
PicNIC: Predictable Virtualized NIC

Praveen Kumar† Nandita Dukkipati∗ Nathan Lewis∗ Yi Cui∗ Yaogong Wang∗

Chonggang Li∗ Valas Valancius∗ Jake Adriaens∗ Steve Gribble∗ Nate Foster† Amin Vahdat∗

†Cornell University ∗Google

Abstract

Network virtualization stacks are the linchpins of public clouds. A

key goal is to provide performance isolation so that workloads on

one Virtual Machine (VM) do not adversely impact the network

experience of another VM. Using data from a major public cloud

provider, we systematically characterize how performance isolation

can break in current virtualization stacks and find a fundamental

tradeoff between isolation and resource multiplexing for efficiency.

In order to provide predictable performance, we propose a new

system called PicNIC that shares resources efficiently in the com-

mon case while rapidly reacting to ensure isolation. PicNIC builds

on three constructs to quickly detect isolation breakdown and to

enforce it when necessary: CPU-fair weighted fair queues at re-

ceivers, receiver-driven congestion control for backpressure, and

sender-side admission control with shaping. Based on an extensive

evaluation, we show that this combination ensures isolation for

VMs at sub-millisecond timescales with negligible overhead.

CCS Concepts

• Networks→ Transport protocols; Network algorithms; Network

reliability; Cloud computing.

Keywords

Congestion Control, Performance Isolation

ACM Reference Format:

Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong Wang,

Chonggang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster,

and Amin Vahdat. 2019. PicNIC: Predictable Virtualized NIC. In SIGCOMM

’19: 2019 Conference of the ACM Special Interest Group on Data Communica-

tion, August 19–23, 2019, Beijing, China. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3341302.3342093

1 Introduction

There is a fundamental tension between efficiency and predictable

performance in any shared computing platform. On the one hand,

providers want to utilize resources efficiently by oversubscribing

the infrastructure to achieve economies of scale. On the other hand,

the tenants using these platforms want predictable performance

without worrying about interference from other tenants. While

this issue has been a long-standing problem across a variety of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’19, August 19–23, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00
https://doi.org/10.1145/3341302.3342093

platforms, it is substantially exacerbated in today’s public clouds.

Whereas in private clouds, resources can be provisioned in a col-

laborative fashion between providers and tenants to balance the

tradeoff between predictability and efficiency, in public clouds the

provider typically lacks visibility into tenant applications, so they

must compensate with costly overprovisioning to tilt the default in

favor of performance isolation [33, 49].

Most prior work in the networking context has focused on shar-

ing bandwidth in the network fabric (Table 1). However, in this

work, we find that contention for resources in the host virtualiza-

tion stack is often a key contributor to unpredictable performance,

and that existing mechanisms are insufficient for guaranteeing iso-

lation at end hosts. For instance, if one VM receives small packets

at a high rate—e.g., due to a denial of service (DoS) attack—other

VMs on the same host may observe spikes in latency or even packet

loss due to isolation breakage at the host virtualization stack. Gen-

erally speaking, there are two resources on the hosts that must be

shared among VMs: (i) the bandwidth (BPS) and (ii) the rate (PPS)

at which packets can be transmitted and received. Unfortunately,

current stacks do not provide adequate mechanisms for sharing

these resources across multiple senders and receivers, which means

that the behavior of one VM can adversely impact others.

This paper argues that cloud providers should offer tenants the

abstraction of a Predictable Virtualized NIC—i.e., performance guar-

antees formulated as per-VM SLOs in terms of measurable bounds

on bandwidth, latency percentiles, and loss rates. This notion of

predictable performance generalizes stricter notions of isolation

that are impossible to achieve without excessive overprovision-

ing [49]. In particular, although predictable performance does not

mandate strict non-interference at the network level, tenants can

still use bounds on performance metrics to reason effectively about

the service they will receive.

Of course, achieving predictable performance without sacrificing

efficiency is inherently difficult. The fundamental challenge stems

from the fact that on end hosts the resources required to process

packets depend on the overall traffic mix, which is hard to predict

in advance. Overprovisioning for the worst case sacrifices efficiency

gains due to multiplexing, while underprovisioning risks violating

SLOs. The approach we take is to initially provision resources for

efficient sharing, under the optimistic assumption that VMs will be

well-behaved, but monitor the system and rapidly adapt when condi-

tions change, falling back to strict isolation as the safe default. While

this approach lacks some attractive properties—e.g., it is not always

work-conserving—and requires a distributed implementation, it

does provide predictable performance and uses resources efficiently

in the common case.

We realize these ideas in PicNIC, a system that provides the

Predictable Virtualized NIC abstraction in a shared public cloud

environment. With PicNIC, each VM is guaranteed a minimum

351

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

System Abstraction Shared

capacity

Bandwidth

isolation model

Host stack

isolation

Predictable

latency

SeaWall [69], NetShare [39], FairCloud (PS-L/N) [62] Virtualized Fabric Constant Fair sharing No None

Oktopus [7], Hadrian [8], SecondNet [28], Proteus [76],

Pulsar [5], CloudMirror [41]

Virtualized Fabric Constant Hose-based [18]

(VC, TIVC, TAG, pipe)

No None

Gatekeeper [66], FairCloud (PS-P) [62], EyeQ [35], Elas-

ticSwitch [63], HUG [14]

Virtualized Fabric Constant Hose No None

Silo [34] Virtualized Fabric Constant Hose No Fabric

PicNIC Virtualized NIC Variable Hose Yes vNIC

Table 1: Related systems focus on sharing constant fabric bandwidth and cannot provide isolation at the end-hosts. In contrast, PicNIC provides isolation at

the end-hosts by sharing the virtualization stack’s variable packet-processing capacity and delivers predictable performance in terms of bandwidth, latency

distribution and loss rate for each VM.

and maximum bandwidth envelope, bounded latency distribution,

and near-zero packet loss within the stack. To achieve these goals,

PicNIC leverages two key insights as design principles: (i) SLO-based

resource sharing: for predictability, packet-processing resources

utilized for each VM should be proportional to performance SLOs.

In particular, sufficient resourceswithin the virtualization stack (e.g.,

CPU cycles, NIC and PCIe bandwidth) should be allocated to ensure

the minimum guarantees of the SLO (e.g., bandwidth) independent

of the behavior of other VMs. (ii) Backpressure and early drops: for

efficiency, if a packet needs to be dropped (or queued), it should be

done as early in the processing pipeline as possible by applying apt

backpressure—e.g., packets likely to be dropped at the receiver due

to insufficient resources should not be admitted at the source.

Note that existing approaches are not strong enough to ensure

these guarantees for three reasons. First, prior work (Table 1) fo-

cuses on apportioning bandwidth in the fabric, whereas PicNIC also

offers non-trivial guarantees on latency and packet loss. Second,

effectively managing resources in virtualization stacks requires a

different approach due to variable BPS and PPS capacities for packet

processing at end hosts. Third, whereas prior work often relies on

rate limiting at sources, this itself can cause a breakdown of isola-

tion at end hosts. Avoiding such breakdowns requires rethinking

traffic shaping and extending backpressure mechanisms across a

complete chain—the fabric, within the host stack, and between the

host stack and the VM.

Contributions. Our main finding is that it is possible to ensure pre-

dictable performance by quickly navigating the spectrum between

being resource-efficient (work-conserving) and providing strict iso-

lation. Our approach quickly detects risks of SLO violations and

tilts the tradeoff towards isolation. To this end, the paper makes

the following contributions.

1. Analyzing data from a production environment, we systemati-

cally identify key bottlenecks in network virtualization stacks

that lead to isolation breakages. We provide insights into new

challenges, such as variable packet processing capacity of the

stack and limitations of traffic shaping, that make it challenging

to ensure predictable performance (§2).

2. We propose an intuitive abstraction for a predictable virtual-

ized NIC which gives a well-defined quantifiable meaning to

predictable performance (§4). While it enables high efficiency

in the common case, it also prioritizes isolation when there is a

risk of SLO violation.

3. To realize this abstraction in a system, we identify key design

principles based on SLO-based resource sharing, admission con-

trol and backpressure (§3) and present the design and implemen-

tation of such a system, PicNIC, using a combination of local

and end-to-end constructs (§5).

4. Our evaluation on a large-scale cloud deployment shows that

PicNIC can ensure predictable performance without sacrificing

efficiency (§6).

Lessons from production. Using data from a major cloud provider,

we found that isolation can break down at both sender and receiver

host stacks. We found it more efficient and practical to enable

parts of PicNIC to react to isolation breakdowns based on signals

rather than designing a system that attempts to enforce isolation

invariants. Implementing these reactions at receivers turns out

to be particularly difficult as it requires coordination with multi-

ple senders. Moreover, such coordination must be done at short

timescales, which poses additional practical challenges. While tra-

ditional congestion control works by sending acknowledgements,

maintaining a similar level of state and generating packets to carry

congestion signals would impose significant overheads in a virtu-

alization stack. Ultimately, selecting a design to reduce reaction

time to O(ms) without regressing the data path required several

iterations. In the same vein, using traffic shaping as a building

block required several other features to be implemented in the data

path including buffering, backpressure to VMs, and out-of-order

completions to avoid head-of-line blocking.

Ethical concerns. This work does not raise any ethical issues.

2 Cause and Cost of Unpredictability

Network virtualization provides the abstraction of a private net-

work to cloud tenants while sharing the underlying physical net-

work [37, 60]. Fig. 1 shows a simplified view of the on-host com-

ponent of a typical network virtualization stack with egress 2©

and ingress 5© engines that process (e.g., encapsulate/decapuslate,

apply firewall rules, etc.), buffer, and transport packets between

the VMs and the NIC within a host. These components can be

realized in various ways on different implementations—e.g., An-

dromeda uses a modular software switch with fast shared engines

and hardware offload [16] while Azure’s Virtual Filtering Platform

352

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

Egress Engine (SW+HW)

VM

...

VM

Egress

Processing
S
h
a
p
er

Fastpath

N
IC

T
x

Host

N
IC

R
x

Host

Ingress Engine (SW+HW)
VM

VM

...Ingress

ProcessingF
a
b
ri
c

1©

2©

3© 4©

5©

6©

8©
7©

Figure 1: Overview of an on-host network virtualization stack.

uses Generic Flow Tables implemented in hardware and FPGAs to

accelerate other network functions [21, 22]. Changing the division

of labor between software and hardware can reduce but does not

fully eliminate isolation issues—see §8.

Based on incidents observed in production, we find that the sever-

ity and frequency of isolation breakages in current virtualization

stacks are significant enough to motivate a systematic characteriza-

tion. Accordingly, in this work, we focus on issues at the end-host

and assume that the network fabric is not a bottleneck. Our model

for a packet’s path is: VM Tx 1©→ egress engine 2©→ NIC egress

3© → NIC ingress 4© → ingress engine 5© → VM Rx 6©. At the

egress, packets may be buffered for shaping 8© based on policies

(e.g., WAN bandwidth allocation [38]) or to ensure that transmit

completions (§B) are returned to a VM in-order 7©.

A key factor which makes predictable performance difficult to

achieve is that per-packet processing costs are not constant, whether

in software or hardware. For instance, cache misses affect the num-

ber of CPU cycles needed to process a packet in software, while

the PCIe and DRAM bandwidth required per packet varies in hard-

ware [45, 53]. These costs also depend on the complexity of opera-

tions that must be performed on each packet [55, 58] as well as the

overall traffic mix. Thus, the packet processing capacity of a virtu-

alization stack is variable, unlike a link’s capacity in the fabric, and

makes it difficult to directly extend prior work on fabric bandwidth

isolation (Table 1) to this case. While our observations apply to a

broad range of implementations (§8), for concreteness, in the rest

of this paper we consider a kernel-bypass software virtualization

stack with hardware offloads [16].

In general, isolation can break due to contention for any shared

resource: egress engine processing capacity 2©, buffering in egress

engine 7© & 8©, egress NIC buffers 3©, ingress NIC buffers 4©, and

ingress engine processing capacity 5©. Through careful provision-

ing, it is possible to largely avoid issues at egress engine 2© and NIC

buffers 3©. For instance, we can throttle the egress engine to ensure

that egress NIC buffers do not overflow. However, there remain

three key points where isolation can break: egress buffering 7© &

8©, ingress NIC 4© and ingress engine 5©. We walk through each of

these along with examples of isolation breakages from production.

2.1 Egress Buffer Contention
At the egress, contention for shared buffers can break isolation

between VMs. Fig. 2 shows a scenario recreated from a production

incident, with three VMs on separate hosts. VM1 → VM2 is an

unthrottled (or “fastpath”) TCP flow. While fastpath packets are

expected to pass through the stack without delay, this expectation

may be violated in the presence of throttled flows, which must

be shaped. For example, at t = 12s , VM1 starts a 30s long UDP

flow to VM3, which needs to be rate limited to 10 Mbps per policy;

the queueing delay for UDP packets is shown as their sojourn

0
1
2

S
o
jo
u
rn

ti
m
e
(s
)

T
h
ro
tt
le
d

U
D
P

Throttled UDP flow starts

99th perc.

Median

0
1
2

H
o
L

d
el
a
y

(s
)

99th perc.

Median

0

1

R
a
te

(M
p
p
s)

U
n
th
ro
tt
le
d

T
C
P

Throughput

0 10 20 30 40 50 60 70
Time (s)

0
25
50

R
T
T

(m
s)

Delay increases and
throughput decreases
for unthrottled flows

P
in
g Ping RTT

Figure 2: HoL blocking and isolation breakage at egress.

0.0

0.1

0.2

0.3

R
a
te

(M
p
p
s)

10:50 11:05 11:20 11:35
Time (hh:mm)

0

2000

4000

R
T
T
(m

s)

VM1

VM2

VM3

(a) Packet rate overload

0
5
10
15
20

R
a
te

(G
b
p
s)

04:11 04:26 04:41 04:56
Time (hh:mm)

0

200

400

600

R
T
T
(m

s)

VM1 VM2

(b) Bandwidth overload

Figure 3: Isolation breakage at ingress due to overloads.

time in the shaper queues 8© (top plot). Due to interference in

in-order buffers 7©, the TCP flow experiences Head-of-Line (HoL)

blocking (second plot), resulting in decreased throughput (third

plot)—packets are held in the in-order buffer waiting for transmit

completions to finish in order for all flows, including rate limited

ones. RTTs for unthrottled ping from VM1 also increase during this

period (bottom plot).

The root cause of this phenomenon is that the egress buffer fills

up, either because the shaper queues 8© (which hold packet de-

scriptors for throttled flows) or the in-order buffers 7© (which hold

packet descriptors for both fastpath and throttled flows) are full. In

each case, faster flows can be HoL blocked because slower flows

monopolize the buffers. Note that increasing buffer size would only

delay isolation breakage, but would not prevent it. Interestingly,

even a single VM with different “flow types” can face this problem

(though it can be exacerbated by multiple VMs)—e.g., consider two

flows from the same VM, with the faster flow HoL-blocked due

to the slower one. Using separate buffers to isolate traffic would

require a buffer for each traffic class (rate limit) which is prohibi-

tively expensive. To mitigate such contentions, we need controlled

sharing of buffers and admission of packets into the stack.

2.2 Ingress NIC Contention
At the ingress, contention for NIC buffers 4© due to an excessively

high packet rate (PPS) can also break isolation. Fig. 3a shows an

incident from production where packet bursts to VM1 lasted for

a few minutes. While VM1 receives a goodput of 300 kpps (top)

at a low bandwidth (2 Mbps) due to small packets, 148 kpps drops

occur at the NIC. The RTTs to a few unrelated VMs on the same

host increase by more than 100× due to interference (bottom), even

though the burst is directed at VM1.

The root cause here is that a storm of small packets overwhelms

the packet-processing capacity at the ingress engine 5©, where

353

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

processing costs are per-packet rather than per-byte [29, 45]. As

there is a limit on the CPU cores available for packet processing, the

PPS capacity is bounded (the same is true for HW-based stacks [31,

53]). In particular, the NIC buffers fill up when the engine 5© cannot

process packets as fast as they arrive—e.g., when a VM is under a

DoS attack—saturating the ingress engine with a deluge of small

packets that it is unable to drain quickly from NIC queues 4©. The

overflowing NIC queues in turn leave little room for other traffic,

resulting in tail-drops at the ingress NIC and breaking isolation

between VMs.

2.3 Ingress Engine Contention
Finally, contention for resources in the rest of the ingress engine

due to a large spike of traffic (BPS) can also break isolation. Fig. 3b

shows such an incident where VM2 receives a burst of ∼16 Gbps

from a production service. On the same host, VM1 is receiving at a

low BPS of 20 Mbps. In addition to 186 kpps drops in the ingress

engine, RTTs for VM1’s traffic increase even though its workload

has not changed during the period.

Even if the engine drains the NIC queues 4© quickly, packets may

encounter bottlenecks in transit to VM queues 6©. Such bottlenecks

may arise for various reasons including cache misses, excessive

flow table lookups, and even the inability of VM queues to absorb

the spike. These bottlenecks can cause packets to be buffered and

eventually dropped after wasting CPU cycles—this harms isolation

and is also unfair. So, in addition to arbitrating engine resources,

we need admission control to mitigate contention.

2.4 Extent of Isolation Breakages
In summary, even if we assume no contention within the network

fabric, there are several ways in which a VM can adversely impact

the network experience of other VMs. These are not one-off in-

cidents; we found that their frequency is correlated with packet

drop rates at the ingress and HoL blocking latency at the egress.

We counted the number of 1-second intervals at each host when

the ingress drop rate exceeds 10 kpps in NIC Rx and found the

cumulative count over a fleet of servers to be tens of thousands

per day. As each such incident on a host can potentially impact

the isolation experience of tenants, the problem can become severe

since these incidents are not uniformly distributed over the fleet.

Even if we can provision resources to make isolation breakages

rare in the common case, the lack of isolation mechanisms creates

a soft target for disruptive traffic such as during DoS attacks; we

want to eliminate this target.

3 Design Principles

Based on our analysis (§2), we come away with two guiding princi-

ples for providing predictable performance to VMs:

P1. SLO-based resource sharing: for predictability, packet-processing

resources utilized for each VM should be proportional to per-

formance SLOs. In particular, sufficient resources within the

virtualization stack (e.g., CPU cycles, NIC and PCIe bandwidth,

shared buffers at shaper and NIC ingress) should be allocated

to ensure theminimum guarantees of the SLO (e.g., bandwidth)

independent of the behavior of other VMs. More generally, we

prioritize SLO-compliance over work-conserving behavior.

0 100 200
Time (s)

0.0

0.5

1.0

1.5

2.0

N
IC

D
ro
p
s
(M

p
p
s)

Before

After

0
2
4
6
8
10

T
h
ro
u
g
h
p
u
t
(k
R
P
S
)

Load

Mean 99.9th
100
101
102
103
104
105
106

L
a
te
n
cy

(μ
s)

Before After

Figure 4: Example: PicNIC ensures predictable performance.

P2. Backpressure and early drops: for efficiency, if a packet needs

to be dropped or queued, it should be done as early in the pro-

cessing pipeline as possible by applying apt backpressure—e.g.,

packets likely to be dropped at the receiver due to insufficient

resources should not be admitted at the source.

By using SLO-based resource allocation per VM (P1), an over-

loading VM quickly builds up its own queue or has its own packets

dropped before affecting others; this facilitates early detection of

SLO violations. While P1 is necessary, it is not sufficient to ensure

predictable performance SLOs (§4) as it still allows excessive de-

lay and losses—e.g., in an incast scenario, packets destined for a

VM may be admitted to the source egress engines in excess of the

receiver VM’s SLO-based ingress capacity. These excess packets

consume resources at the egress, in the fabric, and at the ingress,

only to be dropped eventually. Such wasted work elevates the la-

tency and packet drops for colocated VMs as seen in §2.2 and also

hurts efficiency. Thus, admission control with backpressure all the

way to the source and early drops (P2) are necessary to ensure

isolation and efficiency [17, 50, 66]. We find that a combination of

these principles is sufficient to ensure predictable SLOs with high

efficiency.

We show how PicNIC (§5), a system based on these principles,

ensures predictable performance in a simple three-host setup. We

have three client-server pairs of VMs: one pair runs a latency-

sensitive request-response workload, memcached [46], and the

other two run a resource-intensive UDP job.We place all server VMs

on the same host. The memcached client, colocated with another

UDP client, generates a load of 10k requests/sec (kRPS) to the server,

while the UDP clients generate 100B packets at a high PPS. Fig. 4

shows that without PicNIC, there are 1.2×106 drops/sec at the

receiver host NIC (left), resulting in elevated latency (right) and

low throughput in terms of completed RPS for memcached (middle).

PicNIC increases throughput by an order of magnitude to 100% and

lowers the tail latency by three orders of magnitude (close to the

memcached job existing by itself) while ensuring predictably high

goodput even for the intensive UDP flows (details in §6).

4 Predictable Virtualized NICs

The designer of any network virtualization stack must consider

the performance and isolation guarantees they wish to provide [4,

16, 22]—these properties cannot be “bolted on” as an afterthought.

Ideally, every VM should have the illusion of having its own ded-

icated NIC with known performance characteristics, regardless

of the unpredictable behavior of other VMs. Our approach is to

provide an abstraction of a predictable virtualized NIC, defined by

target SLOs, to each VM. A physical NIC is characterized by certain

properties such as bandwidth, delay and loss rate [31]. Drawing an

analogy, we define a predictable vNIC along the same three SLO

354

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

Metric Predictable vNIC SLO

Bandwidth min. and max. envelope (hose model)

Delay Low; predictable distribution*
Loss rate No drops for cooperating traffic*

*for well-behaved traffic in bandwidth envelope

Table 2: Abstraction: Predictable vNIC SLO metrics

dimensions of offered bandwidth, delay and loss rate. This provides

a quantifiable meaning to predictable performance and extends

the purely functional behavior of virtual NICs with SLOs. Table 2

summarizes our abstraction. While we do not include other possible

dimensions—e.g., message and packet rates—for intuitiveness, one

may extend this abstraction as needed.

By providing SLOs that apply to traffic at sources as well as

destinations, this abstraction provides the illusion of a dedicated

NIC to each VM. However, to fully understand the guarantees

ensured by this abstraction, it is important to consider the overall

mix of traffic and patterns of communication between VMs. We aim

to offer predictability for traffic mixes with a combination of shaped

and unshaped flows, as well as under ingress fan-in communication

patterns. Hence, some of the techniques proposed in PicNIC, e.g.

for sender coordination, would also apply to standalone NICs and

not just to virtualized NICs.

Bandwidth. We define bandwidth (BPS) using the hose model [18], a

natural fit for a vNIC. The abstraction is in terms of an envelopewith

a minimum guarantee (MIN_BPS) for performance and a maximum

cap (MAX_BPS) for predictability. MIN_BPS is based on provisioning and

is not oversubscribed—i.e.,
∑

MIN_BPS for VMs on a host ≤ host NIC

line rate. MAX_BPS is a cap that is not exceeded even if the VM is the

sole occupant of the host. MAX_BPS can be oversubscribed for higher

multiplexing and efficiency. If multiple VMs contend for bandwidth,

then after allocating each VM its MIN_BPS, any residual bandwidth is

shared per policy. The hose model along with BPS envelope allows

expressing a range of policies. Non-work-conserving policies, such

as MAX_BPS = MIN_BPS, can provide strict latency and loss properties,

while work-conserving policies, such as MAX_BPS per VM = NIC line

rate, can provide high utilization.

BPS SLOs are defined for traffic adhering to “standard” packet

size distributions, such as Internet Mix (IMIX) [10, 51, 75], as is

common for NICs, switches, and middleboxes [11, 68, 73]. Such

devices usually have a PPS limit and support line rate only if the

average packet size is above a certain limit—e.g., Intel XL710 40GbE

NIC has a PPS limit of ∼37 Mpps, and needs packets larger than

160B to achieve line rate [31].

Delay. vNIC delay for fastpath flows (§2) is the time elapsed from

the instant a packet exits the sender’s guest OS Tx queue, e.g.

virtio Tx [36], to being received at the Rx queue of receiver’s

guest OS, excluding the delay in fabric. For throttled flows, it also

excludes any delay necessary for shaping. vNIC delay has two parts:

(i) egress delay from guest OS Tx queue to the wire and (ii) ingress

delay from the wire to guest OS Rx queue. The ingress delay is

further split into two parts: (i) delay in NIC hardware queues and

(ii) delay in engine. We specify predictable vNIC delay as a distri-

bution rather than a fixed value—e.g., median delay ≤ 10μs and

99th perc. delay ≤ 50μs . We ensure delay guarantees for traffic that

adheres to its BPS envelope.

Loss rate. Like delay, a predictable vNIC should have low loss rate

for traffic within its BPS envelope. Particularly, both ingress and

egress drops should be zero for traffic responding to backpressure.

Uncooperative traffic that keeps discharging packets at a high rate

may experience high drops in order to ensure isolation for others.

Drops at the ingress hurt efficiency, and tail-drops at the NIC are

unfair; a predictable vNIC must avoid such drops at ingress.

To summarize, we define the abstraction of a predictable vNIC

in terms of bandwidth, delay and loss-rate SLOs for well-behaved

traffic that adheres to a standard packet size distribution. Delay

and loss-rate SLOs are for cooperating traffic within its BPS en-

velope. Even if a VM does not cooperate, we ensure predictable

performance for other well-behaved VMs. While we want to utilize

resources at shared contention points efficiently (e.g., in a work-

conserving manner) in the common case, we rapidly switch to

strict isolation when the goal of efficiency is too far counter to

isolation—e.g., when per-VM target SLOs may be violated. We build

PicNIC with three mechanisms to quickly detect such cases and tilt

the tradeoff towards isolation in sub-ms response time and with

negligible overhead to the dataplane.

5 Design and Implementation

In this section, we introduce the constructs of PicNIC and discuss

their combined role in achieving the predictable vNIC abstraction

(§5.1), followed by the details of design and implementation of each

construct (§5.2 to §5.4).

5.1 Constructs and Guarantees
Abstractly, instantiating the design principles (§3) in either hard-

ware or software requires a combination of local and end-to-end

constructs for: (i) sharing resources at ingress based on SLOs (P1),

(ii) admission control to manage contention at ingress (P2), and

(iii) sharing egress resources per SLOs with apt backpressure to

guest (P1,P2). Concretely, for a software-based virtualization stack,

we identify the following three design constructs. Fig. 5 shows their

system-level view.

Ingress CPU-fair Weighted Fair Queues (§5.2). At the ingress, PicNIC

implements per-VM CPU-fair weighted fair queues (CWFQs) to

share the engine’s processing capacity (P1) by apportioning the

engine’s CPU cycles in proportion to VM weights. A VM i’s weight

(wi) is based on its SLO—e.g.,wi ∝ MAX_BPSi .

Receiver-driven congestion control (§5.3). PicNIC provides SLO-based

shares of NIC bandwidth and engine capacity to VMs following the

hose model. To meet delay and loss-rate SLOs at ingress, it applies

backpressure to sources (P2) by implementing a receiver-driven

hypervisor-level congestion control called PicNIC Congestion Con-

trol (PCC). PCC computes ingress rate limits per VM and shares

these limits among senders.

Sender-side admission control (§5.4). At the egress, PicNIC imple-

ments admission control using a traffic shaper based onCarousel [67]

to enforce the rate limits computed by PCC. Additionally, it cre-

ates backpressure to guest VM transport (P2) and enforces per-VM

packet limits in the shaper buffer for isolation (P1).

355

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.
G
u
a
ra
n
te
e
s

Constructs CPU-fair Weighted Fair Queues PicNIC Congestion Control PicNIC Sender-side Admission Control

(CWFQs, at ingress) (PCC, end-to-end) (at egress)

Bandwidth Compute SLO-based NIC BW share per re-

ceiver; backpressure to egress host

Enforce VM-VM BPS limits and per-VM

MAX_BPS; backpressure to guest OS stack

Delay Share engine CPU based on SLO;

provide signals to PCC

Compute PPS rate limit for each receiver;

backpressure to egress host

Enforce VM-VM PPS limits; backpressure to

guest OS stack; egress isolation

Loss rate Avoid unfair drops at NIC Rate limit senders to avoid drops Backpressure to guest OS stack

Table 3: PicNIC constructs. Role of each PicNIC construct in achieving the predictable virtualized NIC abstraction.

Achieving a predictable vNIC abstraction. We provide insights

into our choice of these constructs and outline how they work

together to provide bandwidth, delay and loss-rate SLOs. Table 3

summarizes the role of each construct.

Bandwidth envelope. PCC computes the SLO-based ingress BPS

limit per receiver VM by first allocating the minimum bandwidth

SLO (MIN_BPS) for each VM and then dividing the residual host NIC

bandwidth based on the maximum bandwidth SLOs (MAX_BPS). Per

the hose model, PCC rate limits traffic at senders to meet the SLO-

based ingress BPS limit for each receiver VM. It also imposes a total

egress rate limit of MAX_BPS for each VM.

Low vNIC delay. At the ingress, isolation breaks when a high-rate

flow overloads the engine (§2.2). CWFQs share engine capacity

among VMs per SLO and drop offending traffic fairly to protect

others. This still wastes resources to pull and classify extra packets

from the NIC before dropping. NIC Rx queueing also increases in

such cases. To avoid such ingress overloads, PCC computes and

applies a SLO-based PPS rate limit for responsible traffic. At the

egress, PicNIC applies backpressure to guest OS stack when shaping

flows. To avoid HoL blocking due to slow flows exhausting buffer

resources (§2.1), PicNIC’s out-of-order completions (§5.4.3), along

with Linux NAPI-TX [44], offers per-TCP-flow level backpressure.

Per-VM packet accounting (§5.4.2) limits the number of outstanding

packets per VM in the engine, thus protecting other VMs regardless

of the number of flows for each VM.

Low loss rate. At the ingress, CWFQs move packets from NIC

queues to per-VM queues with high priority to avoid any unfair

NIC drops. To avoid both NIC and CWFQ drops at ingress, PCC

enforces rate limits at the egress. Sender-side admission control

applies backpressure to guest OS stack to prevent drops at egress.

5.2 Ingress CPU-Fair WFQs
The goal of CWFQs is to reduce unfair NIC drops and share ingress

engine’s CPU based on SLOs to provide isolation at short timescales.

They also aid in early detection of overloads.

The capacity of the packet-processing engine on the end host is

generally not constant and depends on various factors including

packet sizes, complexity of network functions, cache misses etc.

During overloads, the engine may not be able to process packets as

fast as they arrive at the NIC, leading to queueing and eventually

tail-drops in the NIC Rx queues—both are unfair as a high-rate flow

can impact other flows.

Sharing engine capacity is challenging using conventional ap-

proaches such as allocating SLO-weighted ingress BPS per VM.

BPS does not reflect the true resource usage—e.g., a flow with 64B

packets at a modest 512 Mbps translates to 1 Mpps, which may

consume significantly more CPU cycles relative to another flow

with 1500B packets at a higher BPS of 2.4 Gbps but lower PPS of

200 kpps. Engine CPU usage relates more directly to PPS instead

of BPS. However, even using PPS to track resource usage is tricky

as some flows need more complex processing, e.g. encryption, and

hence more CPU cycles per packet compared to others. Thus, we

must account CPU cycles used by the engine for each VM.

To track engine CPU usage per VM, PicNIC classifies packets

early by pulling them from NIC Rx, classifying them by destination

VM, and pushing them to the corresponding per-VM CWFQs. All

resource-intensive processing happens after CWFQs. By draining

NIC queues with high priority, PicNIC mitigates unfair tail-drops

and delays in the NIC. From per-VM queues, PicNIC dequeues pack-

ets for processing while sharing engine’s CPU cycles fairly. For this,

PicNIC records the CPU time spent to process each VM’s packets

and maintains the moving average (EWMA) giving more weight

to recent CPU usage. Using EWMA CPU time per-VM, PicNIC as-

signs each VM a dynamic priority that governs how frequently the

VM’s queue is scheduled. PicNIC recomputes and decreases a VM’s

priority whenever its queue is serviced, while skipping any empty

queues when scheduling. Hence, PicNIC’s work-conserving sched-

uler ensures that each VM is allocated engine CPU in a weighted

fair manner based on its demand and weight (∝ SLO).

5.3 PicNIC Congestion Control
PCC plays a central role in achieving all three SLOs by applying apt

backpressure across the network and coordinating among multiple

senders and receivers (Table 3). Note that while CWFQs are needed

only when multiple VMs exist per host, PCC is required even when

VMs exist in isolation on each host.

PCC implements receiver-driven hypervisor-level admission con-

trol. It has two parts: (i) PCCB, which sets BPS limits to ensure band-

width envelopes, and (ii) PCCP, which sets PPS limits to ensure low

vNIC delay and loss rate; only one of these limits is dominant at a

given time for each flow [14, 25]. With just BPS limits, we can pro-

vide bandwidth SLOs and yet not meet the delay and loss-rate SLOs.

Similarly, with just PPS limits, it is difficult to ensure bandwidth

envelope as packet sizes vary. Hence, we require both.

5.3.1 Bandwidth envelope. At the ingress, PCCB apportions

the host NIC’s BPS capacity (C) among VMs per their (MIN_BPS,

MAX_BPS) envelopes. To avoid drops, sources should not send, in

aggregate, more than the receiver VM’s apportioned ingress BPS.

PCCB ensures that eachVMgets an ingress BPS ∈ [MIN_BPS, MAX_BPS].

Note that this allocation may not always be work-conserving be-

cause of the MAX_BPS limit per VM.

PCCB monitors the rate, r inj , at which traffic for a VM j is re-

ceived at the host. To compute the fair ingress capacity c j for each

356

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

Guest

Guest

...

Packet
accounting

consolidate multiple
rate limits

set egress

timestamp

TS
Egress

processing

Timing wheel
out-of-order

completionsbackpressure to guest OS

NIC Tx

Egress Host

Guest

Guest

...
Ingress

processingCWFQs
...

F
a
b
ri
c

Ingress Host

NIC Rx

measurement framework
(CPU cycles, bandwidth, delay, · · ·)

compute rate-limits for senders
(share BW & CPU cycles based on SLO)

congestion
control

Figure 5: PicNIC architecture. Local constructs (ingress CWFQs and egress sender-side admission control) working in coherence with end-to-end receiver-

driven congestion control to achieve the predictable vNIC abstraction.

VM j, it first allocates the MIN_BPS: ∀j, c j ← MIN_BPSj . Then, it al-

locates any spare bandwidth (C −
∑
c j) to each active VM (i.e.,

with r inj > 0) in proportion to the VM’s MAX_BPS and subject to

c j ≤ MAX_BPSj . To ensure that the ingress rate (r inj) for each VM

converges to its fair capacity (c j), provided there is enough traf-

fic, PCCB computes a BPS value r l imj to rate limit senders. We

experimented with various control algorithms, each showing dif-

ferent convergence properties, such as time to converge to the

correct rate and stability. For concreteness and ease of comparison

with prior work, we present an implementation based on RCP and

EyeQ [19, 35]:

at every epoch, r l imj ← r l imj ·

(
1 − α ·

r inj −c j

c j

)

PCCB computes r l imj at fixed epochs of length ϵ and notifies

r l imj to sender hosts. At the egress, PicNIC rate limitsVMi → VMj

traffic towi · r
l im
j so that c j is shared among senders in proportion

to their SLO (e.g. w ∝ MAX_BPS). This approach is independent

of the number of senders so that r inj converges to c j while r
l im
j

scales automatically to a stable fixed point. In addition, PicNIC also

enforces a total egress rate limit of MAX_BPS for each sender VM.

5.3.2 Ensuring low delay in vNIC. While PCCB ensures BPS

SLO for VMs, delay and loss-rate SLOs do not follow automatically—

e.g., delay and drops can be high if a colocated VM receiving at a

high PPS, but within its BPS limits, overflows ingress queues (§2.2).

PCCP handles such cases.

PCCP’s goal is to keep the vNIC ingress delay within a given

distribution. Its activation is gated by per-VM CWFQ occupancy,

and it remains off for VMs whose traffic do not contribute to over-

load. Thus, in the absence of engine overload, PCCP is off. When

PCCP is activated for a VM due to high CWFQ occupancy or drops,

it starts with a rate estimate. The VM’s maximum loss-free receive

rate [50] or CWFQ goodput acts as a good estimate because it is

close to the desired ingress PPS rate for the VM.

PCCP is delay-based. The ingress delay (delayin) consists of de-

lays in the NIC and CWFQs. After CWFQs, packets are processed

and delivered to VMs without further queueing. As PicNIC ensures

that each VM gets an SLO-based share of engine CPU for packet

processing, an overloading VM with a resource-hungry flow gets

lower scheduling priority for its CWFQ, making its packets wait

longer in CWFQs compared to others. So, CWFQ delay automati-

cally captures the engine’s packet processing cost for each VM.

delayin = Tdequeue from per-VM queue −Treceived at host NIC HW

PCCP uses delayin , measured using accurate NIC hardware

timestamps, as congestion signal to compute the VM’s ingress PPS

Algorithm 1: PCCP rate control

Input: delay_in

delay ← EWMA(delay, delay_in)

if delay > threshold then � multiplicative decrease (MD)

rate ← (1 − β · (1 − threshold
delay

)) · rate

counter ← 0 � enter fast recovery (FR)

tarдet_rate ← rate

else � default: fast recovery (FR)

if NAI < counter ≤ NHAI then � additive increase (AI)

tarдet_rate ← tarдet_rate + δ

if counter > NHAI then � hyper-active increase (HAI)

tarдet_rate ← tarдet_rate + (counter − NHAI) · δ

rate ←
rate+tarдet_rate

2

counter ← counter + 1

Output: rate � initial value = goodput / approx. #senders

capacity. We use PPS here as delay depends on engine CPU usage,

which relates more directly to PPS than BPS. Bounding delayin for

an overloading VM also decreases the shared NIC queuing part;

this, in turn, ensures low delayin for well-behaved VMs. Alg. 1

describes PCCP’s rate control algorithm, which is based on these

observations and inspired by prior approaches [1, 48, 78]. In a nut-

shell, it keeps delayin close to a specified threshold . Multiplicative

decrease reduces rate based on the extent by which delay exceeds

threshold , while fast recovery attempts to quickly increase the rate

to the value before the last decrease. Additive increase probes for

higher rates when delay is within the threshold, and after a few

cycles, it enters hyper-active increase to accelerate. Like PCCB, this

also runs at fixed epochs per VM.

PicNIC tracks the approximate count of sources with lightweight

cardinality estimation methods—e.g., HyperLogLog [23]—and uses

it to set a per-sender limit instantly on activation (Alg. 1). This

ensures low vNIC delay even while PCCP’s rate limit converges.

Feedback mechanism. For both PCCB and PCCP, we explored two

choices: (i) the in-datapath approach either generates special pack-

ets in the datapath or uses encap headers of packets in the reverse

direction to piggyback rate limits and (ii) the control-thread ap-

proach uses a control thread to scrape statistics and sampled sources

cached in the datapath, compute rate limits and notify source hosts

via a control channel, e.g. RPC. While the in-datapath approach is

more responsive, it also incurs overheads in the critical datapath.

5.4 Sender-side Admission Control
To enforce PCC’s rates limits, PicNIC implements a traffic shaper

building on Carousel [67] at the egress (§5.4.1). PicNIC avoids egress

isolation breakages (as in §2.1) by adding two techniques: (i) packet

357

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

Guest IP Stack

Guest NIC driver (virtio)

PicNIC CC Shaping

Other Shaping (e.g. BwE)

Timing Wheel

Per-VM Buffer Accounting

NIC

Packets OOO Completion

Packets

OOO Completion

Guest

Host

NAPI-TX:
Reduced buffer bloat

(Out of Order Completions)

OOO VirtIO:
No HoL blocking
between flows

Accounting:
VMs buffering isolation

Figure 6: PicNIC’s sender-side admission control.

accounting (§5.4.2) and (ii) backpressure to guest OS stack (§5.4.3).

Fig. 6 illustrates PicNIC’s sender-side admission control.

5.4.1 Enforcing Rate Limits. PicNIC implements shaping with

a single time-indexed queue—Timing Wheel (TW) [74]. It supports

a flow being shaped by multiple policies [14, 25]. In our imple-

mentation, the rate limits applicable to a packet are consolidated

into a single timestamp based on the slowest rate. This timestamp

serves as the earliest departure time for when the packet is released

from the TW for transmission. VM-to-VM BPS and PPS rate limits

computed by PCC are also consolidated into these timestamps.

5.4.2 Packet Accounting. To avoid costly dynamic memory al-

location, the engine uses a statically-allocated shared packet de-

scriptor pool. We buffer packets for throttled flows in the TW and

release the corresponding descriptor when a packet leaves the TW

and enters the NIC. A non-cooperating VM can exhaust the entire

descriptor pool by discharging packets at a high rate for a throttled

flow, leading to drops for other VMs (§2.1). To handle this, Pic-

NIC introduces Packet Accounting to track the number of packets

buffered in the TW from each VM. It sets a per-VM cap and a total

shared cap on the number of buffered packets, and does not admit

packets that exceed either limit. Thus, even if a VM sends excessive

packets for throttled flows, it cannot exhaust the descriptor pool,

and hence would not impact other VMs’ flows.

5.4.3 Backpressure to Guest OS. Egress shaping must be ac-

companied by complete backpressure to the guest networking stack

(§2.1 and §3). Every link in this chain of backpressure is critical

for isolation. PicNIC implements this by combining out-of-order

completions [67] for backpressure from the engine to the guest NIC

driver, and NAPI-TX [44] along with TCP Small Queues (TSQ) [15]

for backpressure from the guest NIC driver to the guest IP stack.

The first link in this chain is from the egress engine to the guest

NIC driver. To create backpressure here, the engine must hold the

completion event for each packet until the packet actually leaves

the engine. On dequeuing a packet from guest Tx queues, instead

of marking it as Tx complete immediately, PicNIC sends the Tx

completion to the guest onlywhen the packet is delivered to the host

NIC (or dropped). By limiting the number of descriptors per VM,

we prevent a VM from sending a deluge of packets into the engine.

Implementing such deferred completions needs support from the

guest driver—e.g., virtio [36] works in two completion modes,

in-order and out-of-order (OOO). In the in-order mode, completion

events must be received in the same order as the transmission

sequence—e.g, if a VM has two flows and only one is throttled, the

unthrottled flow’s descriptors cannot be freed until the throttled

flow’s descriptors are freed; this causes HoL blocking. Eventually,

both flows become throttled. To solve this, PicNIC enables OOO

completions in virtio so that the flows’ descriptors can be freed

independently. This relies on packet accounting to limit the number

of buffered packets per flow and ensuring that this limit is lower

than the total number of descriptors in the guest NIC.

The second link in this chain is from the guest NIC driver to the

guest stack. We combine NAPI-TX with TSQ to ensure that each

flow can queue only a limited amount of data for Tx in the guest

stack. NAPI-TX is a Linux kernel feature that makes virtio call the

SKB destructor after a packet is actually “out”—i.e., at Tx completion

interrupt, instead of immediately on enqueue to virtio. This pro-

vides socket backpressure and is needed for TSQ. Enabling NAPI-TX

in guests is critical for complete backpressure all the way up to the

guest applications as depicted in Fig. 6. This prevents bufferbloat

and avoids associated long latencies and isolation breakage among

flows for a VM as shown in §6 (Table 4).

5.5 Practical Considerations
We need to overcome multiple challenges to make PicNIC prac-

tical. The key challenges stem from our goal of sub-ms isolation

enforcement without sacrificing datapath performance.

Responsiveness. We need early signals of overloads. We engineer

CWFQs to provide basic isolation at short timescales and aid PCCP

with signals for rapid overload detection. Notifying rate limits to

sources quickly is challenging as maintaining a list of all senders

is expensive; PicNIC uses lightweight sampling to identify heavy-

hitters. To make PCCP more responsive, we start it with an initial

rate estimate to apply immediately on detecting isolation issues.

Performance. To achieve line rate, we have O(100ns) to process

each packet; so every per-packet operation needs to be optimized

to minimize overhead. We address this by running PCC at fixed

epochs instead of per-packet while deriving congestion signals from

existing metrics. We gate PCCP on CWFQ occupancy; this turns off

PCCP to reduce overheads when there are no isolation issues. To

keep the datapath minimal and fast, we explored a control-thread

based approach that moves PCC out of the datapath (§5.3).

Sometimes, the source of offending traffic could be the Inter-

net, and not other VMs in the same datacenter—e.g., in the case

of DoS attacks. To handle such cases, PicNIC considers the load-

balancers [20, 56] as traffic sources and sends rate feedback to

load-balancers, which impose throttles on DoS traffic. As there can

be multiple load-balancers, we also explored a centralized approach

for rate dissemination where a central server collects all feedbacks

and distributes them based on source weights. While a distributed

approach may take longer to notify all sources, a centralized ap-

proach can disseminate rate limits quickly.

6 Evaluation

We evaluate PicNIC in production of a major cloud provider. We

start with microbenchmarks (§6.1) to show that PicNIC implements

the predictable vNIC abstraction with low overheads (§6.2). Then,

we quantify the benefits to applications (§6.3) and end-users (§6.4).

358

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

VM

A

VM

B

h1

h2

h3

VM

C

VM

D

f ij : i to j flow

(a) Setup

T
h
ro
u
g
h
p
u
t
(G

b
p
s)

0

6

12

12 6 5 5

5AC AD

0 60 120 180 240
Time (s)

0

6

12

6 5

7

5

5
BD

BC

(b) VM-VM throughput within envelope

101 102 103 104

Latency (μs)

0.00

0.25

0.50

0.75

1.00

C
D
F Perfect Isolation

CWFQ+PCCB

PicNIC

(c) Low latency

PicN
IC

0.0

0.5

1.0

1.5

2.0

N
IC

D
ro
p
s
(M

p
p
s)

108
pps

CW
FQ

+

PCC
B

(d) Near-zero drops

PicN
IC

0.0

0.5

1.0

1.5

2.0

G
o
o
d
p
u
t
(M

p
p
s) UDP

CW
FQ

+

PCC
B

(e) Better goodput

Figure 7: Microbenchmarks: PicNIC provides a predictable vNIC abstraction to VMs. In addition to providing predictable bandwidth envelope, low

latency and near-zero drops, PicNIC also improves the goodput for the PPS-intensive traffic.

6.1 Microbenchmarks
First, we show that PicNIC realizes the predictable vNIC abstraction

with a small setup (§6.1.1), and then we evaluate each construct of

PicNIC in more detail (§6.1.2).

6.1.1 Predictable vNIC. To show that PicNIC ensures a band-

width envelope, low delay and loss rate for VMs (Table 2), we use

the setup shown in Fig. 7a.

Bandwidth. The key result we show is that even while bottlenecks

shift, the BPS for every VM is maintained within the envelope.

To construct shifting bottlenecks, we stagger the start of VM-VM

flows fAC , fBC , fBD and fAD . Each host NIC’s capacity is 20 Gbps,

and each VM’s BPS envelope is set to [4 Gbps (MIN_BPS), 12 Gbps

(MAX_BPS)]. Fig. 7b shows the overall throughput for each flow. Ini-

tially, fAC achieves 12 Gbps as PicNIC enforces MAX_BPS egress rate

for A. When fBC starts, PCCB detects the contention for C’s ingress

bandwidth (12 Gbps) and rate limits each flow to 6 Gbps. When fBD
starts, PCCB detects that D is active, and computes the share of h3’s

NIC bandwidth (20 Gbps) as 10 Gbps each for C and D. This causes

the rate limits for fAC and fBC to decrease to 5 Gbps each. This,

in turn, leaves spare egress bandwidth for B, which fBD grabs to

achieve 12 - 5 = 7 Gbps. Finally, when fAD arrives, PCCB allocates

D’s ingress capacity (10 Gbps) equally among fAD and fBD .

Low delay. We show that (i) PicNIC, with PCCP, ensures low latency

and drops even in extreme cases while (ii) just BPS guarantees are

insufficient to achieve these. We extend the setup in Fig. 7a with

twomore VMs: E onh2 and F onh3. fAC and fBD are high-PPS UDP

flows with 256B packets. Wemeasure RTT for fEF which is an open-

loop latency prober generating packets following a Poisson process

(rate λ = 1 kpps) and discards any drops from measurements.

Fig. 7c shows fEF RTTs measured with PicNIC and compares it

to the cases with (i) just BPS envelope (i.e., with CWFQ+PCCB but

no PCCP), which can be thought of as similar to EyeQ [35], and

(ii) perfect isolation, i.e., when the latency prober is run by itself

without any other traffic. As the flows are not BPS-intensive, there

is no contention for bandwidth. However, the high-PPS UDP traffic

causes isolation breakage at the hosts and impacts the latency for

fEF . PicNIC detects this isolation issue and throttles UDP to the

appropriate rate so that fEF achieves latency close to the case with

perfect isolation.

Low loss rate. As h3’s ingress engine is overloaded with high-PPS

UDP traffic, packets are dropped at the host NIC. Even with CWFQ+

PCCB, we find such tail-drop rate to be 1.54 Mpps as shown in

No CWFQ with CWFQ
0
10
20

T
h
ro
u
g
h
p
u
t

(G
b
p
s) 20

4xTCP 200xTCP

(a) CWFQs at ingress

Throttled UDP
0
5
10

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

with PA
No PA

Unthrottled TCP
0
5
10
15

(G
b
p
s)

with PA

No PA

(b) Packet accounting at egress

Figure 8: Ingress and egress isolation with PicNIC constructs.

Setup
Throughput (Mbps) Timing wheel

occupancy

Drops

(kpps)
Unthrottled Throttled

No NAPI + EC 8,993 9 4000 (100%) 300

NAPI + OOO 10,145 9 50 (1.25%) 0

Table 4: OOO completions and NAPI-TX ensure egress isolation.

Fig. 7d. With PicNIC, such drops decrease to a mere 108 pps as

PicNIC admits only enough packets as can be processed without

breaking isolation.

Improved efficiency. Somewhat counterintuitively, even though Pic-

NIC throttles the UDP flows, the total goodput for UDP increases

from 0.96 Mpps to 1.57 Mpps as shown in Fig. 7e. By applying back-

pressure to excess traffic, PicNIC avoids wasted work of pulling

packets from the NIC and classifying them into per-VM queues be-

fore it can decide to drop packets exceeding their engine CPU share.

Thus, performing admission control as opposed to dropping packets

leads to increased engine efficiency and 1.6× higher goodput.

6.1.2 Components. Now, we evaluate the constructs in more

detail and tease out their role in achieving predictable performance.

CPU-fair Weighted Fair Queues. Consider the setup from Fig. 7a

with two VM-VM flows: fAC with 4 parallel TCP streams and fBD
with 200 parallel TCP streams. Without CWFQs, fBD gets an un-

fairly high share of CPU cycles at h3, while fAC suffers as shown in

Fig. 8a. On enabling CWFQs, the ingress engine’s capacity is shared

equally among the two flows, and hence both are able to achieve

equal (fair) throughput.

Packet Accounting (PA). We reproduce egress isolation breakage

using the setup from Fig. 7a by moving VM B to h1 so that A and

B are colocated. fAC is unthrottled TCP, while fBD is a UDP flow

throttled to 10 Mbps. Without accounting, B keeps sending pack-

ets for fBD , most of which are dropped at the traffic shaper. This

exhausts the descriptor pool in the engine and impacts the unthrot-

tled flow, fAC . Packet accounting limits the number of outstanding

packets from B in the engine and thus provides isolation for A, as

shown in Fig. 8b.

359

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

0 10 20 30 40 50 60 70
Time (ms)

0
2
4
6
8
10
12

R
a
te

li
m
it
(G

b
p
s)

5ms
ϵ = 128μs ϵ = 512μs ϵ = 2048μs

Figure 9: PCCB converges within 5ms .

0

1

2

3

R
a
te

li
m
it
(M

p
p
s)

UDP flow starts at t = 0

PCCP throttles UDP immediately
MD

FR

AI HAI

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

5

10

15

20

In
g
re
ss

d
el
a
y
(μ
s)

Mean: 9.05μs Median: 8.54μs 99th perc.: 13.25μs

Delay threshold = 10μs

Figure 10: Predictable low latency with PicNIC.

OOO Completions and NAPI-TX. Next, we see how HoL blocking

can arise between flows. Consider two flows: i) fAC—UDP throttled

at 10 Mbps, and ii) fAD—unthrottled TCP. With in-order early

completions (EC), descriptors are freed as soon as they leave the

guest. Thus, both flows are able to transmit packets into the egress

stack at the same rate. This overwhelms the TW as it has to drop

packets beyond the horizon for throttled flows. PicNIC implements

out-of-order completions (OOO) plus NAPI-TX with virtio for

the guest. As shown in Table 4, this improves the throughput for

the unthrottled flow while keeping the TW occupancy low and

eliminates egress drops in the engine.

Responsiveness of PCC. For each receiver VM, PCCB computes rate

limits at epochs of fixed duration (ϵ). We quantify the responsive-

ness of PCCB with varying ϵ using the setup from Fig. 7a and a BPS

envelope of 4 to 12 Gbps per VM. At t = 0, only fAC is active and

gets the entire 12 Gbps. At t = 20ms , fBC starts and now, PCCB

needs to limit each flow to 6 Gbps tomeet MAX_BPS for C. Fig. 9 shows

that using a small ϵ = 128μs leads to oscillations for fAC ’s limit,

while a large value of 2ms leads to slow convergence. An epoch of

a few RTTs leads to fast convergence—e.g., with ϵ = 512μs , the rate

converges within 5ms . We find similar convergence for PCCP but

leave a formal analysis to future work.

Predictable latency. We evaluate the efficacy of PCCP in ensuring

low vNIC delay using the same setup. fBD is a low-BPS latency-

sensitive flow. At t = 0, fAC starts a high-PPS UDP traffic with 100-

byte packets to create extreme overload ath3. We use a conservative

value of ϵ = 5ms , and set the vNIC ingress delay threshold to 10μs .

Even in this extreme case, PicNIC is able to deliver predictable

latency for fBD as shown in Fig. 10. First, even with a large ϵ , as

soon as PicNIC detects an isolation issue, it turns on PCCP with a

rate estimate based on goodput. This brings the vNIC delay close

to the threshold within a single epoch while the rate converges.

Second, PCCP remains stable at a point that ensures that the vNIC

1

10

100

1000

10000

R
T
T
(μ
s)

Mean

Mean

99th perc. : 100B pkts

99th perc. : 256B pkts

1000 500 200 100 50 20 10 5
vNIC ingress delay threshold (μs)

0.0

0.5

1.0

1.5

2.0

G
o
o
d
p
u
t
(M

p
p
s)

CWFQ
+ PCCB

100B pkts

256B pkts

Figure 11: Goodput and RTT vs target engine delay.

ingress delay is close to the target threshold, with a mean delay of

9.05μs , and 99th perc. delay of 13.25μs .

High throughput and low delay. Next, we show that PicNIC delivers

consistent low delay and high goodput for resource-intensive traffic

while navigating strict isolation and efficiency. We extend the setup

from Fig. 7a with two more VMs as before (E on h2 and F on h3).

fAC and fBD are high-PPS UDP flows, while fEF probes latency

(Poisson process with rate λ = 1 kpps).

With just BPS envelope and 100-byte UDP packets, the UDP

flows achieve a total goodput of 0.93 Mpps, while the mean fEF
RTT is 7.5ms as shown in Fig. 11. PCCP is able to reduce latency by

over two orders of magnitude while delivering higher goodput for

UDP flows. Fig. 11 (top) shows that as we lower the delay threshold,

the measured RTT correspondingly reduces as expected. The bot-

tom plot shows that the goodput improves by as much as 100% as

the threshold is lowered to a point, perhaps counterintuitively. This

is because PicNIC avoids drops at ingress, thus achieving higher

efficiency which manifests as increased goodput. As the threshold

becomes stricter, the rate limit for UDP flows is further reduced

and ultimately leads to a decrease in goodput. However, even with

the strictest threshold of 5μs , PicNIC ensures a goodput (1 Mpps)

comparable to the case with just BPS envelope, but with a remark-

ably lower mean fEF RTT of 20.3μs . We see similar results with

256-byte UDP packets.

6.2 Overheads, Response Time and Scalability
PicNIC’s major overhead arises from implementing PCC in the

datapath. To quantify the tradeoff between responsiveness and

overheads, we measure the throughput of a TCP flow between two

VMs placed on separate hosts while changing the PCC feedback

interval. At the egress, we enforce a dummy high rate limit so

that the flow is never throttled, but it will be affected as PicNIC

uses CPU cycles. As shown in Fig. 12, if the feedback is received

too frequently, e.g., every 10μs , the goodput degrades by ∼22%.

However, as we see good convergence with ϵ ≈ 500μs in §6.1.2,

we expect to run PCC at a similar granularity. As we increase the

interval, the overhead decreases and becomes negligible at 1 ms.

We find that these overheads are good enough for rapid response

to isolation breakages while remaining work-conserving in the

common case. We note that while PCC is reactive, CWFQs and

sender-side admission control are proactive and provide isolation

at even faster timescales.

360

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

10m
s
1m

s
100

μs
10
μs

Feedback Interval

0

25

50

75

100

N
o
rm

a
li
ze
d

T
h
ro
u
g
h
p
u
t
(%
)

Figure 12: Overheads.

0 200 400 600 800
Response latency (μs)

0.00

0.25

0.50

0.75

1.00

C
D
F

Perfect isolation No Isolation

CWFQ

CWFQ + PCCB

Light workload

PicNIC

Figure 13: Memcached: Latency under low load (200 kRPS).

0 200 400 600 800 1000 1200 1400
Peak Throughput (×103 RPS)

0

250

500

750

1000

99
th

p
er
c.
la
te
n
cy

(μ
s)

Perfect isolation

No Isolation

CWFQ
CWFQ + PCCB

PicNIC
Light workload

Better

Figure 14: Memcached: Peak throughput and tail latency.

While the above microbenchmarks use a 20 Gbps NIC, we have

evaluated PicNIC with faster NICs, such as 40 Gbps and higher, and

find that PicNIC scales well with low overhead.

6.3 Application-level Performance
We quantify application-level benefits using a setup with two ten-

ants (say, T1 and T2) and 48 VMs placed over 9 hosts. T1 runs

memcached, an in-memory key-value store widely used as a low-

latency caching layer for database applications [46]. T1 replicates

Facebook’s ETC workload [6, 54] on 24 VMs using mutilate load

generator [42]. We ensure that memcached is not compute bot-

tlenecked by overprovisioning with 8 memcached servers and 16

clients. T2 runs a UDP workload with 12 client-server pairs colo-

cated with T1. Each UDP client generates 256-byte packets at 2

Mpps, i.e. at ∼4 Gbps per source.

First, we set the baseline with no isolation, and then incremen-

tally enable the different PicNIC components (§5): CWFQs, PCCB

with envelope of 3 to 12 Gbps, and finally the complete PicNIC

system with PCCP. We keep the egress constructs always enabled.

For comparison, we consider two cases: i) Perfect isolation: T1 runs

solely without T2 and with no MAX_BPS limit, and ii) Light workload:

T2 runs a very light workload (100 kpps) to help set T1’s perfor-

mance target with PicNIC when resources are shared even under

heavy workloads.

Latency. With no isolation, the median memcached response la-

tency is 686μs compared to 118μs with perfect isolation, as shown

in Fig. 13. CWFQs improve isolation at ingress, reducing the la-

tency but do not prevent drops of excess traffic and wasted work.

PCCB does little to improve latency because the UDP traffic is not

consuming excessive bandwidth, and bandwidth is not the bottle-

neck for memcached either. Finally, with PCCP, PicNIC ensures

performance isolation for memcached with 99th perc. latency of

256μs , close to 200μs with perfect isolation (in contrast to 354μs

with CWFQ+PCCB). In fact, the performance with PicNIC in the

presence of high-PPS UDP is similar to the case when T1 is sharing

the network with T2 running a light workload.

Throughput. Next, Fig. 14 shows the maximum achievable through-

put and the corresponding tail latency for memcached. Starting

with no isolation as baseline, as we incrementally enable individual

PicNIC constructs, the performance approaches the perfect isola-

tion case—i.e., when there is no contention for resources. Achieving

the same level of performance is not possible in a shared setup—e.g.,

in a setup with MAX_BPS per VM of 15 Gbps and the NIC line-rate

of 20 Gbps, a VM can get 15 Gbps with perfect isolation; but when

another similar VM also shares the host, each VM can achieve only

10 Gbps. Even when sharing the network with a high-PPS workload

tenant, PicNIC ensures performance isolation for T1 as if it was

sharing the network with another light-workload tenant.

6.4 Production
To show the practicality of PicNIC, we deployed it in a large public

cloud. We summarize a subset of results here; §C has more details.

§2 showed how rate limiting slower flows at the egress introduces

HoL blocking delay for faster flows. Deployments of out-of-order

(OOO) completions and Packet Accounting eliminated HoL blocking

between flows at the egress. Consequently, OOO completions, alone,

improved the tail latency for customer traffic by ∼13%.

On deploying CWFQs at the ingress, we see 96% reduction in

packet drops at NIC Rx queues. Excess packets are dropped fairly at

the per-VM queues. As noted in §5, CWFQs by themselves cannot

eliminate NIC packet drops completely; when CWFQs are coupled

with admission control, we observe further reduction in packet

drops and response times in mitigating isolation breakages, even

under DoS attacks. To handle congestion in the network fabric, we

also extended our prototype to incorporate ECN signals.

7 Solution Space of Performance Isolation

Table 1 summarized related prior work which focus on sharing

fabric bandwidth and not resources at end-hosts. PicNIC ensures

isolation at end-hosts and complements prior work to build an

end-to-end predictable virtualized network.

7.1 Mechanisms Used in Practice
Isolation is usually enforced using the following approaches.

Guest congestion control: While we have relied on flow-level con-

gestion control, e.g. TCP, it is changing with the Cloud—VMs are

free to use any congestion control, including none.

Static bandwidth limits: A common approach is to apply static

egress BPS limits per-VM based on policy. As the limits are neither

defined nor enforced for ingress, they can not ensure isolation in

many cases—e.g., against incasts and DoS attacks.

Cloud product offerings: Achieving predictable performance in pub-

lic cloud is challenging. A survey of major cloud providers indi-

cates the lack of concrete performance guarantees and isolation

mechanisms [3, 27, 47]. Even with the opt-in highest-performance

options—e.g., SmartNIC [22] and AWS Enhanced Networking [4]—

cloud providers only specify an “up to” BPS limit for each VM,

similar to static bandwidth limits. None of the providers offer la-

tency or loss-rate SLOs.

361

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

7.2 Related Work
Abstractions. A class of recent work has focused on building ab-

stractions that aim to provide tenants an illusion of a dedicated

network fabric [5, 7, 28, 41, 69, 76]. Such abstractions range from a

static virtual cluster or datacenter to those encoding time-varying

demands and communication patterns [7, 41, 76]. In contrast, Pic-

NIC proposes the predictable vNIC abstraction at the VM level.

Dynamic bandwidth arbitration: For flow aggregates overWANs [30,

32], centralized systems can compute dynamic BPS allocations [38].

These are difficult to scale to enforce isolation at short timescales

across thousands of VMs. Even proposed distributed approaches [35],

which mostly share network bandwidth in the fabric, do not ensure

isolation at end hosts. Enforcing BPS limits [5, 7, 8, 14, 28, 39, 41,

62, 63, 66, 69, 69, 76] do not automatically ensure end-to-end pre-

dictable latency and loss rate, which PicNIC aims to deliver. Further,

compared to constant link capacities in the fabric, PicNIC provides

predictable performance while sharing variable packet processing

capacity of virtualization stacks.

Tradeoffs: FairCloud [62] and HUG [14] study fundamental trade-

offs with respect to network utilization and minimum bandwidth

guarantees. HUG also explores fairness in the context of multiple

resources [24, 25], which could be applicable in this case too.

8 Discussion on Hardware Design

8.1 Hardware is not a panacea
A classical approach to achieving isolation is to push the problem

one level down. In this context, it means moving functionality and

contention management into the hardware (HW), for instance by

using per-VM queues or SR-IOV [57]. However, even physical NICs

have PPS limits and have to share limited resources such as PCIe

and DRAM bandwidth [26, 43, 53, 61]. Even using SR-IOV may lead

to unfair sharing of resources and performance interference [13].

PPS overloads remain an Achilles heel for HW stacks too.

Using per-VM queues is challenging in practice as they are

needed at all potential points of contention. Physical resource limita-

tions imposed by the HW may mean insufficient number of queues

in HW at every such point. Fundamentally, HW queues are “local”

constructs lacking global visibility, and thus are insufficient to guar-

antee isolation which requires coordination with multiple senders.

For instance, drops due to PCIe bandwidth exhaustion at the ingress

can break isolation similar to §2.2. For the same reason, novel data-

plane approaches [9, 59] based on HWvirtualization cannot provide

isolation on their own for the cases mentioned in §2. Recent work

in the context of RDMA has also demonstrated isolation issues

in HW [77]. Finally, as functionality moves to NICs [22, 72], it is

crucial to ensure predictable sharing of HW resources.

8.2 PicNIC in Hardware
We briefly discuss how PicNIC’s techniques can be applied in the

case of HW-based stacks. Usually, the NIC or FPGA implementing

the virtualization stack is connected over PCIe to the CPU. The

major potential bottlenecks along the path include PCIe bandwidth

and DRAM bandwidth. If one VM’s traffic monopolizes these re-

sources, it can lead to other VMs being starved unfairly and lead to

similar issues as illustrated in §2. Even if such resources are shared

fairly, packet drops can occur at ingress when the ingress rate for a
VM exceeds its fair-share rate. This again leads to unfairness as well

as inefficiency due to resource wastage. Thus, we need backpres-

sure to the sources to avoid contention at the receivers. At egress,

just rate limiting traffic can lead to drops and buffer contention in

the stack when a VM discharges packets at excessive rates. This

wastes resources such as PCIe and DRAM bandwidth, HW clock

cycles and SRAM buffers. So, we need to apply backpressure to the

guest OS stack as well. We find that the same design principles (§3)

carry over in the case of HW too. We outline the corresponding

PicNIC constructs for HW. For more details, see §A.

Ingress. In order to avoid unfair drops and delay in shared NIC Rx

queues, PicNIC can implement per-VM queues in HW. By monitor-

ing resources, such as PCIe bandwidth, used by each VM, PicNIC

can enforce SLO-based fair sharing by controlling how these queues

are scheduled.

Congestion Control. Both PCCB and PCCP are amenable to efficient

HW implementations. While PCCB monitors the ingress BPS per

VM, PCCP uses statistics from per-VM queues to compute rate lim-

its which are notified via feedback generated in the datapath. At

the egress, these rate limits are stored in a table, which may be par-

titioned between SRAM and DRAM based on resource constraints.

Egress. Recent work on scalable shaping [64, 71] can be leveraged to

enforce these rates efficiently. As the HW has accurate information

about when a packet is sent out, it can hold completion events till

then in order to implement OOO completions.

Overall, we believe that PicNIC’s design principles and constructs

are well-suited for implementing the predictable virtualized NIC ab-

straction on HW-based stacks too. We hope that the lessons learned

from PicNIC will cause performance isolation to be considered as a

primary objective for virtualization stacks and inform the design

of future NICs.

9 Conclusion

Isolation is a fundamental challenge in operating systems that is

exacerbated by VMs and cloud platforms. Today, cloud providers

face a dilemma: they must provide the illusion of an isolated virtual

slice of hardware to tenants, without being too wasteful of the

underlying resources. This paper presents PicNIC, a system that

uses a combination of localized SLO-based resource sharing and

end-to-end admission control, to provide the illusion of a dedicated

NIC to VMs, while responding to potential isolation breakages

within sub-ms timescales.

PicNIC opens up a number of interesting avenues for future

research. Can we pack more VMs onto each physical host without

sacrificing predictability? Where along the spectrum of isolation

and efficiency should cloud providers operate? If the time for re-

sponding to isolation breakages can be further brought down to

single-digit μs , what additional efficiencies might become possible?

How can future NIC designs facilitate predictable performance?

Therefore, we think of PicNIC as the first word about predictable vir-

tualized NICs, complementing prior work on sharing the network

fabric, not the last.

Acknowledgments. We would like to thank the anonymous SIG-

COMM reviewers, Dina Papagiannaki, Jeff Mogul and our shepherd,

Manya Ghobadi, for providing valuable feedback. This work was

partially supported by NSF grants CCF-1637532 and CNS-1413972

and ONR grant N00014-15-1-2177.

362

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

References
[1] Mohammad Alizadeh, Berk Atikoglu, Abdul Kabbani, Ashvin Lakshmikantha,

Rong Pan, Balaji Prabhakar, and Mick Seaman. 2008. Data Center Transport
Mechanisms: Congestion Control Theory and IEEE Standardization. In 46th
Annual Allerton Conference on Communication, Control, and Computing. IEEE,
Urbana-Champaign, IL, USA, 1270–1277.

[2] Mohammad Alizadeh, Albert Greenberg, Dave Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
Center TCP (DCTCP). In SIGCOMM. ACM, New Delhi, India, 63—74.

[3] Amazon. 2018. Amazon EC2. https://aws.amazon.com/ec2/
[4] Amazon. 2018. Enhanced Networking on Linux. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/enhanced-networking.html.
[5] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno

Thereska. 2014. End-to-end Performance Isolation Through Virtual Datacenters.
In OSDI. USENIX Association, Broomfield, CO, 233–248.

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In SIGMETRICS. ACM,
London, England, UK, 53–64.

[7] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards Predictable Datacenter Networks. In SIGCOMM. ACM, Toronto, Canada,
242–253.

[8] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gu-
nawardena, and Greg O’Shea. 2013. Chatty Tenants and the Cloud Network
Sharing Problem. In NSDI. USENIX Association, Lombard, IL, 171–184.

[9] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In OSDI. USENIX Association, Broomfield,
CO, 49–65.

[10] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In IMC. ACM, Melbourne, Australia,
267–280.

[11] Scott Bradner and Jim McQuaid. 1999. Benchmarking Methodology for Network
Interconnect Devices. https://www.ietf.org/rfc/rfc2544.txt.

[12] Randy Brown. 1988. Calendar Queues: A Fast O(1) Priority Queue Implementation
for the Simulation Event Set Problem. CACM 31, 10 (1988), 1220–1227.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise QoS prediction on non-preemptive accel-
erators to improve utilization in warehouse-scale computers. In ASPLOS. ACM,
Xián, China, 17–32.

[14] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. 2016. HUG:
Multi-Resource Fairness for Correlated and Elastic Demands. In NSDI. USENIX
Association, Santa Clara, CA, 407–424.

[15] Jonathan Corbet. 2012. TCP Small Queues. https://lwn.net/Articles/507065/.
Online, accessed: 2019-07.

[16] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat.
2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Network
Virtualization. In NSDI. USENIX Association, Renton, WA, 373–387.

[17] Peter Druschel and Gaurav Banga. 1996. Lazy Receiver Processing (LRP): A Net-
work Subsystem Architecture for Server Systems. In OSDI. USENIX Association,
Seattle, WA, 261–275.

[18] Nick G Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, Kadangode K
Ramakrishnan, and Jacobus E van derMerwe. 1999. A Flexible Model for Resource
Management in Virtual Private Networks. In SIGCOMM. ACM, Cambridge, MA,
95–108.

[19] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time is
the Right Metric for Congestion Control. CCR 36, 1 (2006), 59–62.

[20] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In NSDI. USENIX Association, Santa Clara, CA, 523–535.

[21] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in the
Public Cloud. In NSDI. USENIX Association, Boston, MA, 315–328.

[22] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In NSDI. USENIX Association,
Renton, WA, 51–66.

[23] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perLogLog: the analysis of a near-optimal cardinality estimation algorithm. In

Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 137–156.

[24] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-Resource Fair
Queueing for Packet Processing. In SIGCOMM. ACM, Helsinki, Finland, 1–12.

[25] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In NSDI. USENIX Association, Boston, MA, 323–336.

[26] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. 2017. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator. In NSDI. USENIX Association, Boston, MA, 83–96.

[27] Google. 2018. Google Compute Engine. https://cloud.google.com/compute
[28] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong, Peng

Sun, Wenfei Wu, and Yongguang Zhang. 2010. SecondNet: A Data Center Net-
work Virtualization Architecture with Bandwidth Guarantees. In CoNEXT. ACM,
Philadelphia, PA, 15:1–15:12.

[29] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A Software NIC to Augment Hardware. EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155 (2015).

[30] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and RogerWattenhofer. 2013. Achieving High Utilization with Software-
Driven WAN. In SIGCOMM. ACM, Hong Kong, China, 15–26.

[31] Intel. 2018. Intel Ethernet Controller XL710 10/40 GbE. https:
//www.intel.com/content/dam/www/public/us/en/documents/specification-
updates/xl710-10-40-controller-spec-update.pdf.

[32] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a
Globally Deployed Software Defined WAN. In SIGCOMM. ACM, Hong Kong,
China, 3–14.

[33] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant
Rowstron. 2012. Bridging the Tenant-Provider Gap in Cloud Services. In SoCC.
ACM, Article 10, 10:1–10:14 pages.

[34] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-
dictable Message Latency in the Cloud. In SIGCOMM. ACM, London, United
Kingdom, 435–448.

[35] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical Network Perfor-
mance Isolation at the Edge. In NSDI. USENIX Association, Lombard, IL, 297–312.

[36] M Tim Jones. 2010. Virtio: An I/O virtualization framework for Linux. IBMWhite
Paper (2010).

[37] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew
Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben
Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj
Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. 2014. Network
Virtualization in Multi-tenant Datacenters. In NSDI. USENIX Association, Seattle,
WA, 203–216.

[38] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin
Vahdat. 2015. BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Dis-
tributed Computing. In SIGCOMM. ACM, London, United Kingdom, 1–14.

[39] Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan, Amin Vahdat, and George
Varghese. 2012. Netshare and Stochastic Netshare: Predictable Bandwidth Allo-
cation for Data Centers. CCR 42, 3 (June 2012), 5–11.

[40] Jason Lawley. 2014. Understanding Performance of PCI Express Systems. WP350
(v1. 2). Xilinx (2014).

[41] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Banerjee,
Joon-Myung Kang, and Puneet Sharma. 2014. Application-driven Bandwidth
Guarantees in Datacenters. In SIGCOMM. ACM, Chicago, IL, 467–478.

[42] Jacob Leverich. 2014. Mutilate: High-Performance Memcached Load Generator.
https://github.com/leverich/mutilate.

[43] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In SOSP. ACM, Shanghai,
China, 137–152.

[44] Linux. 2018. NAPI (New API). https://wiki.linuxfoundation.org/networking/napi.
Online, accessed: 2019-07.

[45] Rob McGuinness and George Porter. 2018. Evaluating the Performance of Soft-
ware NICs for 100-Gb/s Datacenter Traffic Control. In ANCS. ACM, Ithaca, NY,
74–88.

[46] Memcached. 2018. Memcached key-value store. https://memcached.org/. Online,
accessed: 2019-07.

[47] Microsoft. 2018. Azure. https://azure.microsoft.com/.
[48] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,

Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. 2015. TIMELY:
RTT-based Congestion Control for the Datacenter. In SIGCOMM. ACM, London,
United Kingdom, 537–550.

363

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

[49] Jeffrey C. Mogul and Lucian Popa. 2012. What We Talk About when We Talk
About Cloud Network Performance. CCR 42, 5 (Sept. 2012), 44–48.

[50] Jeffrey C. Mogul and K. K. Ramakrishnan. 1997. Eliminating Receive Livelock in
an Interrupt-driven Kernel. ACM Trans. Comput. Syst. 15, 3 (Aug. 1997), 217–252.

[51] Al Morton. 2013. IMIX Genome: Specification of Variable Packet Sizes for Addi-
tional Testing. https://tools.ietf.org/html/rfc6985.

[52] David Mulnix. 2017. Intel® Xeon® Processor Scalable Family Techni-
cal Overview. https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview. Online, accessed: 2019-07.

[53] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew WMoore. 2018. Understanding PCIe performance for
end host networking. In SIGCOMM. ACM, Budapest, Hungary, 327–341.

[54] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In NSDI. USENIX Association, Lombard, IL, 385–398.

[55] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In OSDI. USENIX
Association, Savannah, GA, 203–216.

[56] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.
In SIGCOMM. ACM, Hong Kong, China, 207–218.

[57] PCI-SIG. 2019. Single Root I/O Virtualization (SR-IOV). https://pcisig.com/
specifications/iov. Online, accessed: 2019-07.

[58] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina
Argyraki. 2018. Automated Synthesis of Adversarial Workloads for Network
Functions. In SIGCOMM. ACM, Budapest, Hungary, 372–385.

[59] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating
System is the Control Plane. In OSDI. USENIX Association, Broomfield, CO, 1–16.

[60] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martín Casado. 2015. The Design and Implementation of Open vSwitch. In NSDI.
USENIX Association, Oakland, CA, 117–130.

[61] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System for
NIC-Accelerated Network Applications. In OSDI. USENIX Association, Carlsbad,
CA, 663–679.

[62] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. 2012. FairCloud: Sharing the Network in Cloud
Computing. In SIGCOMM. ACM, Helsinki, Finland, 187–198.

[63] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio
Turner, and Jose Renato Santos. 2013. ElasticSwitch: Practical Work-Conserving
Bandwidth Guarantees for Cloud Computing. In SIGCOMM. ACM, Hong Kong,
China, 351–362.

[64] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
George Porter, and Amin Vahdat. 2014. SENIC: Scalable NIC for End-Host Rate
Limiting. In NSDI. USENIX Association, Seattle, WA, 475–488.

[65] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.
2000. Memory access scheduling. In ACM SIGARCH Computer Architecture News,
Vol. 28. ACM, 128–138.

[66] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgi-
val O Guedes. 2011. Gatekeeper: Supporting Bandwidth Guarantees for Multi-
tenant Datacenter Networks. In WIOV. USENIX Association, Portland, OR, 784–
789.

[67] Ahmed Saeed, Nandita Dukkipati, Valas Valancius, Terry Lam, Carlo Contavalli,
and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End-Hosts. In
SIGCOMM. ACM, Los Angeles, CA, 404–417.

[68] SDNCentral. 2014. Brocade Vyatta 5600 vRouter: Performance Valida-
tion. https://networkbuilders.intel.com/docs/Vyatta_5600_Performance_Test_
Full_Report.pdf Online, accessed: 2019-07.

[69] Alan Shieh, Srikanth Kandula, Albert G Greenberg, Changhoon Kim, and Bikas
Saha. 2011. Sharing the Data Center Network. In NSDI. USENIX Association,
Boston, MA, 309–322.

[70] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In SIGCOMM. ACM, Florianópolis, Brazil, 44–57.

[71] Brent Stephens, Aditya Akella, and Michael Swift. 2019. Loom: Flexible and
Efficient NIC Packet Scheduling. In NSDI. USENIX Association, Boston, MA,
33–46.

[72] Brent Stephens, Aditya Akella, and Michael M Swift. 2018. Your Programmable
NIC Should be a Programmable Switch. In HotNets. ACM, Redmond, WA, 36–42.

[73] Tolly. 2016. Mellanox Spectrum vs. Broadcom StrataXGS Tomahawk: 25GbE
and 100GbE Performance Evaluation – Evaluating Consistency & Predictabil-
ity. https://www.mellanox.com/related-docs/products/tolly-report-performance-

evaluation-2016-march.pdf. Online, accessed: 2019-07.
[74] George Varghese and Tony Lauck. 1987. Hashed and Hierarchical TimingWheels:

Data Structures for the Efficient Implementation of a Timer Facility. In SOSP.
ACM, Austin, Texas, USA, 25–38.

[75] Wikipedia. 2019. Internet_Mix. https://en.wikipedia.org/wiki/Internet_Mix.
Online, accessed: 2019-07.

[76] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kompella. 2012. The Only Constant
is Change: Incorporating Time-varying Network Reservations in Data Centers.
In SIGCOMM. ACM, Helsinki, Finland, 199–210.

[77] Yiwen Zhang, Juncheng Gu, Youngmoon Lee, Mosharaf Chowdhury, and Kang G
Shin. 2017. Performance Isolation Anomalies in RDMA. In Workshop on Kernel-
Bypass Networks (KBNets). ACM, 43–48.

[78] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-scale RDMA Deployments. In
SIGCOMM. ACM, London, United Kingdom, 523–536.

Appendices

Appendices are supporting material that has not been peer re-

viewed.

A PicNIC for Hardware-based Stacks

While we have described PicNIC’s design and implementation for

a software-based network virtualization stack, we find that (i) isola-

tion can break, resulting in unpredictable performance, even with

virtualization stacks implemented in hardware [22], and (ii) Pic-

NIC’s design principles (§3) can ensure predictable performance in

such stacks as well.

A.1 Causes of Unpredictable Performance
Isolation breakage in hardware also arise from contention for shared

resources. Consider a hardware NIC or FPGA-based virtualization

stack connected to the CPU over PCIe. Fig. 15 shows a simplified

view on a host with a modern system-on-chip (SoC) architecture

such as Intel Skylake [52]. The NIC hardware can be connected over

PCIe either directly to the I/O controller in the System Agent on

the SoC, or through a Platform Controller Hub (PCH). The primary

resource under contention is the bandwidth between the NIC and

the main memory (DRAM) where packets are delivered to the guest

OS networking stack. There aremultiple potential bottlenecks along

the path: PCIe bandwidth (1© or 2©), DMI bandwidth (3©) and the

DRAM bandwidth (4©).

PCIe bandwidth. Consider the NIC at either dev0 or dev1 in Fig. 15

connected through PCIe Gen3 x8, commonly used for 40Gb/s NICs

today [31]. While the theoretical raw bit-rate offered by PCIe Gen3

x8 is 8 GT/s× 8 bits = 64 Gb/s, the entire bandwidth is not achievable

for data transfer because of, for example, encoding, packetization,

and protocol overheads of PCIe. In fact, the theoretical throughput

when accessing main memory in 64B granularity from NIC turns

out to be 44.8 Gb/s [43], and credit-based PCIe protocols for reli-

able read and write further reduce the effective bandwidth [40].

In addition to packet DMA, the NIC also shares this bandwidth

for operations such as reading/writing descriptors, updating queue

pointers and signalling interrupts. Performing this naively results

in effective bandwidth for packet DMA to be less than 40 Gb/s [53]

and thus PCIe bandwidth becomes a bottleneck, especially with

small packets.

DMI bandwidth. If the NIC is connected to the PCH on the chipset,

the PCH to System Agent connection can introduce another bottle-

neck. In the Intel Skylake architecture, this connection is through

364

PicNIC: Predictable Virtualized NIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

core 0 . . . core N

I/O

controller

Memory

controller

PCH

dev0

dev1 devn

. . .

DRAM

DMI 3.03©

PCIe 3

1©

PCIe 3

2©

DDR3

4©

Ring/Mesh interconnect

System Agent

NIC DMA path

Other accesses

S
o
C

Figure 15: Potential bottlenecks within host hardware.

Direct Media Interface (DMI) 3.0, which offers a maximum band-

width equivalent to PCIe Gen3 x4 with raw bit-rate of 8 GT/s × 4

bits = 32 Gb/s.

DRAM bandwidth. Finally, packets need to be written to or read

from guest OS stack memory on the host DRAM. Each DRAM

channel has a bandwidth that depends on the DRAM frequency

and bus-width. For instance, a single-channel DDR3-1600 which

runs at 1600 MT/s with a 64-bit bus-width offers a peak bandwidth

of 102.4 Gb/s. The sustainable bandwidth for DRAM is much lower

(typically 70-80%) than the peak owing to factors such as access

patterns [65]. Even though DRAM bandwidth in modern systems is

much greater than networking bandwidth, the DRAM bandwidth

is also shared by others such as I/O and compute. This leads to

memory isolation issues in shared public clouds, and also affects

networking performance.

Isolation breakage. In practice, PCIe bandwidth can often be a pri-

mary bottleneck [43, 53, 61]. Sharing these resources based on

SLOs is key to ensuring predictable performance (design principle

P1). Failing to do so, e.g., if one VM monopolizes PCIe bandwidth,

can lead to other VMs being starved unfairly with unpredictable

network performance. Fair-sharing at ingress may lead to packets

being dropped at ingress for VMs receiving packets at rates exceed-

ing their fair-share. Drops at ingress lead to wasted resources at

egress, in the fabric, and at the ingress NIC. So, we need to imple-

ment admission control by creating fair backpressure all the way to

the sources and applying appropriate rate limits at the egress NIC

(design principle P2). Egress rate limiting, by itself, isn’t sufficient

to ensure isolation at the egress as we showed in §2.1. If VMs keep

sending excessive packets for throttled flows that are going to be

dropped by the traffic shaper in the NIC, it leads to unnecessarily

wastage of DRAM and PCIe bandwidth, hardware clock cycles, and

limited SRAM that buffers packets in the NIC for shaping. Thus,

we need to augment in-hardware rate limiting with appropriate

backpressure to the guest networking stack.

A.2 Hardware Design of PicNIC
Based on the design principles of PicNIC (§3), and the causes of

unpredictable performance in hardware-based virtualization stacks,

PicNIC’s constructs can be adopted in hardware as outlined next.

Ingress. At the ingress, PicNIC implements per-VM queues in hard-

ware so that packets can be moved from shared NIC Rx queues to

per-VM queues at NIC line rate and avoid unfair NIC drops. Unlike

the software-based implementation where we need to explicitly
provision enough CPU cycles for this function, in case of HW, this

module can hash packet headers and enqueue to the per-VM queue

independent of other functions. To ensure that the NIC to DRAM

bandwidth is shared as per-SLO, PicNIC keeps track of the PCIe

bandwidth (which can be different from the network bandwidth

because PCIe bandwidth overheads are per-TLP) used per VM and

schedules per-VM queues based on SLOs and PCIe bandwidth us-

age. Thus, packets belonging to offending flows (sending more than

SLOs and breaking isolation) will experience queueing delays and

may also be dropped fairly in the per-VM queues, while packets

belonging to well-behaved flows continue to experience low delays.

Packets may also be dropped in per-VM queues if the receiver VM

is slow (e.g. compute bottlenecked) and is not able to consume

packets destined to it.

To ensure VMs receive traffic at a predictable bandwidth, PicNIC

implements timing wheel (TW) [74] in NIC hardware at the ingress.

Based on per-VM ingress rate, the TW sets a timestamp for each

packet which decides when the packet is released from the stack

and delivered to the VM. Thus, VMs receive regularly paced packets

as per their SLO instead of bursts. Packets that exceed the timing

wheel quota are dropped. However, we expect PCCB to implement

proper admission control and avoid drops at ingress.

Congestion Control. PicNIC needs to avoid ingress drops as it leads

to wasted resources and decreases efficiency. Again, the delay ex-

perienced by packets in per-VM queues acts as a good signal for

how much the ingress rate exceeds the SLO-based fair share, and

it is also an early indicator for drops. Using this delay as conges-

tion signal, PicNIC implements PCCP to apply backpressure to

the sources under PCIe bandwidth contention. Both PCCB and

PCCP are implemented in hardware using a similar approach as

the software-based implementation. The feedback packets can be

generated and consumed in the NIC without involving the host

CPU. The state needed for congestion control at ingress (∼5kB)

consumes a very small fraction of on-NIC SRAM. At the egress,

the VM-VM rate-limit table can be maintained either completely in

the NIC or in the DRAM (with entries cached in NIC) depending

on the trade-off between on-NIC SRAM capacity and the PCIe and

memory bandwidth needed for read/write to in-memory table. The

choice also depends on how the virtualization stack implements

other lookup tables.

Egress Shaping and backpressure. At the egress, PicNIC implements

flexible shaping framework in HW that can enforce a hierarchy of

rates—e.g., total egress rate limit per-VM andVM-to-VM rate limits—

while ensuring isolation. PicNIC uses a combination of i) an on-NIC

scheduler and ii) per-flow (〈VM-src, VM-dst, vnet-id〉) FIFO queues

in main memory to achieve scalable shaping similar to SENIC [64]

and Loom [71]. When a packet is ready to be sent by a VM, the

guest vNIC driver enqueues the packet in the corresponding per-

flow queue but doesn’t mark the packet as transmission complete

immediately. The driver sends the packet descriptor along with any

metadata, e.g. VM-src, VM-dst and vnet-id, needed to make schedul-

ing decisions to the NIC as a doorbell write using memory-mapped

I/O over PCIe. The on-NIC scheduler uses the metadata to compute

the egress timestamp for each packet based on the applicable rate

limits and enqueues the descriptor to a calendar queue [12, 67, 70].

When the on-NIC scheduler dequeues a descriptor from this queue,

it issues a DMA read request to fetch the corresponding packet

365

SIGCOMM ’19, August 19–23, 2019, Beijing, China P. Kumar et al.

0 1 2 3 4
Number of days

0

100

200

300

400

D
ro
p
ra
te

(k
p
p
s)

CWFQ rollout period

Host NIC drops

Per-VM Fair drops

Figure 17: PicNIC’s CWFQs reduce unfair ingress drops at host NIC by 96%

and drop packets fairly on a per-VM basis.

0
1

10

100

1000

10000

100000

H
o
L
b
lo
ck
in
g
d
el
a
y
(μ
s)

No HoL blocking

99.9th perc.

99th perc.

Median

0.6

0.8

1.0

1.2

99
th

p
er
c.
R
T
T
(m

s) Before After

Mean = 0.91 ms

Enable OOO completionsa O letionsO compOable OOaEna

0 1 2 3 4 5 6 7
Number of days

0.0

Mean = 0.79 ms

Figure 16: OOO completions with PicNIC eliminates HoL blocking delay

and decreases tail RTT by 13% in production.

from DRAM, performs any on-NIC virtualization functions (e.g.,

encapsulation) and sends it on the wire. This avoids the need for

buffering packets in the NIC. When reading a packet from DRAM,

the NIC also generates the corresponding completion event by writ-

ing to the in-DRAM completion queue. The driver forwards these

completion events as generated by the NIC. As completions are or-

dered by the scheduler based on rate limits, they can be out of order

w.r.t. descriptor ordering. This avoids HoL blocking as discussed

in §5.4.3. Since the on-NIC scheduler needs to store a reference to

each packet until it is sent out, and on-NIC SRAM is limited, we

need to ensure that the number of pending descriptors is bounded.

PicNIC achieves this using packet accounting (§5.4.2) by limiting

each per-VM on-DRAM queue capacity, and hence prevents rate

limited flows from exhausting on-NIC SRAM capacity for packet

descriptors. As further optimization, e.g. to minimize the number

of PCIe writes, doorbell writes can be batched together [43, 71].

B Deferred Completions

Deferred Completions in networking stacks return the completion

of a packet to VM only once processing has been completed and

the packet has left the NIC.

To enable deferred completions without support for out-of-order

completions, a “reordering buffer” is required. Basically, before a

completion is returned to the VM, it is first put in a buffer. The order

of completions in this buffer is then checked, and if there is a batch

of reordered completions that can now be returned, all are returned.

If not, this completion is held until all missing completions become

available. We call this behavior deferred completion.

C Production Results

To demonstrate the practicality of PicNIC, we deployed it in pro-

duction of a large-scale public cloud provider. We present a subset

of results based on the deployment.

Egress. Of PicNIC’s egress features (§5.4), we show the results with

Packet Accounting + out-of-order (OOO) completions. Of the Guest

OS features, TSQ is enabled by default in Linux based kernels, while

NAPI-TX is a feature we are working to turn on in production.

Packet Accounting improves isolation for buffered traffic across

VMs as shown in §6.1. This feature is enabled throughout the pe-

riod of interest; in the interest of space, we do not tease out the

before/after impact of Packet Accounting.
§2 demonstrated how rate limiting flows at the egress can intro-

duce HoL blocking delay for non-rate-limited flows. Fig. 16 (top)

shows the extent of HoL blocking delay in production before and

after we deployed OOO completions. OOO completions and Packet

Accounting eliminate HoL blocking between rate-limited and non-

rate-limited flows at the egress. Consequently, OOO completions,

by itself, also improves the tail latency for customer traffic by ∼13%

as shown in Fig. 16 (bottom).

Ingress. The key construct at the ingress is CWFQ. Fig. 17 shows

that as a result of CWFQs, we see 96% decrease in packet drops at

NIC Rx queues. Excess packets are dropped at the per-VM queues.

We note that CWFQs by themselves cannot eliminate NIC packet

drops when the incoming PPS load is greater than the engine’s ca-

pacity to pull packets from NIC Rx queues, such as DoS attacks and

incast type workloads. When CWFQs are coupled with congestion

control, we observe a substantial reduction in packet drops and a

sub-ms response time in mitigating isolation breakages even under

DoS attacks.

Fabric Congestion. We expect PicNIC to complement prior work on

performance isolation in the network fabric in order to guarantee

predictable network performance to tenants.We built a prototype of

such a complete system that can handle congestion in the fabric. For

this, we extended PicNIC to incorporate ECN signals from the fabric

and use a DCTCP-like algorithm [2] to compute the appropriate

rates in PCC.

366

