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ABSTRACT

In this paper we present pFabric, a minimalistic datacenter trans-
port design that provides near theoretically optimal flow comple-
tion times even at the 99th percentile for short flows, while still
minimizing average flow completion time for long flows. More-
over, pFabric delivers this performance with a very simple design
that is based on a key conceptual insight: datacenter transport should
decouple flow scheduling from rate control. For flow scheduling,
packets carry a single priority number set independently by each
flow; switches have very small buffers and implement a very sim-
ple priority-based scheduling/dropping mechanism. Rate control is
also correspondingly simpler; flows start at line rate and throttle
back only under high and persistent packet loss. We provide the-
oretical intuition and show via extensive simulations that the com-
bination of these two simple mechanisms is sufficient to provide
near-optimal performance.

Categories and Subject Descriptors: C.2.1 [Computer-Communication
Networks]: Network Architecture and Design

General Terms: Design, Performance
Keywords: Datacenter network, Packet transport, Flow scheduling

1. INTRODUCTION

Datacenter workloads impose unique and stringent requirements
on the transport fabric. Interactive soft real-time workloads such
as the ones seen in search, social networking, and retail generate a
large number of small requests and responses across the datacen-
ter that are stitched together to perform a user-requested compu-
tation (e.g., delivering search results). These applications demand
low latency for each of the short request/response flows, since user-
perceived performance is dictated by how quickly responses to all
(or a large fraction of) the requests are collected and delivered back
to the user. However in currently deployed TCP-based fabrics,
the latency for these short flows is poor — flow completion times
(FCT) can be as high as tens of milliseconds while in theory these
flows could complete in 10-20 microseconds. The reason is that
these flows often get queued up behind bursts of packets from large
flows of co-existing workloads (such as backup, replication, data
mining, etc) which significantly increases their completion times.
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Motivated by this observation, recent research has proposed new
datacenter transport designs that, broadly speaking, use rate con-
trol to reduce FCT for short flows. One line of work [3, 4] im-
proves FCT by keeping queues near empty through a variety of
mechanisms (adaptive congestion control, ECN-based feedback,
pacing, etc) so that latency-sensitive flows see small buffers and
consequently small latencies. These implicit techniques generally
improve FCT for short flows but they can never precisely determine
the right flow rates to optimally schedule flows. A second line of
work [21, 14] explicitly computes and assigns rates from the net-
work to each flow in order to schedule the flows based on their sizes
or deadlines. This approach can potentially provide very good per-
formance, but it is rather complex and challenging to implement in
practice because accurately computing rates requires detailed flow
state at switches and also coordination among switches to identify
the bottleneck for each flow and avoid under-utilization (§2).

Our goal in this paper is to design the simplest possible datacen-
ter transport scheme that provides near-optimal flow completion
times, even at the 99" percentile for latency-sensitive short flows.
To this end, we present pFabric,! a minimalistic datacenter fabric
whose entire design consists of the following:

e End-hosts put a single number in the header of every packet
that encodes its priority (e.g., the flow’s remaining size, dead-
line). The priority is set independently by each flow and no
coordination is required across flows or hosts to compute it.

e Switches are simple; they have very small buffers (e.g., 36KB
per port in our evaluation) and decide which packets to ac-
cept into the buffer and which ones to schedule strictly ac-
cording to the packet’s priority number. When a new packet
arrives and the buffer is full, if the incoming packet has lower
priority than all buffered packets, it is dropped. Else, the low-
est priority packet in the buffer is dropped and replaced with
the incoming packet. When transmitting, the switch sends
the packet with the highest priority. Thus each switch oper-
ates independently in a greedy and local fashion.

e Rate control is minimal; all flows start at line-rate and throttle
their sending rate only if they see high and persistent loss.
Thus rate control is lazy and easy to implement.

pFabric thus requires no flow state or complex rate calculations at
the switches, no large switch buffers, no explicit network feedback,
and no sophisticated congestion control mechanisms at the end-
host. pFabric is a clean-slate design; it requires modifications both
at the switches and the end-hosts. We also present a preliminary de-
sign for deploying pFabric using existing switches, but a full design
for incremental deployment is beyond the scope of this paper.

! pFabric was first introduced in an earlier paper [5] which sketched
a preliminary design and initial simulation results.



The key conceptual insight behind our design is the observa-
tion that rate control is a poor and ineffective technique for flow
scheduling and the mechanisms for the two should be decoupled
and designed independently. In pFabric, the priority-based packet
scheduling and dropping mechanisms at each switch ensure that it
schedules flows in order of their priorities. Further, the local and
greedy decisions made by each switch lead to an approximately op-
timal flow scheduling decision across the entire fabric (§4.3). Once
flow scheduling is handled, rate control’s only goal is to avoid per-
sistently high packet drop rates. Hence, the rate control design gets
correspondingly simpler: start at line rate and throttle only if band-
width is being wasted due to excessive drops.

We evaluate our design with detailed packet-level simulations
in ns2 [15] using two widely used datacenter workloads: one that
mimics a web application workload [3] and one that mimics a typ-
ical data mining workload [12]. We compare pFabric with four
schemes: an ideal scheme which is theoretically the best one could
do, the state-of-the-art approach for datacenter transport, PDQ [14],
as well as DCTCP [3] and TCP. We find that:

e pFabric achieves near-optimal flow completion times. Fur-
ther, pFabric delivers this not just at the mean, but also at the
99" percentile for short flows at loads as high as 80% of the
network fabric capacity. pFabric reduces the FCT for short
flows compared to PDQ and DCTCP by more than 40% and
2.5-4x respectively at the mean, and more than 1.5-3x and
3—4x respectively at the 99th percentile.

e With deadline driven workloads, pFabric can support a much

larger number of flows with deadlines as well as much tighter

deadlines compared to PDQ. For instance, even for deadlines
where the slack with respect to the lowest possible FCT is
only 25%, pFabric meets the deadline for 99% of the flows

(about 2x more than PDQ) at 60% network load.

If the network designer has detailed knowledge of the flow

size distribution in advance and carefully tunes parameters

such as the flow size thresholds for each priority queue, min-
imum buffer per priority queue, etc pFabric can be approxi-
mated using existing priority queues in commodity switches.

This approach provides good performance too, but we find

that it is rather brittle and sensitive to several parameters that

change in a datacenter due to flow and user dynamics.

2. RELATED WORK

Motivated by the shortcomings of TCP, a number of new data-
center transport designs have been proposed in recent years. We
briefly contrast our work with the most relevant prior work. As
discussed earlier, broadly speaking, the previous efforts all use rate
control to reduce flow completion time.

Implicit rate control: DCTCP [3] and HULL [4] try to keep the
fabric queues small or empty by employing an adaptive congestion
control algorithm based on ECN and other mechanisms such as op-
erating the network at slightly less than 100% utilization, packet
pacing, etc to appropriately throttle long elephant flows. Conse-
quently, the latency-sensitive flows see small buffers and laten-
cies. D®TCP [18], a recently proposed extension to DCTCP, adds
deadline-awareness to DCTCP by modulating the window size based
on both deadline information and the extent of congestion. While
these schemes generally improve latency, they are fundamentally
constrained because they can never precisely estimate the right flow
rates to use so as to schedule flows to minimize FCT while ensur-
ing that the network is fully utilized. Furthermore, due to the bursty
nature of traffic, keeping network queues empty is challenging and
requires carefully designed rate control and hardware packet pacing
at the end-hosts and trading off network utilization [4].

Explicit rate control: Having recognized the above limitations,
subsequent work explicitly assigns a sending rate to each flow in
order to schedule flows based on some notion of urgency. The as-
signed rates are typically computed in the network based on flow
deadlines or their estimated completion time. D?® [21] first pro-
posed using deadline information in conjunction with explicit rate
control to associate rates to flows. D? allocates bandwidth on a
greedy first-come-first-served basis and does not allow preemptions
and has thus been shown to lead to sub-optimal flow scheduling
since a near-deadline flow can be blocked waiting for a far-deadline
flow that arrived earlier [14].

The most closely related work to pFabric and in fact the state-
of-the-art approach in this space is PDQ [14]. PDQ was the first to
point out that minimizing FCTs requires preemptive flow schedul-
ing and attempts to approximate the same ideal flow scheduling
algorithm as pFabric to minimize average FCT or missed deadlines
(83). However, like D®, PDQ’s flow scheduling mechanism is also
based on switches assigning rates to individual flows using explicit
rate control. In PDQ, on packet departure, the sender attaches a
scheduling header to the packet that contains several state variables
including the flow’s deadline, its expected transmission time, and
its current status such as its sending rate and round-trip-time. Each
switch then maintains this state for some number of outstanding
flows and uses it to decide how much bandwidth to allocate to each
flow and which flows to “pause”.

PDQ provides good performance but is quite challenging and
complex to implement in practice. Since the switches on a flow’s
path essentially need to agree on the rate that is to be assigned to
the flow, PDQ needs to pass around state regarding a flow’s rate and
which switch (if any) has paused the flow. Further, since switches
need to be aware of the active flows passing through them, in PDQ,
every flow must begin with a SYN and terminate with a FIN so
that switches can perform the required book-keeping. This one ex-
tra round-trip of latency on every flow may not be acceptable be-
cause most latency sensitive flows in datacenters are small enough
to complete in just one RTT.? Thus, requiring the network to ex-
plicitly and efficiently assign a rate to each flow requires detailed
flow state (size, deadline, desired rate, current rate, round-trip time,
etc) at switches and also coordination among switches to identify
the bottleneck for each flow and avoid under-utilization. This is a
major burden, both in terms of communication overhead and requi-
site state at switches, particularly in the highly dynamic datacenter
environment where flows arrive and depart at high rates and the
majority of flows last only a few RTTs [12, 7].

Load balancing: Finally, there are a number of proposals on effi-
cient load balancing techniques for datacenter fabrics [2, 17, 22].
Better load balancing of course reduces hotspots and thus helps re-
duce flow completion time, however the techniques and goals are
orthogonal and complementary to pFabric.

3. CONCEPTUAL MODEL

Our conceptual viewpoint in designing our flow scheduling tech-
nique is to abstract out the entire fabric as one giant switch. Specif-
ically, the datacenter fabric typically consists of two or three tiers
of switches in a Fat-tree or Clos topology [1, 12]. Instead of focus-
ing on the individual switches, the whole fabric can be abstracted
as one giant switch that interconnects the servers as shown in Fig-
ure 1. The ingress queues into the fabric switch are at the NICs and
the egress queues out of the fabric switch are at the last-hop TOR

In measurements from a production datacenter of a large cloud
provider, more than 50% of the flows were observed to be less than
1KB [12] — just a single packet.



Ingress Queues
(first hop at NICs)

Egress Queues
(last hop at TORs)

g

Figure 1: Conceptual view of flow scheduling over a datacenter
fabric.

Algorithm 1 Ideal flow scheduling algorithm.

Input: F = List of active flows with their ingress and egress port and re-
maining size. The algorithm is run each time F changes (a flow arrives
or departs).

Output: S = Set of flows to schedule (at this time).

I: S« 0

2: ingressBusy[l..N| <~ FALSE

3: egressBusy[l..N| + FALSE

4: for each flow f € F, in increasing order of remaining size do

5:  if ingressBusy|f.ingressPort]| == FALSE and
egressBusy(f.egressPort] == FALSE then

6: S.insert(f)

7. ingressBusy|f.ingressPort] < TRUE

8: egressBusy|f.egressPort] « TRUE

9:  endif

10: end for

11: return S.

switches. Each ingress port (source NIC) has some flows destined
to various egress ports. It is convenient to view these as organized
in virtual output queues at the ingress as shown in Figure 1. For ex-
ample, the red and blue flows at ingress 1 are destined to egress 1,
while the green flow is destined to egress 3.

In this context, transport over the datacenter fabric can essen-
tially be thought of as scheduling flows over the backplane of a
giant switch. The problem is to find the best schedule to mini-
mize the average FCT (or maximize the number of deadlines met).
Since datacenter workloads are dominated by large numbers of
short flows, minimizing average FCT will ensure that the short,
high-priority flows see very low latency.

Optimal flow scheduling: The optimal algorithm for minimizing
average FCT when scheduling over a single link is the Shortest Re-
maining Processing Time (SRPT) policy which always schedules
the flow that has the least work remaining. However, we are not
scheduling over a single link but rather over an entire fabric with
a set of links connecting the ingress and egress queues. Unfortu-
nately, a simple universally optimal policy does not exist for simul-
taneously scheduling multiple links. In fact, even under the simpli-
fying assumption that the fabric core can sustain 100% throughput
and that only the ingress and egress access links are potential bot-
tlenecks, the scheduling problem for minimizing the average FCT
is equivalent to the NP-hard sum-multicoloring problem [9]. For-
tunately, a simple greedy algorithm is theoretically guaranteed to
provide near-ideal performance. This Ideal algorithm schedules
flows across the fabric in non-decreasing order of the remaining
flow size and in a maximal manner such that at any time a flow is
blocked if and only if either its ingress port or its egress port is busy
serving a different flow with less data remaining. The pseudo code
is provided in Algorithm 1. This algorithm has been theoretically
proven to provide at least a 2-approximation to the optimal average

FCT [9]. In practice we find that the actual performance is even
closer to optimal (§5). The takeaway is that the greedy scheduler in
Algorithm 1 that prioritizes small flows over large flows end-to-end
across the fabric can provide near-ideal average FCT.

It is important to note that the Ideal algorithm is not plagued
by the inefficiencies that inevitably occur in an actual datacenter
transport design. It does not have rate control dynamics, buffering
(and its associate delays), packet drops, retransmissions, or ineffi-
ciency due to imperfect load-balancing. It only captures one thing:
the (best-case) delays associated with flows contending for band-
width at the ingress and egress fabric ports. Consequently, the per-
formance of this algorithm for a given workload serves as bench-
mark to evaluate any scheme that aims to minimize flow completion
times. The key contribution of this paper is to show that a very sim-
ple distributed transport design can approximate the performance
of the Ideal algorithm with remarkable fidelity.

Remark 1. For simplicity, the above discussion assumed that all
the edge links run at the same speed, though the Ideal algorithm
can easily be generalized. See Hong et al. [14] for more details.

4. DESIGN

pFabric’s key design insight is a principled decoupling of flow
scheduling from rate control. This leads to a simple switch-based
technique that takes care of flow scheduling and consequently also
simplifies rate control. In this section we describe pFabric’s switch
and rate controller designs. We explain why pFabric’s simple mech-
anisms are sufficient for near-ideal flow scheduling and discuss
some practical aspects regarding its implementation.

Packet priorities: In pFabric, each packet carries a single num-
ber in its header that encodes its priority. The packet priority can
represent different things depending on the scheduling objective.
For instance, to approximate the Ideal algorithm (Algorithm 1) and
minimize average FCT (our main focus in this paper), we would
ideally set the priority to be the remaining flow size when the packet
is transmitted. For traffic with deadlines, to maximize the number
of deadlines met, we would set the priority to be the deadline itself
quantized in some unit of time. Other simplifications such as using
absolute flow size instead of remaining flow size are also possible
(84.4). Similar to prior work [21, 14], we assume that the required
information (e.g., flow size or deadline) is available at the transport
layer which then sets the packet priorities.

4.1 Switch Design

The pFabric switch uses two simple and local mechanisms:

e Priority scheduling: Whenever a port is idle, the packet
with the highest priority buffered at the port is dequeued and
sent out.

e Priority dropping: Whenever a packet arrives to a port with
a full buffer, if it has priority less than or equal to the lowest
priority packet in the buffer, it is dropped. Otherwise, the
packet with the lowest priority is dropped to make room for
the new packet.

Data structures: The switch maintains two data structures. One
is the queue of actual packets which is maintained in RAM. Sec-
ond, is another queue that mirrors the packet queue, but only holds
packet metadata: a flow-id (5-tuple or a hash of the 5-tuple) and
the packet’s priority number. This is maintained in flops so that we
can get fast simultaneous access. pFabric switches have very small
queues; typically less than two bandwidth-delay products (~36KB
or 24 full-sized packets in our simulations). Traditionally, datacen-
ter switches use nearly 10-30x more buffering per port.
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Figure 2: For dequeueing, the switch finds the earliest packet
from the flow with the highest priority and sends it out. In
the above example, even though the last packet (a, 1) has the
highest priority, the second packet in the queue which belongs
to the same flow (a) is sent out because it arrived earlier.

Dequeue: For dequeueing, we first find the highest priority packet
by using a binary tree of comparators that operate hierarchically
on the metadata queue on the priority field. If there are N pack-
ets, this operation takes log, (V) cycles. At this point, we could
simply send this highest priority packet out, however this can lead
to starvation for some packets when a flow’s priority increases over
time. To see how, assume the priority is set to be the remaining flow
size and consider the flow to which the highest priority packet be-
longs. Since packets that are transmitted earlier have lower priority
than packets that are transmitted later (because they have relatively
higher remaining flow sizes in their priority fields), if the flow has
multiple packets waiting in the queue, the highest priority packet
among them is likely to have arrived later than the others. If we
send out packets purely in order of their priority, then this can lead
to situations where packets that arrived earlier might never get ser-
viced since more packets from that flow keep arriving.

To tackle this problem, we implement a technique we christen
starvation prevention where we dequeue the earliest packet from
the flow that has the highest priority packet in the queue. Since
packets are queued in the order they arrive, that is simply the ear-
liest packet in the queue that has the same flow-id as the packet
with the highest priority. Hence in the second step we perform a
parallelized bitwise compare on this flow-id for all the packets in
the meta-data queue. The output of this compare operation is a bit-
map with a 1 wherever there is a match and 0 otherwise. We pick
the packet corresponding to the earliest 1 in the bit vector by us-
ing a priority encoder and transmit it. Figure 2 demonstrates the
dequeuing algorithm as discussed above.

Enqueue: For enqueuing, if the queue is not full, the packet is just
added to the end of the queue and the metadata queue is updated.
If the queue is full, we use a similar binary tree of comparators
structure as in the dequeuing operation above, but this time to find
the packet with the lowest priority. That packet is dropped from
both the packet and metadata queues and the new packet is added
to the end of the queue.

4.2 Rate Control Design

What about rate control? If the fabric schedules flows as dis-
cussed above, the need for rate control is minimal. In particular,
we do not need rate control to prevent spurious packet drops due
to bursts, as can occur for example in Incast [19] scenarios. Such

events only impact the lowest priority packets at the time which can
quickly be retransmitted without impacting performance (see §4.3).
Further, we do not need to worry about keeping queue occupan-
cies small to control queueing latency. Since packets are scheduled
based on priority, even if large queues do form in the fabric, there
would be no impact on the latency for high-priority traffic.

However, there is one corner case where a limited form of rate
control is necessary. Specifically, whenever a packet traverses mul-
tiple hops only to be dropped at a downstream link some bandwidth
is wasted on the upstream links that could have been used to trans-
mit other packets. This is especially problematic when the load is
high and multiple elephant flows collide at a downstream link. For
example, if two elephant flows sending at line rate collide at a last-
hop access link, half the bandwidth they consume on the upstream
links is wasted. If such high loss rates persist, it would eventually
lead to congestion collapse in the fabric. Note that packet drops
at the ingress (the source NICs) are not an issue since they do not
waste any bandwidth in the fabric.

We use the above insight to design an extremely simple rate con-
trol that we implement by taking an existing TCP implementation
and throwing away several mechanisms from it. We describe the
design by walking the reader through the lifetime of a flow:

e Flows start at line rate. Practically, this is accomplished by
using an initial window size equal to the bandwidth-delay
product (BDP) of the link (12 packets in our simulations).

e We use SACKs and for every packet acknowledgement we
do additive increase as in standard TCP.

e There are no fast retransmits, dupACKs or any other such
mechanisms. Packet drops are only detected by timeouts,
whose value is fixed and small (3 x the fabric RTT, which is
around 45us in our simulations). Upon a timeout, the flow
enters into slow start and ssthresh is set to half the win-
dow size before the timeout occurred.

e If a fixed threshold number of consecutive timeouts occur
(5 in our current implementation), it indicates a chronic con-
gestion collapse event. In this case, the flow enters into probe
mode where it periodically retransmits minimum-sized pack-
ets with a one byte payload and re-enters slow-start once it
receives an acknowledgement.

This is the entire rate control design. We do not use any sophis-
ticated congestion signals (either implicit such as 3 dupACKs or
explicit such as ECN, XCP etc), no complicated control laws (we
use additive increase most of the time and just restart from a win-
dow of 1 if we see a timeout), nor do we use sophisticated pacing
mechanisms at the end host. The only goal is to avoid excessive
and persistent packet drops which this simple design accomplishes.

Remark 2. Our rate control design uses the minimal set of mech-
anisms that are actually needed for good performance. One could
of course use existing TCP (with all its features) as well and only
increase the initial window size and reduce the minimum retrans-
mission timeout (minRTO).

4.3 Why this Works

Since pFabric dequeues packets according to priority, it achieves
ideal flow scheduling as long as at each switch port and at any time
one of the highest priority packets that needs to traverse the port is
available to be scheduled. Maintaining this invariant is complicated
by the fact that, sometimes, buffers overflow and packets must be
dropped. However, when a packet is dropped in pFabric, by de-
sign, it has the lowest priority among all buffered packets. Hence,
even if it were not dropped, its “turn” to be scheduled would not
be until at least all the other buffered packets have left the switch.



(the packet’s turn may end up even further in the future if higher
priority packets arrive while it is waiting in the queue.) Therefore,
a packet can safely be dropped as long as the rate control is aggres-
sive and ensures that it retransmits the packet (or sends a different
packet from that flow) before all the existing packets depart the
switch. This can easily be achieved if the buffer size is at least
one bandwidth-delay product and hence takes more than a RTT to
drain, providing the end-host enough time to detect and retrans-
mit dropped packets. Our rate control design which keeps flows at
line-rate most of the time is based on this intuition.

4.4 Implementation

A prototype implementation of pFabric including the hardware
switch and the software end-host stack is beyond the scope of this
paper and is part of our future work. Here, we briefly analyze the
feasibility of its implementation.

Switch implementation: Priority scheduling and dropping are rel-
atively simple to implement using well known and widely used

hardware primitives because pFabric switches have very small buffers

— typically about two BDPs worth of packets at each port which
is less than ~36KB for a 10Gbps 2-tier datacenter fabric. With a
36KB buffer, in the worst-case of minimum size 64B packets, we
have 51.2ns to find the highest/lowest of at most ~600 numbers,
which translate to ~40 clock cycles for today’s switching ASICs.
A straight-forward implementation of this using the binary com-
parator tree discussed in §4.1 requires just 10 (log,(600)) clock
cycles, which still leaves 30 cycles for the flow-id compare oper-
ation. This can be done in parallel for all 600 packets, but it is
preferable to do it sequentially on smaller blocks to reduce the re-
quired gates and power-draw. Assuming a 64 block compare that
checks 64 flow-ids at a time (this is easy and commonly imple-
mented in current switches), we require at most 10 clock cycles for
all 600 packets. Hence we need a total of 20 clock cycles to figure
out which packet to dequeue, which is well within the budget of 40
clock cycles. The analysis for the enqueuing is simpler since the
only operation there is the operation performed by the binary tree
of comparators when the queue is full. As discussed above, this is
at most 10 clock cycles.

A number of optimizations can further simplify the pFabric switch
implementation. For instance, we could use a hash of the 5-tuple
as the flow-id (instead of the full 5-tuple) to reduce the width of the
bit-wise flow-id comparators. A fairly short hash (e.g., 8—12 bits)
should suffice since the total number of packets is small and occa-
sional hash collisions only marginally impact the scheduling order.
Moreover, if we restrict the priority assignments such that a flow’s
priority does not increase over time — for example by using abso-
lute flow size as the priority instead of remaining flow size — we
would not need the starvation prevention mechanism and could get
rid of the flow-id matching logic completely. Our results indicate
that using absolute flow size is almost as good as remaining flow
size for realistic flow size distributions found in practice (§5.4.3).

Note that our switches do not keep any other state, nor are they
expected to provide feedback, nor do they perform rate computa-
tions. Further, the significantly smaller buffering requirement low-
ers the overall switch design complexity and die area [4].

End-host implementation: pFabric’s priority-based packet schedul-
ing needs to extend all the way to the end-host to be fully effective.
In fact, we think of the fabric as starting at the NIC (§3) and in our
simulations we assume that the NIC queues also implement pFab-
ric’s priority scheduling/dropping mechanisms. An alternative de-
sign may push the contention to software queues by rate-limiting
the traffic to the NIC (at line rate). Priority scheduling can then be
implemented in software across active flows. This approach does

40Gbps
Fabric Links

16 Hosts 16 Hosts 16 Hosts 16 Hosts

Figure 3: Baseline topology used in simulations.

not require NIC changes and also avoids dropping packets at the
end-host but it requires more sophisticated software particularly at
10Gbps speeds.

The reader may also wonder about the feasibility of our rate con-
trol implementation. Specifically, our rate control frequently oper-
ates at line rate and uses a fixed retransmission timeout value typi-
cally set to 3xXRTT which can be quite small (e.g., we use 45us in
our simulations). Such precise timers may be problematic to im-
plement in current software. However our simulations show that
the timeout can be set to larger values (e.g., 200-300us for our
simulated network) in practice without impacting performance (see
§5.4.3 for details). Prior work has demonstrated the feasibility of
such retransmission timers in software [19].

Finally, it is important to note that while our rate control design is
based on TCP, we do not require that the rate control be done by the
TCP stack in the kernel. In fact, we expect the near-ideal latency
provided by pFabric to most benefit applications that are optimized
to reduce the latency incurred at the end-host. Such applications
(e.g., RAMCloud [16]) typically use techniques like kernel bypass
to avoid the latency of going through the networking stack and im-
plement some form of rate control in user-space. We believe our
simple rate control is a nice fit in these scenarios.

S. EVALUATION

In this section we evaluate pFabric’s performance using exten-
sive packet-level simulations in the ns2 [15] simulator. Our eval-
uation consists of three parts. First, using carefully constructed
micro-benchmarks, we evaluate pFabric’s basic performance such
as its loss characteristics, its ability to efficiently switch between
flows that are scheduled one-by-one, and how it handles Incast [19]
scenarios. Building on these, we show how pFabric achieves near-
optimal end-to-end performance in realistic datacenter networks
running workloads that have been observed in deployed datacen-
ters [12, 3]. Finally, we deconstruct the overall results and demon-
strate the factors that contribute to the performance.

5.1 Simulation Methodology

Fabric Topology: We use the leaf-spine topology shown in Fig-
ure 3. This is a commonly used datacenter topology [1, 12]. The
fabric interconnects 144 hosts through 9 leaf (or top-of-rack) switches
connected to 4 spine switches in a full mesh. Each leaf switch has
16 10Gbps downlinks (to the hosts) and 4 40Gbps uplinks (to the
spine) resulting in a non-oversubscribed (full bisection bandwidth)
fabric. The end-to-end round-trip latency across the spine (4 hops)
is ~14.6us of which 10us is spent in the hosts (the round-trip la-
tency across 2 hops under a Leaf is ~13.3us).

Fabric load-balancing: We use packet spraying [11], where each
switch sprays packets among all shortest-path next hops in round-
robin fashion. We have also experimented with Equal Cost Mul-
tipathing (ECMP) which hashes entire flows to different paths to
avoid packet reordering. Overall, we found that for all schemes,
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Figure 4: Empirical traffic distributions used for benchmarks.
The distributions are based on measurements from real pro-
duction datacenters [3, 12].

the best results are obtained with packet-spraying after fast retrans-
missions are disabled to cope with packet reordering (in fact, this
is the reason we disabled 3 dupACKs in our rate control). Hence,
we use packet spraying by default for all schemes.

Benchmark workloads: We simulate empirical workloads mod-
eled after traffic patterns that have been observed in production
datacenters. We consider two flow size distributions shown in Fig-
ure 4. The first distribution is from a datacenter supporting web
search [3]. The second distribution is from a cluster running large
data mining jobs [12]. Flows arrive according to a Poisson process
and the source and destination for each flow is chosen uniformly
at random. The flow arrival rate is varied to obtain a desired level
of load in the fabric. Both workloads have a diverse mix of small
and large flows with heavy-tailed characteristics. In the web search
workload, over 95% of all bytes are from the 30% of the flows that
are 1-20MB. The data mining workload is much more extremely
skewed: more than 80% of the flows are less than 10KB and 95%
of all bytes are in the ~3.6% flows that are larger than 35MB. As
we demonstrate in §5.4, this actually makes the data mining work-
load easier to handle because it is less likely that multiple large
flows are concurrently active from/to one fabric port — reducing
network contention. Hence, for most of our simulations, we focus
on the more challenging web search workload.

Performance metrics: Similar to prior work [14, 21, 3] we con-
sider two main performance metrics. For deadline-constrained traf-
fic, we use the application throughput defined as the fraction of
flows that meet their deadline. For traffic without deadlines, we
use the flow completion time (FCT). We consider the average FCT
across all flows, and separately for small and large flows. We also
consider the 99th percentile flow completion time for the small
flows. We normalize all flow completion times to the best possi-
ble completion time for that flow — the value achieved if that one
flow is transmitted over the fabric at 10Gbps without any interfer-
ence from competing traffic.

5.2 Schemes compared

TCP-DropTail: A standard TCP-New Reno with Sack and Drop-
Tail queues.

DCTCP: The DCTCP [3] congestion control algorithm with ECN
marking at the fabric queues.
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Figure 5: (a) Per-flow throughput when 5 large flows are ini-
tiated simultaneously to one destination port. (b) Loss rate vs
number of long-lived flows congesting a bottleneck link.

pFabric: The design described in this paper including both the
switch and the minimal rate control. Unless otherwise specified,
the remaining flow size is used as the priority for each packet.

PDQ: This is the best known prior approach for minimizing flow
completion times or missed deadlines. Our implementation follows
the design faithfully as described in [14] including the Early Start
and Early Termination enhancements and is based on a copy of the
source code we obtained from the authors of the PDQ paper.

Ideal: The Ideal scheduling algorithm described in §3. A central
scheduler with a complete view of all flows preemptively sched-
ules existing flows in nondecreasing order of size and in a maximal
manner (see Algorithm 1). For this scheme, we conduct flow-level
simulations (not packet-level) in Matlab according to the same ex-
act sequence of flow arrivals used in our ns2 benchmarks.

We experimentally determine the best settings for the relevant
parameters for all schemes (summarized in Table 1). Note that the
larger retransmission timeout for the other schemes compared to
pFabric is because they have larger queues. In fact, the difference
in retransmission timeout (200us versus 45us) is in proportion to
the queue size difference (225KB — 36KB = 189KB ~ 150us
at 10Gbps). Without this, spurious retransmissions would hurt the
performance of these schemes. We evaluate the impact of pFabric’s
RTO in depth in §5.4.3.

Scheme Parameters
qSize = 225KB
initCwnd = 12 pkts
minRTO = 200us
qSize = 225KB
markingThresh = 22.5KB
initCwnd = 12 pkts
minRTO = 200us
qSize = 36KB
pFabric initCwnd = 12 pkts
RTO =45us
qSize = 225KB
RTO = 200pus,
K = 2 (for Early Start)
probingInterval = 15us

TCP-DropTail

DCTCP

PDQ

Table 1: Default parameter settings in simulations.

5.3 Basic Performance Measures

Seamless switching between flows: Can pFabric seamlessly switch
between flows that need to be scheduled serially? To test this, we
simultaneously generate 5 large transfers of size 20MB to a sin-
gle destination host. Figure 5(a) shows the throughput achieved
by each flow over time. We observe that the flows are indeed
scheduled one-by-one and at each time, one flow grabs all the bot-
tleneck’s bandwidth (10Gbps). Note that this is the optimal flow
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scheduling in order to minimize the average flow completion time
in this scenario. pFabric uses this scheduling even though the flows
are all exactly the same size because the packet priorities are based
on the remaining flow size. Hence, a flow that is initially lucky and
gets more packets through gets the highest priority and dominates
the other flows. The last of the 5 flows completes after ~80.15ms.
This is only 150us larger then the best possible completion time of
80ms for a 100MB transfer at 10Gbps. Hence, pFabric is able to
seamlessly schedule one flow after the other with very little loss of
throughput efficiency.

Loss rate: The previous simulation showed that pFabric can seam-
lessly switch between flows without loss of throughput, but what
about loss rates? We repeat the previous simulation but stress the
network by using up to 50 concurrent large flows to a single desti-
nation port, and measure the overall loss rate. We conduct the sim-
ulation both with and without pFabric’s probe mode (discussed in
§4.2). The results are shown in Figure 5(b). We observe that with-
out probe mode, the loss rate rises sharply from ~4.8% to ~38.5%
as the number of flows increases. This is because except for the
high-priority flow, the packets of the other flows are all dropped at
the bottleneck. Hence, each low-priority flow retransmits a full-
sized (1500B) packet every RT'O = 45us which is eventually
dropped. As expected, the probe mode significantly lowers the loss
rate (to under 5.5% with 50 flows) since the low priority flows only
periodically send a small probe packet (with a one byte payload)
while waiting for the high priority flow to complete.

Incast: We now show pFabric’s performance for Incast traffic pat-
terns which occur in many large-scale web applications and storage
systems and have been shown to result in throughput degradation
for TCP [19, 3]. The incast pattern exhibits similar characteristics
as the previous experiment where a large number of flows simulta-
neously transmit to a single destination. Similar to prior work [19],
we create Incast by having a receiver node request a 100MB file
that is striped across N sender nodes. The senders respond with
100MB/N of data simultaneously. The request completes when
all the individual flows have finished. Once a request is complete,
the client immediately initiates the next request. The simulation is
run for 10,000 requests and we compute the average total request
completion time and the average individual flow completion times.

The results for TCP-DropTail, DCTCP, PDQ and pFabric are
shown in Figure 6. Note that all schemes use a small min RT'O
which has been shown to greatly mitigate the Incast problem [19]
(DCTCP additionally benefits from aggressive ECN marking [3]).
Hence, considering the total request completion time, all schemes
handle Incast fairly well. DCTCP does the best and achieves a near-
ideal request complete time of 80ms across all number of senders.
pFabric is almost as good achieving a total request completion time
of 81.1ms at 50 senders. The small increase is due to the slight
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Figure 7: Overall average normalized flow completion time for
the two workloads at various loads.

overhead of serially scheduling flows with pFabric. However, as
expected, serial flow scheduling significantly improves the average
individual flow completion times (Figure 6(b)) for pFabric com-
pared to DCTCP and TCP-DropTail which are more fair across
flows. PDQ also exhibits a similar behavior as pFabric since it aims
to mimic the same kind of flow scheduling, however it has slightly
higher overhead in flow switching and consequently shows slightly
worse performance as the number of flows increases.

5.4 Opverall Performance

In this section we show pFabric’s overall performance in large
scale datacenter topologies with realistic workloads. We show that
pFabric’s ability to efficiently schedule flows in the order of their
priorities (remaining flow size or deadline) enables it to achieve
near-optimal performance for traffic scenarios with no deadlines as
well as scenarios where there is a mix of deadline and no-deadline
traffic. In the interest of space, after the overall performance re-
sults, we only show results for the deadline-unconstrained traffic
for targeted experiments that highlight different aspects of pFab-
ric’s design and their impact on overall performance.

5.4.1 Deadline-unconstrained traffic

pFabric achieves near-optimal flow completion times for all flow
sizes, loads and for both workloads in our simulations. Figure 7
shows the overall average flow completion times for the web search
and data mining benchmarks as we vary the load from 10% to 80%.
Recall that each flow’s completion time is normalized to the best
possible value that is achievable in an idle fabric for that flow. We
observe that for both workloads the average FCT with pFabric is
very close to that of the Ideal flow scheduling scheme and is signif-
icantly better than for the other schemes. pFabric’s performance is
within ~0.7-17.8% of the Ideal scheme for the web search work-
load and within ~1.7-10.6% for the data mining workload. Com-
pared to PDQ, the average FCT with pFabric is ~19-39% lower
in the web search workload and ~40-50% lower in the data min-
ing workload. All schemes generally do better for the data mining
workload, particularly at high load. This is because in the data min-
ing workload, the largest ~3.6% of flows contribute over 95% of
all bytes (Figure 4(b)). These flows, though very large, arrive in-
frequently and thus it is rare that multiple of them are concurrently
active at a particular fabric port and cause sustained congestion.

It is important to note that PDQ always requires one extra RTT
of overhead for flow initiation (SYN/SYN-ACK exchange) before
a flow can transmit. Because of this, PDQ’s normalized FCT is
at-least two for very small flows that can ideally complete in one
RTT. For example, in the data mining workload where about 50%
of all flows are one packet, it is not surprising that pFabric’s average
normalized FCT s 50% lower than PDQ.

FCT breakdown based on size: We now breakdown the FCT stats
across small (0, 100KB] and large (10MB, o) flows. We omit the
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results for the medium (100KB, 10MB] flows whose performance
is qualitatively similar to the small flows (the complete results are
provided in [6]) The results are shown in Figures 8 and 9 for the
two workloads. We plot the average (normalized) FCT in each bin
and also the 99th percentile for the small flows The results show
that for both workloads, pFabric achieves near-optimal average and
99th percentile FCT for the small flows: it is within ~1.3-13.4%
of the ideal average FCT and within ~3.3-29% of the ideal 99th
percentile FCT (depending on load). Compared to PDQ, the av-
erage FCT for the small flows with pFabric is ~30-50% lower for
the web search workload and ~45-55% lower for the data mining
workload with even larger improvements at the 99th percentile.

pFabric also achieves very good performance for the average
FCT of the large flows, across all but the highest loads in the web
search workload. pFabric is roughly the same as TCP and ~30%
worse than Ideal at 80% load for the large flows in the web search
workload (for the data mining workload, it is within ~3.3% of
Ideal across all flows). This gap is mainly due to the relatively
high loss rate at high load for this workload which wastes band-
width on the upstream links (§4.2). Despite the rate control, at
80% load, the high initial flow rates and aggressive retransmissions
cause a ~4.3% packet drop rate in the fabric (excluding drops at the
source NICs which do not waste bandwidth), almost all of which
occur at the last hop (the destination’s access link). However, at
such high load, a small amount of wasted bandwidth can cause a
disproportionate slowdown for the large flows [4]. Note that this
performance loss occurs only in extreme conditions — with a chal-
lenging workload with lots of elephant flows and at very high load.
As Figure 8(c) shows, under these conditions, PDQ’s performance
is more than 75% worse than pFabric.

5.4.2  Mix of deadline-constrained and
deadline-unconstrained traffic
We now show that pFabric maximizes the number of flows that
meet their deadlines while still minimizing the flow completion
time for flows without deadlines. To perform this experiment, we

assign deadlines for the flows that are smaller than 200KB in the
web search and data mining workloads. The deadlines are assumed
to be exponentially distributed similar to prior work [21, 14, 18].
We vary the mean of the exponential distribution (in different sim-
ulations) from 100us to 100ms to explore the behavior under tight
and loose deadlines and measure the Application Throughput (the
fraction of flows that meet their deadline) and the average normal-
ized FCT for the flows that do not have deadlines. We lower bound
the deadlines to be at least 25% larger than the minimum FCT pos-
sible for each flow to avoid deadlines that are impossible to meet.

In addition to the schemes used for the baseline simulations with
deadline-unconstrained traffic, we present the results for pFabric
with Earliest-Deadline-First (EDF) scheduling. pFabric-EDF as-
signs the packet priorities for the deadline-constrained flows to be
the flow’s deadline quantized to microseconds; the packets of flows
without deadlines are assigned priority based on remaining flow
size. Separate queues are used at each fabric port for the deadline-
constrained and deadline-unconstrained traffic with strict priority
given to the deadline-constrained queue. Within each queue, the
pFabric scheduling and dropping mechanisms determine which pack-
ets to schedule or drop. Each queue has 36KB of buffer.

Figure 10 shows the application throughout for the two work-
loads at 60% load. We picked this moderately high load to test
pFabric’s deadline performance under relatively stressful condi-
tions. We find that for both workloads, both pFabric-EDF and
pFabric achieve almost 100% application throughput even at the
tightest deadlines and perform significantly better than the other
schemes. For the web search workload, pFabric-EDF achieves an
Application Throughput of 98.9% for average deadline of 100us;
pFabric (which is deadline-agnostic and just uses the remaining
flow size as the priority) is only slightly worse at 98.4% (the num-
bers are even higher in the data mining workload). This is not
surprising; since pFabric achieves a near-ideal FCT for the small
flows, it can meet even the tightest deadlines for them. As expected,
PDQ achieves a higher application throughput than the other schemes.
But it misses a lot more deadlines than pFabric, especially at the
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Figure 11: Average normalized FCT for non-deadline traffic
at 60% load.

tightest settings. This is partly because of the one extra RTT of
flow-initiation overhead that PDQ adds to every flow. Because of
this, PDQ cannot meet some of the tighter deadlines for the small
flows (that can ideally complete in 1 RTT). We verified that when
the average deadline was 100us, due to its fixed one RTT overhead,
PDQ could not have met the deadline for 22.7% of the deadline-
constrained flows (this number was 5.0% for the 500us and 2.5%
for the 1ms average deadline settings).

We also find that pFabric achieves the lowest average FCT for
the flows without deadlines (Figure 11). pFabric-EDF is slightly
worse as expected because it gives strict priority to the deadline-
constrained traffic.

5.4.3 pFabric deep dive

In this section we dig deeper into pFabric’s design in a series of
targeted simulations. For brevity, the majority of simulations in this
section use the web search workload since it is more challenging
and allows for clearer contrasts.

Impact of gSize and RT'O: We repeat the web search workload
at 80% load for different pFabric switch buffer size (¢Size) and
retransmission timeout (R7'O) settings. ¢Size is varied between
0.5 x BDP and 5 x BDP (recall that the BDP is 18KB for our
topology). RT'O is varied between 2 x RT'T and 20 x RT'T where
RTT is the baseline round-trip latency of the fabric (14.6us). The
results are shown in Figure 12. In the interest of space, we only
show the overall average FCT across all flows and the 99th per-
centile FCT for the small flows. We observe a loss in performance
for buffers smaller than one BDP. At the same time, increasing
the buffer size beyond 2 x BDP yields very little gains. This
is intuitive since we need at least one BDP to allow enough time
for retransmitting dropped packets without under-utilization (§4.3),
but having just one BDP provides zero margin for error and re-
quires perfect RTO estimation to avoid performance loss. As the
plots show, making the buffer size slightly larger than one BDP
gives more margin and allows the use of a simple, fixed RTO with-
out performance loss. We recommend ¢Size = 2 x BDP and
RTO = 3 x RTT for pFabric based on these results. An RTO of
3 x RTT is appropriate since with a buffer of 2 x BD P, the total
round-trip delay when a packet is dropped (and the buffer is full) is
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Figure 12: Overall average FCT and 99th percentile FCT for
small flows for the web search workload at 80% load using a va-
riety of queue size and retransmission timeout settings. qSize
is normalized to BDP = 18KB and the RTO is normalized to
RTT = 14.6us.
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last-hop (destination access link) versus priority number for the
web search workload at 80% load. The loss rate in the fabric’s
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3 X RT'T. The values we use in our simulations (¢Size = 36KB,
RTO = 45us) follow this guideline.

While the above guideline guarantees good performance in all
cases, interestingly, Figure 12 suggests that for realistic workloads
we can use a much larger RTO with almost no performance penalty.
For instance, RT'O = 20 X RTT (~290us for our fabric) achieves
nearly the same performance as RT'O = 3 x RTT when gSize =
2 X BDP. Relaxing the required retransmission timeout could be
very useful in practice and simplify the pFabric host’s implemen-
tation; as prior work has demonstrated [19], retransmission timers
with a granularity of 200us are easy to achieve in software.

The reason such large RTOs do not have significant impact (de-
spite the small buffers) is that almost all packet drops in pFabric
occur for the large flows which anyway have fairly high FCTs. To
see this, we plot the packet loss rate versus the packet priority num-
ber for the baseline web search workload at 80% load in Figure 13.
The plot shows that almost all losses are for flows larger than 3000
packets. But these flows are bandwidth-limited and necessarily take
a long time to complete. For example, a 3000 packet flow (1500
bytes per packet) needs at least 3.6ms to complete at 10Gbps and
thus is not severely impacted if the RTO is not very tight and adds
~200us of additional delay.

Different priority assignment schemes: Next, we compare three
different schemes for assigning packet priorities with increasing de-
grees of complexity. For each packet transmitted, the priority field
is set to be: (i) the number of bytes thus far sent from the flow; (ii)
the flow size in bytes; or (iii) the remaining flow size in bytes (the
default scheme in this paper). The first scheme is the simplest as
it does not require knowledge of flow size. The second and third
schemes both require flow size information, but the second is sim-
pler since the priority number is decided once and remains constant
for all the packets of a flow. As explained in §4.1, this scheme sim-
plifies the pFabric switch implementation since we don’t need the
starvation prevention mechanism.
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Figure 14: Overall average FCT for different priority assign-
ment schemes. Note the different y-axis range in these plots.

Figure 14 shows a comparison of the three schemes and also
PDQ. We find that using the flow size and remaining flow size as
the packet priority achieve nearly indistinguishable overall aver-
age FCT. This is not surprising; even though remaining flow size
is conceptually closer to ideal (§3), for realistic workloads with a
diverse range of flow sizes, most of the benefit is in scheduling
the small flows before the large flows which both schemes achieve.
We do find that for the large flows (> 10MB), the remaining flow
size scheme achieves up to ~15% lower average FCT than absolute
flow size (plot omitted, see [6]).

The performance of “BytesSent” is more varied. As expected, it
is worse than the schemes with flow size knowledge. Yet, for the
data mining workload, it still achieves a significantly lower over-
all average FCT than PDQ. In fact, we find that its average and
tail FCT for the small flows (< 100KB) is almost as good as de-
fault pFabric [6]. However, for the web search workload, its per-
formance completely breaks down at high load. This is because in
this workload, particularly at high load, it is common for multiple
large flows to arrive and compete with an existing large flow during
its lifetime. Each time this occurs, the BytesSent priority scheme
essentially stops all existing flows (which have lower priority since
they have sent more data) until the new flow “catches up”. Hence,
the large flows can take very long to complete. The takeaway is that
the BytesSent scheme should only be used in environments where a
very small fraction of the flows are large and it is rare that multiple
such flows are concurrently active on a single path.

Other scenarios: We have explored a number of other scenarios
including pFabric’s performance in oversubscribed topologies and
with different load-balancing mechanisms, the importance of the
starvation prevention mechanism, and the implications of having
pFabric switches only at the fabric leafs and not in the core. In
all these scenarios, we have found that pFabric achieves very good
performance. See [6] for details.

6. INCREMENTAL DEPLOYMENT

Our goal in this paper has been to decouple flow scheduling
and rate control and design the simplest possible mechanisms for
both tasks. This results in very simple switch and rate control de-
signs, but it does require some hardware changes. In this section
we ask how far could we go with the same insight of decoupling
flow scheduling from rate control using existing switches? Specif-
ically, we consider using the available priority queues in today’s
switches and tackle the question of how end-hosts should set the
priority field in the packet header to approximate SRPT-style flow
scheduling in the fabric. Commodity switches typically support 4—
8 class of service queues. Current practice is to use these to isolate
entire traffic classes; for example, give higher priority to all traffic
belonging to an important application (such as a realtime web ap-
plication) over less important traffic (such as data backups). Clearly
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Figure 15: Queueing model for two-queue system. Flows arrive
with rate \ and have size S ~ Fs(-). p is the total load and
Bs(+) is distribution of total bytes according to flow size. Flows
smaller than threshold, t, use the high-priority queue.

such crude mechanisms cannot minimize flow completion time and
guarantee near-ideal latency for small delay-sensitive flows.

We consider a design that dynamically decides the priority based
on flow sizes as we have done with pFabric. The basic idea is to
set the highest priority for flows smaller than a particular size, the
next highest priority for flows greater than the above size but less
than a second threshold and so on, so we can approximate the same
scheduling behavior as pFabric and thus minimize flow completion
time. The are two key challenges with this approach: (i) How many
priority queues are necessary for good performance? and (ii) What
flow size thresholds should be used for each priority queue?

6.1 Assigning Flow Priorities

We now present a novel and principled approach to answering
these questions. We use a simple queueing model to derive the
optimal thresholds for minimizing the average FCT for a given flow
size distribution (the flow size distribution is empirically measured
and assumed to be known in advance). For simplicity, we present
the derivation for the case of two priority queues, but it can be
generalized to any number of priority queues.

The queuing model is shown in Figure 15. Flows arrive to a
link of capacity 1 according to a Poisson process of rate A and
have size S ~ Fs(-) (Fs is the CDF of S), imposing a total
load of p = AE(S) < 1. Flows smaller (larger) than thresh-
old ¢ > 0 are enqueued in the high-priority (low-priority) queue.
Therefore, the arrival processes to the two queues are indepen-
dent Poisson processes with rates AF's(t) and A(1 — Fs(t)). The
high-priority queue has strict priority and drains at rate 1. The
low-priority queue uses the remaining bandwidth after servicing
the high-priority traffic. Thus, its drain rate is 1 — pBg/(t) where
Bs(t) = fotscfs(x) dxz/E(S) is the fraction of the overall bytes
that belong to flows smaller than ¢. Note that in reality, the low-
priority queue drains only when the high-priority queue is empty.
However, this complicates the analysis since the two queues are de-
pendent. By using the average drain rate of the low priority queue
as its instantaneous drain rate, we greatly simplify the analysis.

The average normalized FCT (FCT divided by flow size) can be
derived as a function of the threshold ¢ for this model:

FOTW(t) = Fs(t) + m (1= Fs(t))
A t:cz z)dz tfs_(y)
*2(1—;)33(15))/0 fs()d/o W ay
A OO:EQ x)dz “fsw)
*2(1—sz<t>>(1—p>/t fs“d/t y v

The derivation is based on using the well-known Pollaczek-Khintchine

formula [13] to compute the average waiting time for a flow in each
priority queue (assuming M /G /1 queues) and can easily be gen-
eralized for any number of priority queues (see the longer version
of this paper [6] for details). It is important to note that FCT(+)
depends on the flow size distribution as well as the overall load p.
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Figure 16: FCTy(t) for the web search flow size distribution
at loads 10-80%. The red circles show the optimal threshold at
each load.

Figure 16 shows F'C'Ty, and the optimal threshold for the high-
priority queue computed numerically for the web search flow size
distribution (Figure 4(a)). The threshold varies between ~880-
1740KB as the load increases from 10% to 80%. Also, the figure
suggests that the performance can be fairly sensitive to the chosen
threshold, particularly at high load. We evaluate the sensitivity to
the threshold using simulations in the next section.

Remark 3. The above derivation provides a principled way of de-
termining thresholds for each priority, however it assumes that we
know the exact flow size distribution in advance. Measuring the
flow size distribution can be challenging in practice since it can
change across both time and space. For instance, because of spatial
variations (different flow size distributions at different switches),
we may need to use different thresholds for the priority queues at
each switch and further these thresholds may change over time.

6.2 Simulations

We now compare using a few priority queues in existing switches
with pFabric. Our results confirm that while this mechanism pro-
vides good performance with a sufficient number of priority queues
(around 8), it is still worse than pFabric and the performance is sen-
sitive to the value of the thresholds used and also how the switch
buffer is shared among the priority queues.

We simulate the web search workload (§5.1) for three scenarios
with 2, 4, and 8 priority queues per fabric port. The queues at a
port share a buffer pool of size 225KB (150 packets). We reserve
15KB (10 packets) of buffer per queue and the rest is shared dy-
namically on a first-come-first-serve basis. In each scenario, we
use the optimal flow size thresholds for each priority queue as de-
rived in §6.1. The results are shown in Figure 17. We observe
that, as expected, the average overall FCT (part (a)) improves as
we increase the number of priority queues and is close to pFab-
ric’s performance with 8 priority queues. We observed a similar
trend in the average FCT across small, medium, and large flows
(plots omitted). Figure 17(b) also shows that there is a significant
increase in the 99th percentile FCT for the small flows at high loads
in the 8-queue case. This is because with 8 queues, 80 out of the
total 150 packets are reserved, leaving only 70 packets to be shared
among the queues. Thus at high load, during some bursts, the high
priority queue runs out of buffers and drops packets, increasing tail
latency. This demonstrates the need for carefully tuning the buffer
allocations for each priority queue for good performance.

Sensitivity to thresholds: Finally, we explore the sensitivity of the
performance with a few priority queues to using the “right” thresh-
olds for splitting traffic. Figure 17(c) shows a comparison of the
4-queue system with optimal thresholds with a reasonable heuris-
tic that splits flows equally across the 4 queues: the smallest 25%

of flows are assigned to the highest priority queue, second smallest
25% to the second highest priority, etc. The plot shows the aver-
age FCT across all flows. We find a fairly substantial improvement
with the optimized thresholds. At 80% load, the average FCT is re-
duced by more than 30% with more substantial performance gaps
for the tail latencies for short flows (we omit the figure for brevity).
This confirms that the thresholds for splitting traffic across limited
priority queues need to be chosen carefully. By allowing an es-
sentially unlimited number of priorities, pFabric does not require
any tuning and is not sensitive to parameters such as thresholds
(which may vary across time and space), minimum reserved buffer
per priority queue, overall buffer size, etc.

7. DISCUSSION

pFabric, more generally, advocates a different design philoso-
phy for datacenter networks. Our thought process is informed by
the fact that the datacenter network is more an inter-connect for
distributed computing workloads rather than a bit-pipe. Hence we
believe that it is more important to orchestrate the network resource
allocation to meet overall computing objectives, rather than tra-
ditional communication metrics such as throughput and fairness
which TCP optimizes for. This leads us to a design ethos where
flows (which are proxy for the datum needed to be exchanged in
the compute tasks) become first-class citizens and the network fab-
ric is designed to schedule them in a lightweight fashion to max-
imize application-layer objectives. pFabric is our first step in this
direction. Below, we discuss some other common concerns that
might come up with a design like pFabric.

Starvation & Gaming: A potential concern with strictly prioritiz-
ing small flows is that this may starve large flows. Further, a mali-
cious user may game the system by splitting up her large flows to
gain an advantage. Of course, these issues are not unique to pFab-
ric; any system that implements SRPT-like scheduling has these
concerns. That said, as prior work has also argued (see for example
PDQ [14] and the references therein, particularly Bansal et al. [8]),
under realistic heavy-tailed traffic distributions, SRPT actually im-
proves the majority of flows (even the large flows) compared to
TCP’s fair sharing. This is consistent with our findings (e.g., Fig-
ures 8(c) and 9(c)). The intuition is that for heavy-tailed distribu-
tions, small flows contribute a small fraction of the overall traffic;
hence prioritizing them has little impact on the large flows and in
fact helps them because they complete quickly which reduces net-
work contention. Nonetheless, if desired, an operator can put in
explicit safeguards against starvation. For instance, she can place a
cap the priority numbers so that beyond a certain size, all flows get
the same base priority. Finally, our current design is targeted to pri-
vate datacenters thus malicious behavior is out of scope. In public
environments, further mechanisms may be needed to prevent abuse.

Setting packet priorities: In many datacenter applications flow
sizes or deadlines are known at initiation time and can be conveyed
to the network stack (e.g., through a socket api) to set priorities.
In other cases, we expect that pFabric would achieve good perfor-
mance even with imprecise but reasonable estimates of flow sizes.
As shown in §6, with realistic distributions, most of the benefit can
be achieved by classifying flows into a few (4-8) priority levels
based on size. The intuition is that it suffices that at any instant
at each switch the priority dequeueing order is maintained (which
does not require that priorities be accurate, only that relative prior-
ities across enqueued flows be largely correct).

Supporting multiple priority schemes: In practice, datacenter
fabrics are typically shared by a variety of applications with dif-
ferent requirements and a single priority scheme may not always



5 5 5
-©-Q=2 (Optimized) -©-Q=2 (Optimized) —+Q=4 (Optimized)
—+Q=4 (Optimized) —+Q=4 (Optimized) -©-Q=4 (Equal Split)
4/ Q=8 (Optimized) 4/ %-Q=8 (Optimized) 4/ ~-pFabric
= ) = ) =
O | ~pFabric O | ~pFabric O | =-ldeal
& 3l =Ideal & 3l =Ideal + L3
(0] (0] [0
g2 g g5 g2 [
s 5 1 S
P4 P4 P4
1 1 1
0 0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load Load Load
(a) Overall: Avg (b) (0, 100KB]: 99th prctile (c) Optimal thresholds vs equal split:
Overall Avg

Figure 17: Web search benchmark with 2, 4, and 8 priority queues. Parts (a) and (b) show the average normalized FCT across all
flows and the 99th percentile for the small flows. Part (c) compares the performance using the optimized thresholds with a heuristic

which splits the flows equally in case of 4 queues.

be appropriate. This can easily be handled by operating the pFab-
ric priority scheduling and dropping mechanisms within individual
“higher-level” traffic classes in an hierarchical fashion. Traditional
QoS mechanisms such as WRR are used to divide bandwidth be-
tween these high-level classes based on user-defined policy (e.g., a
soft-real time application is given a higher weight than batch jobs),
while pFabric provides near-optimal scheduling of individual flows
in each class according to the class’s priority scheme (remaining
flow size, deadlines, etc).

Other datacenter topologies: We have focused on Fat-tree/Clos
topologies in this paper as this is by far the most common topology
in practice. However, since conceptually we think of the fabric
as a giant switch with bottlenecks only at the ingress and egress
ports (§3) we expect our results to carry through to any reasonable
datacenter topology that provides uniform high throughput between
ingress and egress ports.

Stability: Finally, the theoretical literature has demonstrated sce-
narios where size-based traffic prioritization may reduce the stabil-
ity region of the network [20]. Here, stability is in the stochastic
sense meaning that the network may be unable to keep up with flow
arrivals even though the average load on each link is less than its
capacity [10]. However, this problem is mostly for “linear”” topolo-
gies with flows traversing different numbers of hops — intuitively it
is due to the tradeoff between prioritizing small flows versus max-
imizing service parallelism on long routes. We have not seen this
issue in our study and do not expect it to be a major concern in real
datacenter environments because the number of hops is very uni-
form in datacenter fabrics, and the overall load contributed by the
small (high-priority) flows is small for realistic traffic distributions.

8. CONCLUSION

This paper decouples the key aspects of datacenter packet trans-
port — flow scheduling and rate control — and shows that by de-
signing very simple mechanisms for these goals separately we can
realize a minimalistic datacenter fabric design that achieves near-
ideal performance. Further, it shows how surprisingly, large buffers
or complex rate control are largely unnecessary in datacenters. The
next step is to integrate a prototype implementation of pFabric with
a latency-sensitive application to evaluate the impact on applica-
tion layer performance. Further, our initial investigation suggests
that further work on designing incrementally deployable solutions
based on pFabric could be fruitful. Ultimately, we believe this can
pave the path for widespread use of these ideas in practice.
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