a single decision tree node, IIsy is forced to represent
this using (K — 1)V distinct combinations because each value
of each feature is associated with a different codeword.

(iii) All other nodes which together capture the case that at
least one, but not all of F>, F; ... Fy are K. An action distinct
from the above is chosen for these nodes. Consider one such
node where Fy = K and all other features are < K. Encoding
this alone will require (K — 1)¥~! combinations.

While a default rule can be used to cover the combinations
in either Case (ii) or Case (iii), both cases cannot be covered.
Thus, T1sy requires at least (K — 1)V~ ! distinct combinations.
With a TCAM, this would require at least m™~! rules, where
m = log(K — 1), which again grows exponentially with N.

It remains to estimate the total number of leaves in the tree.
The left sub-tree has K 4+ 2(N — 2) leaf nodes (the three cases
above are associated with K — 1 leaves, 1 leaf, and N —2 +
N — 2 leaves respectively), The right sub-tree expands in a
recursive fashion with the same structure on (N-1) features
[i.e., the features F2... Fy]. Setting and solving a recurrence,
the total number of leaf nodes is N> + N % (K — 3) +2. This
leads to the proposition.

15

A.2.2 Estimating TCAM memory requirements

We present models to obtain conservative lower bounds on
the size of feature tables and combination tables when TCAM
is used with IIsy. To obtain a lower bound on requirements,
it suffices to construct a single tree in the class of trees that
are to be supported that needs a given amount of memory.
Since the combination table, and each of the feature tables
are provisioned independently, we present below separate
example trees that trigger a minimum memory requirement
for each of the tables.

Estimating feature table size. Consider again a decision
tree where all nodes correspond to the same feature which
takes values in the range [0, K]. With a TCAM, the feature
table need not explicitly enumerate all possible feature val-
ues. For instance, an interval [1, 15] can be represented with 4
TCAM entries. In general, any interval requires at most log K
entries, and there are I + 1 intervals, where [is the number of
internal tree nodes. While (/4 1) * logK serves as an upper
bound on the entries needed by the feature table, this is not
a conservative lower bound since not all intervals may need
logK entries (e.g., the interval [0, 15] requires 1 TCAM rule,
while [1, 15] requires 4). We have devised a simple algorith-
mic procedure, which partitions the space [0,K] into I+ 1
intervals so the total number of TCAM rules to encode all
intervals is maximized. The algorithm works by iteratively
partitioning each interval into two such that the total rules
across the two intervals is maximized. The iterations proceed
until the number of internal nodes matches the desired target
or when no further splits are possible. While we do not have
a simple closed form expression for this estimate, we denote
the total feature table rules required using this procedure as
TCAMFTRules(K,I). This is a minimum size IIsy needs to
provision.

For example, for the numeric range [0,31] using 4 internal
decision nodes, the recursive split is as follows:

0,31]

[0,0],[1,31]
[0,0],[1,16],[17,31]
[0,0],[1,8],[9,16],[17,31]
(0,0],[1,8],[9,16],[17,24],[24,31]

This example would allocate 1 +4+4+44-3 =16 TCAM
rules per feature table.

Combination table rules estimation. We use the number
of table rules that IIsy requires for the special tree construc-
tion (Figure 15) as a conservative lower bound on the size of
the combination table. Below, we analyze the rules required
for this tree.

Let Ty denote the total number of combinations that IIsy
must handle in its combination table for this tree. Then, we

set up the following recursion. Let K1 denote K — 1. Then,

N=1
“)

The first term models leaves including (i) the leftmost Ay_
node where all features are < K; and the right child of F;, < K
nodes in the pink cloud. These nodes correspond to the case
the first n features are < K — 1, and the feature n+1 is K.
The second term models leaves which are left sub-children of
nodes of the form F,, < K in the pink cloud. These correspond
tothecase F1 < K, F,...F,_ | ==K, and F, < K. The third
term models leaves where all features except F] are K, with
one leaf for F| taking each of the valuesin1...K —1.

Note, that this expression represents the total number of
combinations i.e. the resource requirement for this example
under SRAM. With TCAM, the combinations correspond-
ing to the same leaf are collapsed using wildcards. Thus we
rewrite the expression as:

. { N (K1 + YN (K12 4+K1+Ty ., N> 1
N:
K1

T — YN 1K)+ XN g (K1) +K1+Ty-1 N> 1

K1 N=1

®)

Solving the recurrence gives the total number of rules that
must be provisioned.

A.3 Evaluation
A.3.1 Impact of number of features

Figure 11(a) and Figure 11(b) had shown the resource usage
for different schemes with 10 features. We next vary the num-
ber of features, and show the maximum tree depth that can
be supported with different schemes. Results are presented in
Figure 17 for both SRAM and TCAM.

We make several points. First, Leo can support up to 10
features for k = 3, and 15 features for k = 1 (§5). Since the
memory requirements for implementing the decision tree
logic do not grow with the number of features supported, the
choice of k determines the maximum depth. While we have
not explored, other optimizations are possible with Leo—e.g.,
by alternating layers with k = 1 and k = 3, there is potential
to achieve lower depth when the number of features is higher
than 10. pFor/SwTree-NT can support up to 15 features, and
the maximum depth is the same across features. In contrast,
while IIsy-NT is not subject to the constraint on header fields
(§5) as it does not perform ALU operations, its memory re-
quirements do grow exponentially with the number of fea-
tures. Consequently, the tree depth that it can support becomes
smaller as the number of features is increased. Leo typically
supports higher depth trees than IIsy-NT with SRAM, and
comparable or higher depth trees with TCAM up to about
15 features. Beyond 15 features, and if TCAMs were used,
IIsy-NT may be viable, while Leo and pFor/SwTree-NT are

16

1

A<7] 4

o Lf6<3 1

ID:10 [f2 <2 |D=11
0 1
[t4<3] |t 3<7

0
o 1 o [| P9 4

D
of| [o2lce] [o¢][ce] o8 [[or [os] [es]

ID:01 (f3<5
0 1

[18<4] [f0<6]

=)

Q
©
(9]
B
=)
<)

f1 O1 4 02 6 03 Stage 1
ALU ALU ALU
1 7 3
01|02 | 03| D fg_’\L/JI f
f2—
O T I N = @
o | 1 % | 01 T
1«0 [10]s¥ 6
U
2—x
1 * 1| 1| 5] 7
! T
1
Mg T —1
L by IR b 1 Tstages
Prev Prev Prev Prev
D E1|E2 | E3| ID D E1|E2 |E3| ID D E1|E2|E3| ID D E1|E2|E3| ID
00 [* | * | x| C1 01 |0 |0 |=x]|C2 10 |0 | 0| *|C6 M1]0|*x|*x |C9
01 |0 |1 |=*]|C3 10 |0 | 1| *|C7 " 1% | 0|C10
01 1% |0]|C4 10 |1]| % | = |C8 1 1| 1]|C11
o1 |1]*|1]|cs

Figure 16: Illustrating the inputs of the mapped representative
decision tree from Figure 9 can be configured by the control
plane at runtime to implement a different decision tree within
the same class.

not — however, in our accuracy experiments, Leo already per-
forms very well with TCAM. Further, per-flow state require-
ments are the likely bottleneck (§7.3) before hitting 15 fea-
tures. Finally, IIsy-NT does not handle transients, and the
additional memory overheads if transients were addressed
may further limit its performance.

Figure 18 presents a sweep of classification accuracy
with IIsy-NT for different combinations of (|F|,D) for the
CICIDS dataset for SRAM and TCAM respectively. Here |F|
is the number of features supported, and D is the maximum
depth achievable for |F|. For SRAM, the best accuracy is
obtained with 6 features (depth 6), while with TCAM, the
best accuracy is obtained with 14 features (depth 10). These
values are reported in Figure 12 in the main text.

A.3.2 Breakdown of F1 scores per class

CICIDS dataset. Figure 19(a) presents a breakdown of F1
score per class for different schemes for the CICIDS dataset
for SRAM. For all classes, Leo outperforms IIsy-NT and
pFor/SwTree-NT. While Leo sees an F1 score higher than
0.95 for all classes besides OtherMalicious, IIsy-NT sees
F1 scores falling to 0.24 and 0.28 for two classes while
pFor/SwTree-NT sees even lower minimum F1 scores. The
performance is particularly poor for the OtherMalicious class
— this is because the tree depths supported by IIsy-NT and

/N Leo e (Isy-NT zmm pFor/SwTree-NT

/N Leo e lsy-NT mm pFor/SwTree-NT

Depth

Features Features Features Features Features Features

10 14

(a)

Depth

Features Features Features Features Features Features
10 14

(b)

Figure 17: Maximum tree depth with different schemes as number of features is varied using (a) SRAM and (b) TCAM.

0.75 091
0.70
o g 0.8
S 0.65
? @ 0.7
~ 0.60 —
w * 0.6
0.55
0.5
D8 D7 D6 D5 D4 D14 D13 D12 D11 D10
F3 F4 F6 F10 F1l4 F2 F4 F5 F8 Fl4
Depth // Num. Features Depth // Num. Features
(@) (b)

Figure 18: F1 accuracies for different settings with IIsy-NT
for (a) SRAM; and (b) TCAM for CICIDS. The best result is
shown in Figure 12

pFor/SwTree-NT are too small to allow effective categoriza-
tion of traffic into this class. Leo is close to the Control Plane
solution for all but the OtherMalicious class which tends to
be challenging because of a mix of different attack patterns —
but even here, Leo significantly outperforms other schemes.
Figure 19(b) presents a similar breakdown with TCAM
implementations, and Figure 22 presents a zoomed in version.
Although all schemes perform much better with TCAM (as
the trees supported are larger), Leo still performs better than
IIsy-NT and pFor/SwTree-NT, while performing close to
Control Plane. The benefits are particularly strong for the
OtherMalicious category.
NB15 dataset (binary classification) Figures 20(a) and
20(b) show a similar breakdown for UNSW-NB15 for SRAM
and TCAM respectively. All schemes perform better since this
experiment focuses on a binary classification (and much better
with TCAM since they all achieve larger tree depths) — how-
ever, Leo continues to perform better than pFor/SwTree-NT
and IIsy-NT, while performing close to Control Plane.
NB15 dataset (multi-class classification) We have also

17

taken the UNSW-NB15 dataset, and trained all approaches for
a classification problem involving multiple classes. Figure 21
present a breakdown of the F1 scores per class. Once again,
Leo performs better than IIsy-NT and pFor/SwTree-NT
(with the benefits stronger in the SRAM case), and performs
close to Control Plane.

A.3.3 Other Results/Discussion

Features used in classification. Table 2 presents a set of
features used in classification. To implement stateful features,
and fit them into 8 and 16 bit budgets. we employed discretiza-
tion. Packet length metrics were divided by 64 (using bit
shifts) which allowed for sizes between 64 bytes and 16K to
be represented with 8 bits. Flow size metrics were also divided
by 64. Using 16 bits, this lets us represent flow sizes between
64 bytes and 4 MB. Inter Arrival Time is represented as two
8 bit values per flow, one to track the last timestamp, and the
other to keep track of the running minimum. The timestamp
itself involves extracting an appropriate 8 bits based on the
granularity of measurements. Taking the last 8 bits (bits O to
7) would capture timestamps up to 255 nanonseconds (ns)
in 1 ns granularity. However, extracting a different set of 8
bits allows a different granularity — e.g., extracting bits 2 to
9 would capture timestamps from 4 ns to 1024 ns in 4 ns
granularities.

Comparing the number of leaves with Leo and Leo—-NT
(Figure 13). The impact on the number of leaves is initially
more than a factor of 2 before converging to exactly 2. This
is because, where the leaf constraint is higher, the tables han-
dling the deeper levels span multiple stages (Leo-NT). Dou-
bling these tables for Leo would require more stages than
what are available. However, as the leaf constraint reduces,
the tables shrink, freeing up more stages and thus allowing
the double-sized tables to grow.

Benign
DDoS

DoS_GoldenEye
DoS_Hulk

FTPPatator
OtherMalicious

PortScan

1.0+

F1 score
o©
o

o
IS

0.21

0.0

pFor/SV\;Tree—NT

llsy-NT

Leo

(a)

Controvl Plane

PortScan

Benign DoS_GoldenEye FTPPatator
DDoS DoS_Hulk OtherMalicious
1.01
0.81
(]
5 0.61
[v]
]
—
= 0.41
0.24
0.0 — T T :
pFor/SwTree-NT lIsy-NT Leo Control Plane

(b)

Figure 19: CICIDS-2017 classification accuracy broken down per class for (a) SRAM and (b) TCAM.

Benign

Malicious

1.000
0.975 1
0.950 1

0.925 1

F1 score
o
(e}
o
o

0.875

0.850

0.825

0.800
pFor/SwTree-NT

Figure 20: UNSW-NB15 classification accuracy broken down per class in a benign vs malicious scenario with (a) SRAM and (b)

TCAM.

Dos
Exploits

llsy-NT

Fuzzers
Generic

Leo

(a)

Benign
OtherMalicious

Controvl Plane

Reconnaissance

1.0

o
©
A

F1 score
o
o

o
IS

0.2

0.01

pFor/va}Tree—NT

lisy-NT

Leo

(@)

Control Plane

Ben

ign

Malicious

1.000
0.9754
0.9501
0.9254

0.900+1

F1 score

0.8751
0.8501

0.8251

0.800 —
pFor/SwTree-NT

DoS
Exploits

Fuzzers
Generic

lIsy-NT

Leo

(b)

Benign
OtherMalicious

Controvl Plane

Reconnaissance

1.0

o
©
A

F1 score
o
()]

o
N
f

0.2

0.01

pFor/S\A;Tree—NT

lIsy-NT

Leo

(b)

Control Plane

Figure 21: UNSW-NB15 classification accuracy broken down per class (for 7 classes) with (a) SRAM and (b) TCAM.

18

Benign
DDoS

DoS_GoldenEye
DoS_Hulk

FTPPatator
@ PortScan

1.0000 1
0.9975 1
0.99501 & P S

v 0.99251

[e]

O

® 0,9900 1

—

w
0.9875 1
0.9850

0.98251

0.9800 —
pFor/SwTree-NT

lisy-NT

Léo Controvl Plane

Figure 22: Zooming into the top 6 classes in figure 19(b).

Feature Name

CICIDS-2017 UNSW-NB15

SRAM TCAM SRAM TCAM

Destination Port
Forward TTL
Backward TTL

Stateless

Backward packet
length min.
Backward packet
length max.
Forward segment
size min.
Forward initial.
window advertisement

Stateful
8-bit

Forward flow size
Forward initial bytes
Backward initial bytes
Flow IAT min.
Backward IAT min.
(Dst. IP, Src. Port)
count
(Src. IP, Dst. Port)
count

Stateful
16-bit

Total (stateful)

Table 2: A breakdown of the features used for the 1.04M
flows data points in figure 14.

56

- & /

105 4
m
£
[}
IS
= . —=— Data plane
g 10% —e— Control plane
@
1}
(9]
e
o

103 4

Depth2 Depth4 Depth6 Depth8 Depth 10

Leaves 4 Leaves 16 Leaves 64 Leaves 258 eaves 1024

Figure 23: Average time to classify packets when routed
through the data plane versus via the control plane.

	Introduction
	Background and Motivation
	Design goals and prior work limitations
	Leo Design
	Abstraction
	Design Overview
	Decision Tree Node Multiplexing
	Sub-Tree Flattening and Multiplexing
	Runtime Programmability

	Leo Implementation
	Leo Analysis
	Evaluation
	Leo vs. Other Data plane Tree Schemes
	Classification Accuracy on Real Datasets
	Number of concurrent flows supported
	Leo vs. Control Plane

	Related Work
	Conclusion
	Appendix
	IIsy with SRAM.
	IIsy with TCAM
	Proof sketch of Proposition 2
	Estimating TCAM memory requirements

	Evaluation
	Impact of number of features
	Breakdown of F1 scores per class
	Other Results/Discussion

