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ABSTRACT

With increasing link speeds and slowdown in the scaling of CPU

speeds, packet scheduling in software is resulting in lower preci-

sion and higher CPU utilization. By offloading packet scheduling

to the hardware such as a NIC, one can potentially overcome these

drawbacks. However, to retain the flexibility of software packet

schedulers, packet scheduler in hardware must be programmable,

while also being fast and scalable. State-of-the-art packet schedulers

in hardware either compromise on scalability (Push-In-First-Out

(PIFO)) or the ability to express a wide range of packet schedul-

ing algorithms (First-In-First-Out (FIFO)). Further, even a general

scheduling primitive like PIFO is not expressive enough to express

certain key classes of packet scheduling algorithms. Hence in this

paper, we propose a generalization of the PIFO primitive, called

Push-In-Extract-Out (PIEO), which like PIFO, maintains an ordered

list of elements, but unlike PIFO which only allows dequeue from

the head of the list, PIEO allows dequeue from arbitrary positions

in the list by supporting a programmable predicate-based filtering

at dequeue. Next, we present a fast and scalable hardware design of

PIEO scheduler and prototype it on a FPGA. Overall, PIEO scheduler

is both more expressive and over 30× more scalable than PIFO.

CCS CONCEPTS

• Networks→ Programmable networks; • Hardware → Net-

working hardware;
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1 INTRODUCTION

"In the era of hardware-accelerated computing,
identify and offload common abstractions and primitives,

not individual algorithms and protocols."

A packet scheduler enforces a scheduling algorithm or a scheduling

policy which specifies when and in what order to transmit packets

on the wire. Implementing a packet scheduler in software gives one

the flexibility to quickly experiment with and adopt new scheduling

algorithms and policies. However, this flexibility comes at the cost

of burning CPU cycles which could have otherwise been used for

running applications. In public cloud networks, this translates to

loss in revenue [15], as the CPU overhead of packet scheduling [31]
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takes away from the processing power available to customer VMs.

Unfortunately, this issue is only getting worse [3] with the growing

mismatch between increase in link speeds and slowdown [11, 14]

in the scaling of CPU speeds.

Next, with increasing link speeds, the time budget to make sched-

uling decisions is also getting smaller, e.g., at 100 Gbps link speeds,

to enforce a scheduling policy at MTU timescale precision, a sched-

uling decision needs to be made every 120 ns. To put this in per-

spective, a single DRAM access takes about a 100 ns. Further, new

transport protocols, such as Fastpass [30], QJump [16], and Eth-

ernet TDMA [41], as well as recently proposed circuit-switched

designs [35, 21, 42, 25], and protocols that rely on very accurate

packet pacing [2, 19], require packets to be transmitted at pre-

cise times on the wire, in some cases at nanosecond-level preci-

sion [35]. Meeting these stringent requirements in software is chal-

lenging [31, 22, 28, 2, 35], mainly due to non-deterministic software

processing jitter, and lack of high resolution software timers.

A packet scheduler in the hardware, such as a NIC, can poten-

tially overcome the aforementioned limitations of software packet

schedulers [31]. However, to retain the flexibility of software packet

schedulers, packet scheduler in the hardwaremust be programmable.

Further, today’s multi-tenant cloud networks rely heavily on virtu-

alization, with hundreds of VMs or light-weight containers running

on the same physical machine. This can result in tens of thousands

of traffic classes or flows per end-host [32, 31]. Hence, the packet

scheduler must also be scalable.

State-of-the-art packet schedulers in hardware are based on

one of the two scheduling primitives—(i) First-In-First-Out (FIFO),

which simply schedules elements in the order of their arrival, and

(ii) Push-In-First-Out (PIFO) [37], which provides a priority queue

abstraction, by maintaining an ordered list of elements (based on

a programmable rank function) and always scheduling from the

head of the ordered list ("smallest ranked" element). Unfortunately,

packet schedulers based on these primitives either compromise on

scalability (PIFO-based scheduler), or the ability to express a wide

range of packet scheduling algorithms (FIFO-based scheduler). Fur-

ther, even a general scheduling primitive like PIFO is not expressive

enough to express certain key classes of packet scheduling algo-

rithms (§2.3). Hence in this paper, we propose a new programmable

packet scheduler in hardware, which is fast, scalable, and more

expressive than state-of-the-art.

To design a programmable packet scheduler, we use the insight

that most packet scheduling algorithms have to make two key deci-

sions in the process of scheduling: (i)when an element (packet/flow)

becomes eligible for scheduling (decided by some programmable

predicate as a function of time), and (ii) in what order to sched-

ule amongst the set of eligible elements (decided by some pro-

grammable rank function). To that end, at any given time, packet

scheduling algorithms first filter the set of elements eligible for

scheduling at the time (using the predicate function), and then

schedule the smallest ranked element from that set (§2.2, §2.3, §4).

https://doi.org/10.1145/3341302.3342090
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Hence, most packet scheduling algorithms can be abstracted as

the following scheduling policy—At any given time, schedule the

"smallest ranked eligible" element.

Next, to realize the policy of scheduling the "smallest ranked eli-

gible" element, one needs a primitive that provides abstractions for:

(i) predicate-based filtering, and (ii) selecting the smallest element

within an arbitrary subset of elements. Unfortunately, state-of-the-

art priority queue based primitives such as PIFO do not provide

these abstractions. Hence in this paper, we propose a new schedul-

ing primitive called Push-In-Extract-Out (PIEO) (§3.1), which can be

seen as a generalization of the PIFO primitive. PIEO associates with

each element a rank and an eligibility predicate, both of which can

be programmed based on the choice of the scheduling algorithm.

Next, PIEO maintains an ordered list of elements in the increasing

order of rank, by always enqueuing elements at the appropriate

position in the list based on the element’s rank ("Push-In" primi-

tive). And finally, for scheduling, PIEO first filters out the subset of

elements from the ordered list whose eligibility predicates are true

at the time, and then dequeues the element at the smallest index in

that subset ("Extract-Out" primitive). Hence, PIEO always schedules

the "smallest ranked eligible" element. Further, we use the insight

that for most packet scheduling algorithms, the time an element

becomes eligible for scheduling (teliдible ) can be calculated at en-

queue into the ordered list, and the eligibility predicate evaluation

for filtering at dequeue usually reduces to (tcurrent ≥ teliдible ).
Here t could be any monotonic increasing function of time. This

insight enables a very efficient hardware implementation of the

PIEO scheduler (§5). Finally, we present a programming framework

for the PIEO scheduler (§3.2), using which we show that one can

express a wide range of packet scheduling algorithms (§4).

PIEO primitive maintains an ordered list of elements ("Push-

In"), atop which filtering and smallest rank selection happens at

dequeue ("Extract-Out"). However, implementing both a fast and

scalable ordered list in the hardware is challenging, as it presents

a fundamental trade-off between time complexity and hardware

resource consumption. E.g., using O(1) comparators and flip-flops,

one would needO(N ) time to enqueue an element in an ordered list

of size N , assuming the list is stored as an array
1
in memory. On the

flip side, to enqueue inO(1) time, designs such as PIFO [37] exploit

the massive parallelism in hardware by storing the entire list in

flip-flops and associating a comparator with each element in the list

following the classic parallel compare-and-shift architecture [29],
thus requiring O(N ) flip-flops and comparators, which limits the

scalability of such a design [37]. In this paper, we present a hardware

design (§5) of an ordered list for the PIEO scheduler which is both

fast and scalable. In particular, our design executes both "Push-In"

and "Extract-Out" primitive operations in O(1) time (four clock

cycles), while requiring only O(
√
N ) flip-flops and comparators,

while the ordered list sits entirely in SRAM.

To demonstrate the feasibility of our hardware design of the PIEO

scheduler, we prototype
2
it on a FPGA (§6). Our prototype executes

each primitive operation in few tens of nanoseconds (which is

1
Linked list implementation also has overall time complexity ofO (N ). Even proba-

bilistic datastructures such as skip lists have average time complexity ofO (loд(N )),

and worst-case time complexity of O (N ).
2
Code for the FPGA implementation of PIEO scheduler is available at

https://github.com/vishal1303/PIEO-Scheduler
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Figure 1: A generic packet scheduling model.

sufficient to schedule MTU-sized packets at 100 Gbps line-rate),

while also scales to tens of thousands of flows (over 30× more

scalable than PIFO). To further evaluate the performance of our

prototype, we program it with a two-level hierarchical scheduling

algorithm implementing rate-limit and fair queue policies. We show

that our prototype could very accurately enforce these policies atop

FPGAs with 40 Gbps interface bandwidth (§6.3).

This work does not raise any ethical issues.

2 BACKGROUND

2.1 Packet scheduling model

Fig. 1 shows the packet scheduling model assumed in this paper.

Packets ready to be scheduled for transmission are stored in one of

the flow queues or traffic classes3. Packets within each flow queue

are scheduled in FIFO order, whereas packets across queues are

scheduled according to some custom packet scheduling algorithm or
policy, which specifies when and in what order packets from each

queue should be transmitted on the wire. To facilitate scheduling, a

custom scheduling state is maintained in memory. Typically, this

state could also be accessed and configured by the control plane.

And finally, a packet scheduler is used to express and enforce the

chosen scheduling algorithm/policy. The focus of this paper is to

design an efficient packet scheduler in hardware, which could be

programmed to express a wide range of packet scheduling algo-

rithms/policies, in a fast and scalable manner.

2.2 Packet scheduling algorithms

Most packet scheduling algorithms can be abstracted as the follow-

ing scheduling policy:

Assign each element (packet/flow) an eligibility predicate and a rank.
Whenever the link is idle, among all elements whose predicates are
true, schedule the one with the smallest rank.
The predicate determines when an element becomes eligible for

scheduling, while rank decides in what order to schedule amongst

the eligible elements. By appropriately choosing the predicate and

rank functions, one can express a wide range of packet schedul-

ing algorithms (§4). Further, packet scheduling algorithms can be

broadly classified into two key classes:

3
We use flow queues and traffic classes interchangeably in the paper.
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amongst all flows f s.t. (virtual_time(t) >= f.start_time):
     schedule packet from flow with smallest finish_time
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Figure 2: (a) WF
2
Q+ algorithm [5]. L is the length of packet at the head of flow queue, r is the rate for flow f , x is the transmis-

sion length of current packet being transmitted, and F is the set of back-logged flows. (b) Packets at the head of six different

flows in the example system, where packets can be of different sizes (transmission length). We also show start and finish times

for each packet. (c) Scheduling order in an ideal run ofWF
2
Q+. (d) and (e) scheduling orders when runningWF

2
Q+ using PIFO.

Work-conserving algorithms. This class of packet scheduling

algorithms ensure that the network link is never idle as long as

there are outstanding packets to send. Hence, in these algorithms,

the eligibility predicate of at least one active element is always

true, and whenever the link is idle, the next eligible element in the

order of rank is scheduled. Examples of work-conserving packet

scheduling algorithms include Deficit Round Robin (DDR) [34],

Weighted Fair Queuing (WFQ) [13], Worst-case Fair Weighted Fair

Queuing (WF
2
Q) [5], and Stochastic Fairness Queuing (SFQ) [23].

Non-work conserving algorithms. Under this class of packet

scheduling algorithms, the network link can be idle even when

there are outstanding packets to send, i.e., the eligibility predicate

associated with each active element could all be false at the same

time. Non-work conserving packet scheduling algorithms gener-

ally specify the time to schedule an element, and the eligibility

predicate for an element p generally takes the form (tcurrent ≥

p.teliдible ). Non-work conserving algorithms are naturally suited

to express traffic shaping primitives such as rate-limiting and packet

pacing [31, 32]. A classic example of a non-work conserving packet

scheduling algorithm is Token Bucket [50].

2.3 Packet scheduling primitives

First-In-First-Out (FIFO). FIFO is the most basic scheduling prim-

itive, which simply schedules elements in the order of their arrival.

As a result, FIFO primitive is not able to express a wide range of

packet scheduling algorithms. And yet, FIFO based schedulers are

the most common packet schedulers in hardware, as their simplicity

enables both fast and scalable scheduling.

Push-In-First-Out (PIFO) [37]. PIFO primitive assigns each ele-

ment a programmable rank value, and at any given time, schedules

the "smallest ranked" element. To realize this abstraction, PIFO

maintains an ordered list of elements in the increasing order of

rank, and supports two primitive operations atop the ordered list—

(i) enqueue(f), which inserts an element f into the ordered list, at

the position dictated by f ’s rank, and (ii) dequeue(), which extracts

the element at the head of the ordered list.

Limitations of PIFO. PIFO fundamentally provides the abstrac-

tion of a priority queue, which at any given time, schedules the

"smallest ranked" element in the entire list. [37] shows that this sim-

ple abstraction can express a wide range of scheduling algorithms

which either specify when or specify in what order to schedule each

element. However, PIFO’s abstraction is not sufficient to express a

more general class of scheduling algorithms/policies which specify

both when and in what order to schedule each element — This class

of algorithms/policies schedule the smallest ranked element, but

only from the set of elements that are eligible for scheduling at the

time, which, in principle, could be any arbitrary subset of active

elements
4
. Hence, they invariably require a primitive that supports

dynamically filtering a subset of elements at dequeue and then

return the smallest ranked element from that subset, something

that PIFO primitive does not support. Such complex packet sched-

uling policies are becoming more common in today’s multi-tenant

cloud networks [38], and a classic example of one such algorithm

is the Worst-case Fair Weighted Fair Queuing (WF
2
Q) [6]. WF

2
Q is

the most accurate packet fair queuing algorithm known, making

it an ideal choice for implementing fair queue scheduling policies.

Further, non-work conserving version of WF
2
Q can very accurately

implement shaping primitives such as rate-limiting [31].

WF
2
Q+5 (Fig. 2(a)) tries to schedule a packet whenever the link

is idle, which could be at any arbitrary discrete time t . However,
challenge with WF

2
Q+ is that the eligibility predicate of any arbi-

trary subset of elements can become true at t , as shown in Fig. 2(c),

and hence scheduling the smallest ranked eligible element at time t
becomes challenging. In Fig. 2(d) and (e), we try to express WF

2
Q+

using PIFO. First, we try using a single PIFO (Fig. 2(d)). It is easy to

see that this is not sufficient—if we order the PIFO by increasing

finish times, it results in wrong scheduling order if some arbitrary

element becomes eligible before the element at the head, and if we

order the PIFO by increasing start times, the right scheduling order

could still be violated if multiple elements become eligible at the

4
PIFO could express a special case of such algorithms, where the smallest ranked

element in the entire list is always eligible at dequeue.

5
WF

2
Q+ [5] is the implementation-friendly version of WF

2
Q [13].
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same time, and the element with the smallest finish time is not at the

head of the PIFO. A more promising approach is to use two PIFOs,

ordered by increasing start and finish times respectively, and move

elements between the two PIFOs as and when the elements become

eligible, as demonstrated in Fig. 2(e). However, this approach is also

not sufficient, precisely because an arbitrary number of elements

can become eligible at any given time, e.g., in Fig. 2, C,D,E, and F all

become eligible at t = 5, and ideally C should have been scheduled

as C has the smallest finish time amongst the eligible elements. But

since the eligibility PIFO is ordered by increasing start time, D is

released to rank PIFO before C, resulting in the wrong scheduling

order. In general, O(N ) elements (N is PIFO size) could become

eligible at any given time, which in the worst-case could result in

O(N ) deviation from the ideal scheduling order for an element.

Further, PIFO primitive does not allow dynamically updating

the attributes (such as rank) of an arbitrary element in the ordered

list, as required by certain scheduling algorithms, e.g., updating

the priority of an element based on it’s age to avoid starvation in a

strict-priority based scheduling algorithm.

Finally, the hardware design of the ordered list used to imple-

ment the PIFO primitive achieves very limited scalability ([37],

Fig. 8). Hence, PIFO scheduler is also not scalable. In principle, one

could use approximate datastructures, such as a multi-priority fifo

queue [1], a calendar queue [10], a timing wheel [40], or a multi-

level feedback queue [4], to implement an approximate version of

the PIFO primitive. These datastructures could approximate the

behavior of a priority queue or an ordered list in a fast and scalable

manner by using multiple FIFO queues. However, by design, they

could only express approximate versions of key packet schedul-

ing algorithms [33, 4], invariably resulting in weaker performance

guarantees [52]. Further, these datastructures also tend to have

several performance-critical configuration parameters, e.g., number

of priority levels in a multi-priority fifo queue, or size and number

of buckets in a calendar queue, which are not trivial to fine-tune.

Universal Packet Scheduling (UPS) [27]. In the same vein as

PIFO, which tries to propose a general packet scheduling primitive,

UPS tries to propose a single scheduling algorithm that can emulate

all other packet scheduling algorithms. While [27] proves that no

such algorithm exists, it also shows that the classical Least Slack

Time First (LSTF) [45] algorithm comes close to being universal.

However, just like PIFO, LSTF also uses a priority queue abstraction

at it’s core, as it always schedules the "smallest slack first", just as

PIFO would schedule the "smallest rank first". As a result, LSTF has

the same limitations as PIFO discussed above.

3 PUSH-IN-EXTRACT-OUT (PIEO)

In this section, we describe the PIEO primitive and present a pro-

gramming framework to program the PIEO scheduler.

3.1 PIEO primitive

PIEO primitive assigns each element an eligibility predicate and
a rank, both of which can be programmed based on the choice of

the scheduling algorithm, and at any given time, it schedules the

"smallest ranked eligible" element. To realize this abstraction, PIEO

maintains an ordered list of elements in the increasing order of

rank, and supports three primitive operations atop the ordered list:

(1) enqueue(f): This operation inserts an element f into the or-

dered list, at the position dictated by f ’s rank. This operation
realizes the "Push-In" primitive.

(2) dequeue(): This operation first filters out a subset of el-

ements from the ordered list whose eligibility predicates

are true at the time, and then dequeues the element at the

smallest index in that subset. Hence, this operation always

dequeues the "smallest ranked eligible" element. If there are

multiple eligible elements with the same smallest rank value,

then the element which was enqueued first is dequeued. If

no eligible element exists, NULL is returned. This operation

realizes the "Extract-Out" primitive.

(3) dequeue(f): This operation dequeues a specific element f
from the ordered list. If f does not exist, NULL is returned.

While the enqueue(f) and dequeue() operations are sufficient

to schedule elements according to the PIEO primitive, the addi-

tional dequeue(f) operation provides an added flexibility to asyn-

chronously extract a specific element from the list, to say, dynami-

cally update the scheduling attributes (such as rank) of the element

(and then re-enqueue using enqueue(f)), as illustrated in §4.4.

Limitations on complexity of predicate function. PIEO prim-

itive associates a custom predicate with each element, which is

evaluated at dequeue to filter a subset of elements. However, the

complexity of predicate function is limited by the practical con-

straints of a fast and scalable packet scheduler. In particular, we

want each primitive operation to execute in as few clock cycles

as possible to keep up with increasing link speeds, while encode

the predicate in as few bits as possible for scalability. Fortunately,

for most packet scheduling algorithms, the predicate usually takes

the form (tcurrent ≥ teliдible ), where t could be any monotonic

increasing function of time, and teliдible is when the element be-

comes eligible for scheduling and can be calculated at enqueue

into the ordered list (§4). This allows for a fast and parallel evalu-

ation of predicates at dequeue. Further, one only needs to encode

teliдible for each element as the predicate, thus also ensuring a

small storage footprint, important for scalability. One can poten-

tially use PIEO primitive with more complex predicate functions for

problems where constraints on time and memory are more relaxed.

3.2 PIEO programming framework

In this section, we describe a framework to program the PIEO

scheduler. PIEO assumes that each packet is stored in one of the

flow queues, and that the packets within each flow are scheduled

in a FIFO order, as discussed in §2.1. Hence, each element in the

ordered list refers to a flow, and scheduling a flow f results in the

transmission of the packet at the head of flow queue f .
The programming framework for PIEO scheduler is shown in

Fig. 3. PIEO scheduler comprises an ordered list datastructure that

implements the PIEO primitive (§3.1), and can be programmed

through the rank and predicate attributes assigned to each element.

3.2.1 Programming functions. In this section, we describe three

generic types of functions that the programmers can implement to

program the PIEO scheduler. We also describe the default behavior

of each function, which the programmers can then extend based on

the choice of the scheduling algorithm they intend to program. All

the state needed for scheduling can be stored as either per flow or
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Figure 3: PIEO programming framework.

global state, and should be accessible by both the control plane and

the programming functions. The control plane can use the memory

to store control states, e.g., per-flow rate-limit value or QoS priority,

while the programming functions can use the memory to store

algorithm-specific state, e.g., virtual finish time in WFQ [13].

Pre-Enqueue and Post-Dequeue functions. Pre-Enqueue func-

tion takes as argument the flow f to be enqueued into the ordered

list, and at the very minimum, assigns f a rank and a predicate
as dictated by the choice of the scheduling algorithm being pro-

grammed. Note that while the predicate is assigned during enqueue

into the list, it is only evaluated during the process of dequeue.

Post-Dequeue function takes as argument a flow f dequeued

from the ordered list, and at the veryminimum, transmits the packet

at the head of flow queue f and re-enqueues f back into the ordered
list if f ’s queue is not empty after current packet transmission.

While the Post-Dequeue function is always triggered after each

dequeue() operation on the ordered list, the Pre-Enqueue function

can be triggered in two different ways:

1. Input-triggeredmodel: In this model, the Pre-Enqueue func-

tion is triggered whenever a packet is enqueued into a flow queue.

The behavior of the default implementation of Pre-Enqueue and

Post-Dequeue functions under this model is shown below.

pre-enqueue-func(flow f): { # default

f.curr_pkt.rank = 1

f.curr_pkt.predicate = True

if (pkt enqueue into an empty f.queue):

ordered_list.enqueue(f)

}

post-dequeue-func(flow f): { # default

send(f.queue.head)

if (f.queue not empty):

f.rank = f.queue.head.rank

f.predicate = f.queue.head.predicate

ordered_list.enqueue(f)

}

2. Output-triggered model: In this model, the Pre-Enqueue

function is triggered whenever a packet is dequeued from a flow

queue, or whenever a packet is enqueued into an empty flow queue.

The behavior of the default implementation of Pre-Enqueue and

Post-Dequeue functions under this model is shown below.

pre-enqueue-func(flow f): { # default

f.rank = 1

f.predicate = True

ordered_list.enqueue(f)

}

post-dequeue-func(flow f): { # default

send(f.queue.head)

if (f.queue not empty):

pre-enqueue-func(f)

}

Programmers have the flexibility to choose between the two models.

The trade-off is that while the output-triggered model can provide

more precise guarantees for certain shaping policies [37], it also

puts the Pre-Enqueue function on the critical path of scheduling,

which means the complexity of rank and predicate calculations

would affect the overall scheduling rate.

Alarm function and handler. The ability to asynchronously en-

queue and dequeue specific elements to/from the ordered list using

the enqueue(f) and dequeue(f) operations gives programmers the

ability to define custom events which could trigger a custom alarm
function that can asynchronously enqueue or dequeue a particular

flow in or out of the ordered list. Programmers can also define a

custom alarm handler function to operate upon the dequeued flow.

By default, these functions are disabled in PIEO.

async_event e = NULL # default

alarm-func(async_event e): {} # default

alarm-handler(flow f): {} # default
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3.2.2 Implementing programming functions. While we present

a programming framework for the PIEO scheduler, the paper does

not focus on a specific programming language to implement the

programming functions used to program the PIEO scheduler. This

would depend upon the underlying architecture of the hardware

device. E.g., for FPGA devices, one could use languages such as

System Verilog [49], Bluespec [8], or OpenCL [46] to implement

the programming functions. In our FPGA prototype, we use Sys-

tem Verilog to implement the programming functions (§6.3). For

ASIC hardware devices with RMT [9] architecture, one could poten-

tially adapt one of the domain-specific languages for programmable

switches such as Domino [36] (used to program the PIFO sched-

uler). We leave the exploration of new programmable hardware

architectures and domain-specific languages (and compliers) for

network hardware devices as an avenue for future work.

4 THE EXPRESSIVENESS OF PIEO

In this section, we use the PIEO primitive and the programming

framework described in §3 to express a wide range of packet sched-

uling algorithms. Without loss of generality, the pseudo code for

the programming functions presented in this section assumes the

output-triggered model described in §3.2.1.

4.1 Work-conserving algorithms

Deficit RoundRobin (DRR) [34].DRR schedules flows in a round-

robin fashion. When a flow is scheduled, DRR transmits packets

from the flow until the flow runs out of credit (deficit_counter).

post-dequeue-func(flow f): {

f.deficit_counter += f.quanta

while (f.queue not empty

& f.deficit_counter ≥ size(f.queue.head)):

f.deficit_counter -= size(f.queue.head)

send(f.queue.head)

if (f.queue empty): f.deficit_counter = 0

else: pre-enqueue-func(f)

}

other functions: default as described in §3.2.1

Weighted Fair Queuing (WFQ) [13]. WFQ calculates a virtual

finish time for each packet in a flow, and at any given time, schedules

the flow whose head packet has the smallest finish time value.

pre-enqueue-func(flow f): {

r = Link_Rate / f.weight # rate for flow f

f.finish_time = max(f.finish_time, virtual_time)

+ (size(f.queue.head) / r)

f.rank = f.finish_time

f.predicate = True

ordered_list.enqueue(f)

}

post-dequeue-func(flow f): {

virtual_time += (size(f.queue.head) / Link_Rate)

rest is default as described in §3.2.1

}

other functions: default as described in §3.2.1

Worst-case FairWeighted Fair Queuing (WF
2
Q+) [5].WF

2
Q+

calculates a virtual start and finish time for each packet in a flow,

and at any given time, schedules the flow whose head packet has

the smallest finish time value amongst all the flows whose head

packet has the start time less than or equal to current virtual time.

pre-enqueue-func(flow f): {

calculate f.start_time as in Fig. 2(a)

calculate f.finish_time as in Fig. 2(a)

f.rank = f.finish_time

f.predicate = (virtual_time(at deq) ≥ f.start_time)

ordered_list.enqueue(f)

}

post-dequeue-func(flow f): {

calculate virtual_time as in Fig. 2(a)

rest is default as described in §3.2.1

}

other functions: default as described in §3.2.1

4.2 Non-work conserving algorithms

Token Bucket (TB) [50]. TB schedules packets from eligible flows,

i.e., flows with enough tokens, or else defers the scheduling of the

flow to some future time by when the flow has gathered enough

tokens.

pre-enqueue-func(flow f): {

f.tokens += f.rate * (now - f.last_time)

if (f.tokens > f.burst_threshold):

f.tokens = f.burst_threshold

if (size(f.queue.head) ≤ f.tokens):

send_time = now

else:

send_time = now +

(size(f.queue.head) - f.tokens) / f.rate

f.tokens -= size(f.queue.head)

f.last_time = now

f.rank = send_time

f.predicate = (wall_clock_time(at deq) ≥ send_time)

ordered_list.enqueue(f)

}

other functions: default as described in §3.2.1

Rate-controlled Static-PriorityQueuing (RCSP) [53].This class

of algorithms shape the traffic in each flow by assigning an eligi-

bility time to each packet within the flow, and at any given time,

schedules the highest priority flow amongst all the flows with an

eligible packet at the head of the queue.

pre-enqueue-func(flow f): {

send_time = f.queue.head.time

f.rank = f.priority

f.predicate = (wall_clock_time(at deq) ≥ send_time)

ordered_list.enqueue(f)

}

other functions: default as described in §3.2.1

4.3 Hierarchical scheduling

So far we have only discussed flat scheduling. However, in practice,

it is often desirable to group flows into a hierarchy of classes, e.g.,

a two-level hierarchy comprising a group of VMs, with a group

of flows within each VM. In this example, the link bandwidth can

be shared amongst the VMs using some scheduling policy, e.g., a

rate-limit for each VM, while one can use a different scheduling
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Figure 4: Hierarchical packet scheduling in PIEO.

policy to schedule the flows within each VM, e.g., fair queuing. In

general, we can represent such hierarchies using a tree structure,

as shown in Fig. 4, where the leaf nodes represent the flows, while

the non-leaf nodes represent higher-level classes, such as VMs.

Unfortunately, since each non-leaf node can implement it’s own

custom scheduling policy to schedule it’s children, a single PIEO is

not sufficient to express hierarchical scheduling policies. However,

we can support hierarchical scheduling using multiple PIEOs.

We associate each node in the tree (except the root node) with a

queue—for leaf nodes, these are per flow FIFO queues storing the

packets, while for non-leaf nodes, these are logical queues, which are
references to the set of child queues for that node. Next, we associate

each non-leaf node with a logical PIEO, which schedules the node’s

children. Since PIEO allows us to filter a subset of elements from

an ordered list using a predicate, all the nodes at the same level

of hierarchy can share the same physical PIEO, which can then

be logically partitioned into a set of logical PIEOs, one for each

node at the same level in the hierarchy, with the size of each logical

PIEO equal to number of corresponding node’s children (Fig. 4).

Next, each non-leaf node p maintains the start and end indices of

it’s logical PIEO and the eligibility predicate of each of it’s child

element f is extended with (p.start ≤ f.index ≤ p.end), thus allowing
one to extract the ordered list of elements in p’s logical PIEO (p’s
children) from the physical PIEO.

Enqueue in each level happens independently and is triggered by

the same conditions as for flat scheduling, e.g., packet enqueue into

an empty queue (§3.2.1). Dequeue always starts at the root PIEO,

and propagates down to the lower levels in the tree hierarchy. Each

lower level PIEO is associated with a FIFO to store the dequeued ids

from the parent level. Dequeue at a level i is triggered whenever the
corresponding FIFO in not empty. The logical PIEO corresponding

to node fifo.head is then extracted, and the smallest ranked eligible

element in the logical PIEO is dequeued and put into the FIFO at

level i − 1, until we reach the lowest non-leaf level, at which point

the dequeued element (a leaf node representing a flow) is scheduled

for transmission. All this is demonstrated in Fig. 4.

Finally, to support n−level hierarchical scheduling with arbitrary
tree topologies, we need n physical PIEOs. We map this hierarchy

to the hardware as an array of n independent physical PIEOs with

a FIFO as the interface between any two consecutive PIEOs in the

arraylist (Fig. 4).

4.4 Asynchronous scheduling

Starvation avoidance in strict priority scheduling.A common

way to avoid starvation of lower priority flows in a strict priority

based scheduling algorithm is to periodically increase the priority

of the flow being starved. This is generally triggered whenever

a flow has spent time larger than some threshold without being

scheduled. Assuming flows are ranked by their priority in PIEO, one

can define an alarm function and handler that can asynchronously

update the starving flow’s priority to avoid starvation.

async_event e = (curr_time - f.age ≥ threshold)

alarm-func(async_event e): ordered_list.dequeue(f)

alarm-handler(flow f): {

f.age = curr_time

f.priority = f.priority - 1

pre-enqueue-func(f)

}

Scheduling based on asynchronous network feedback. Cer-

tain datacenter protocols such as [51, 12] can result in change of

a flow’s rank or eligibility based on some asynchronous feedback

from the network. E.g., in D
3
[51], already scheduled flows can be

quenched asynchronously based on network feedback.

async_event e = receipt of pause or resume feedback
alarm-func(async_event e): {

if (recvd pause feedback for flow f):
f.block = True

ordered_list.dequeue(f)

if (recvd resume feedback for flow f):
f.block = False

pre-enqueue-func(f)

}

alarm-handler(flow f): default as described in §3.2.1

4.5 Priority scheduling

Several scheduling algorithms assign a priority to each element,

and schedule elements in the order of their priority. Examples

include Shortest Job First (SJF) [47], Shortest Remaining Time First

(SRTF) [48], Least Slack Time First (LSTF) [45], and Earliest Deadline

First (EDF) [44]. Such algorithms can be expressed using a priority

queue datastructure. One can easily emulate a priority queue using

PIEO, by setting the rank of each element as equal to it’s priority

value, and setting the eligibility predicate of each element as true.
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5 HARDWARE DESIGN

"All problems in computer science can be solved by another level of
indirection." — David Wheeler

In this section, we describe the hardware design of PIEO scheduler.

We assume that the target hardware device is equipped with

SRAM. Further, we assume that SRAM is divided into multiple

blocks, and each SRAM block comprises independent access ports.

Such a memory layout is very common in hardware devices, e.g.,

Stratix V FPGA [17] used in our prototype (§6) comprise ∼2500

dual-port SRAM blocks of size 20 KBits each, where each SRAM

block has access latency of one clock cycle.

5.1 Architecture

PIEO scheduler comprises an ordered list, that supports three prim-

itive operations (§3.1)—enqueue(f), dequeue(), and dequeue(f). How-
ever, implementing an ordered list in hardware presents a funda-

mental trade-off between time complexity and hardware resource

consumption. To keep up with increasing link speeds, we want to

execute each primitive operation atop the ordered list in O(1) time.

However, to achieve this, state-of-the-art designs such as PIFO [37]

require parallel access to each element in the list using the clas-

sic parallel compare-and-shift architecture [29], and hence have

to store the entire list in flip-flops (as opposed to a more scalable

memory technology such as SRAM), and associate a comparator

with each element. Thus, such a design requiresO(N ) flip-flops and

comparators for a list of sizeN , and with the slowdown in transistor

scaling [11, 14], this limits the scalability of such a design.

In this paper, we present a design of the ordered list that still

executes primitive operations inO(1) time, but only needs to access

and compareO(
√
N ) elements in parallel, while the ordered list sits

entirely in SRAM. The key insight we use is to store and access the

ordered list using one level of indirection (Fig. 5). More specifically,

the ordered list is stored as an array (of size 2

√
N ) of sublists in

SRAM, where each sublist is of size

√
N elements. Elements within

each sublist are ordered by both increasing rank (Rank-Sublist), and
increasing order of eligibility time (Eligibility-Sublist). We stripe

the elements of each sublist across O(
√
N ) dual-port SRAM blocks,

which allows us to access two entire sublists in one clock cycle.

Next, we maintain an array (of size 2

√
N ) in flip-flops, which stores

the pointers to the sublists, with sublists in the array ordered by

increasing value of the smallest rank within each sublist. Thus,

by sweeping across the sublists in the order they appear in the

pointer array, one can get the entire list of elements in the order of

increasing rank.

Enqueue and dequeue operations proceed in two steps—First,

we figure out the right sublist to enqueue into or dequeue from,

using parallel comparisons and priority encoding on the pointer

array, and then extract the corresponding sublist from SRAM. Sec-

ond, we use parallel comparisons and priority encoding on the

extracted sublist to figure out the position within the sublist to

enqueue/dequeue the element, and then write back the updated

sublist to SRAM. Thus, with this design, we only require O(
√
N )

flip-flops and comparators, unlike O(N ) in PIFO, at the cost of few

extra clock cycles to execute each primitive operation (§5.2) and 2×

SRAM overhead (Invariant 1). We evaluate these trade-offs in §6.

5.2 Implementation

In SRAM, PIEO maintains an array (of size 2

√
N ) of sublists, called

Sublist-Array. Each sublist in the array is of size

√
N . Further, each

sublist comprises two ordered sublists—Rank-Sublist and Eligibility-
Sublist. Each element in Rank-Sublist comprises three attributes:

(1) flow_id: This is the flow id of the element.

(2) rank: This is the rank value assigned to the element by the

enqueue function.

(3) send_time: This encodes the eligibility predicate assigned

to the element by the enqueue function. PIEO exploits the

fact that most scheduling algorithms use eligibility predicate

of the form (curr_time ≥ send_time) (§4), where send_time is
the time the element becomes eligible for scheduling. Thus,

the eligibility predicate in PIEO is encoded using a single

send_time value for each element. Predicate that is always

true is encoded by assigning send_time to 0, and predicate

that is always false is encoded by assigning send_time to ∞.

The Rank-Sublist is ordered by increasing rank values. Further,

corresponding to each Rank-Sublist, there is an Eligibility-Sublist of
the same size, which maintains a copy of the send_time attribute
from it’s corresponding Rank-Sublist. Eligibility-Sublist is ordered
by increasing send_time values.

In flip-flops, PIEOmaintains an array of size 2

√
N , calledOrdered-

Sublist-Array, where each entry in the array points to a sublist in the
Sublist-Array. More specifically, each entry in the Ordered-Sublist-
Array comprises three attributes:

(1) sublist_id: This is the index (pointer) into the Sublist-Array,
pointing to sublist Sublist-Array[sublist_id].

(2) smallest_rank: This is the smallest rank value in the sublist
Sublist-Array[sublist_id], i.e.,
Sublist-Array[sublist_id].Rank-Sublist[0].rank.

(3) smallest_send_time: This is the smallest send_time value
in the sublist Sublist-Array[sublist_id], i.e.,
Sublist-Array[sublist_id].Eligibility-Sublist[0].

(4) num: This stores the current number of elements in

Sublist-Array[sublist_id].
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Ordered-Sublist-Array is ordered by increasing smallest_rank
value. Further, Ordered-Sublist-Array is dynamically partitioned

into two sections, as shown in Fig. 5—the section on the left points

to sublists which are not empty, while the section on the right

points to all the currently empty sublists.

By stitching together sublists in the order they appear in the

Ordered-Sublist-Array, one can get the entire list of elements in

PIEO. We call this list Global-Ordered-List. Global-Ordered-List is
ordered by increasing rank value. Logically, enqueue and dequeue

operations happen on top of the Global-Ordered-List.

Enqueue(f). The enqueue operation inserts element f into the

Global-Ordered-List. It ensures that after every enqueue operation,

the resulting Global-Ordered-List is ordered by increasing rank
value. This is implemented in hardware as follows:

• Cycle 1: In this cycle, we select the sublist to enqueue f
into, using the parallel compare operation (Ordered-Sublist-
Array[i].smallest_rank > f.rank). We feed the resulting bit-

vector into a priority encoder, which outputs index j. Sublist S
pointed by Ordered-Sublist-Array[j-1] is selected for enqueue.

• Cycle 2: In this cycle, we read the sublist S from SRAM.

In case S was full, the enqueue operation would push out

an existing element in S. Hence, we also read an additional

sublist S' to store the pushed out element. S' is either the
sublist to the immediate right of S in the Ordered-Sublist-
Array, provided it is not full, or else a new empty sublist.

• Cycle 3: In this cycle, we figure out the position to en-

queue within sublist S, by running priority encoders on

top of bit vectors returned by parallel compare operations

(S.Rank-Sublist[i].rank > f.rank), and (S.Eligibility-Sublist[i] >
f.send_time) resp. In case Swas full, the tail element in S.Rank-
Sublist will be moved to the head of S'.Rank-Sublist, while
we use parallel compare operation (S'.Eligibility-Sublist[i] >
S[tail].send_time), followed by priority encoding, to figure

out the position to enqueue the send_time value of the ele-
ment moving from S into the eligibility sublist within S'. In
case S' was initially empty, we also re-arrange the Ordered-
Sublist-Array by shifting S' to the immediate right of S.

• Cycle 4: In this cycle, we enqueue/dequeue respective ele-

ments at the positions output from the last cycle, and write

back S (and S') to the SRAM. We also update the Ordered-
Sublist-Array entries for S and S' with the new values of (i)

num, (ii) smallest_rank (read from the corresponding Rank-
Sublist), and (iii) smallest_send_time (read from the corre-

sponding Eligibility-Sublist).

Invariant 1 [Bounding the number of sublists]. The key

to ensuring O(1) enqueue time is choosing a new empty sublist

for enqueue whenever both the sublist to which the new element

is to be enqueued and the sublist to it’s immediate right in the

Ordered-Sublist-Array are full. This avoids the chain-reaction of

shifting the tail element of one sublist to the head of next (which

would result in worst-case O(
√
N ) SRAM accesses), at the cost of

memory fragmentation (Fig. 6). However, an upshot of this design

is the invariant that there cannot be two consecutive partially full

sublists in the Ordered-Sublist-Array. As a consequence, to store N

elements using

√
N -sized sublists, one would require at most 2

√
N

sublists (2× SRAM overhead). We evaluate this overhead in §6.1.
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Figure 7: An example dequeue from the PIEO ordered list of size 16 elements (8 sublists each of size 4).

Dequeue(). This operation returns the "smallest ranked eligible"

element in Global-Ordered-List. It is implemented as follows:

• Cycle 1: In this cycle, we select the sublist that contains the

"smallest ranked eligible" element. For this, we use the prior-

ity encoder to extract the sublist at the smallest index in the

Ordered-Sublist-Array that satisfies the predicate (curr_time
≥ Ordered-Sublist-Array[i].smallest_send_time). We call it S.
The predicate ensures that S will have at least one eligible
element, and since the Ordered-Sublist-Array is ordered by

increasing smallest_rank value, the "smallest ranked eligible"

element in the entire list is guaranteed to be in S.
• Cycle 2: In this cycle, we read the sublist S from SRAM. In

case Swas full, after a dequeue it would be partially full. So, to
ensure Invariant 1 is not violated, we read another sublist,

either to the immediate left of S in the Ordered-Sublist-Array,
or to it’s immediate right, whichever is not full, and choose

either in case both of them are not full. We call it S'. If both
left and right sublists are full, we only read S, as in that case

even a partially full S would not violate Invariant 1.

• Cycle 3: In this cycle, we figure out the position to dequeue

the "smallest ranked eligible" element from S. For that, we use
the priority encoder that outputs the smallest index idx in

S.Rank-Sublist satisfying the predicate (curr_time ≥ S.Rank-
Sublist[i].send_time). The "smallest ranked eligible" element

to be dequeued and returned as the final output of dequeue()
operation is S.Rank-Sublist[idx]. Further, in the case S was
full, wemove an element from S' to S, to ensure that S remains

full even after dequeue, hence ensuring that Invariant 1

will not be violated. The element to be moved, e, is deter-
ministically added to either the head (if S' is to the left of

S) or to the tail (if S' is to the right of S) of S.Rank-Sublist
in the next cycle. However, we have to rely on priority en-

coding to figure out the position to dequeue e.send_time
from S'.Eligibility-Sublist, and the corresponding position in

S.Eligibility-Sublist where it would be enqueued. For that, we
use parallel compare operations (S'.Eligibility-Sublist[i] ==
e.send_time) and (S.Eligibility-Sublist[i] > e.send_time) resp.
Finally, in case either S or S' becomes empty after dequeue,

we re-arrange the Ordered-Sublist-Array by shifting S or S' to
the head of the logical partition comprising empty sublists.

• Cycle 4: In this cycle, we enqueue/dequeue respective ele-

ments at the positions output from the last cycle, and write

back S (and S') to the SRAM. We also update the Ordered-
Sublist-Array entries for S and S' with the new values of (i)

num, (ii) smallest_rank (read from the corresponding Rank-
Sublist), and (iii) smallest_send_time (read from the corre-

sponding Eligibility-Sublist).

Dequeue(f). This operation dequeues a specific element f from

the Global-Ordered-List. PIEO keeps track of the sublist id that each

element (flow) within the Global-Ordered-List is stored at, as part

of the flow state, and updates this information after each primitive

operation. In cycle 1, we use that information to select the sublist

storing f, and then repeat cycles 2-4 from the dequeue() operation,
with a modification in cycle 3 where we use the predicate (f ==
S.Rank-Sublist[i].flow_id) to figure out the index idx of the element

in S.Rank-Sublist to be dequeued and returned as the final output.
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Figure 8: Percentage of logic modules

(ALMs) consumed (out of 234 K).

Figure 9: Percentage of SRAM con-

sumed (out of 6.5 MB).

Figure 10: Clock rates achieved by the

scheduler circuit.

6 PROTOTYPE AND EVALUATION

We prototyped the PIEO scheduler on an Altera Stratix V [17]

FPGA comprising 234 K Adaptive Logic Modules (ALMs), 52 Mbits

(6.5 MB) SRAM, and 40 Gbps interface bandwidth. Our prototype

was written in System Verilog [49] comprising ∼1300 LOCs.

We evaluate the performance of our prototype across three

metrics—(i) Scalability, (ii) Scheduling rate, and (iii) Programma-

bility. To serve as the baseline, we synthesized the open-source

PIFO implementation [26] atop our FPGA. We use 16-bit rank and

predicate fields, same as in PIFO implementation.

6.1 Scalability

In this section, we evaluate how the logic and memory resources

consumed by PIEO’s design scale with the size of the PIEO sched-

uler. We report the percentage of available Adaptive Logic Modules

(ALMs) consumed to implement the combinational and flip-flop

based logic (Fig. 8), and the percentage of available SRAM consumed

to store the ordered list (Fig. 9). The baseline PIFO implementation

consumes 64% of the available logic modules to implement a PIFO

scheduler of size 1 K elements, and this scales linearly with the size

of PIFO, meaning we can’t fit a PIFO with 2 K elements or more on

our FPGA. In contrast, the logic consumption for PIEO increases

sub-linearly (as the square root function), and we can easily fit a

PIEO scheduler with 30 K elements on our FPGA. This is a direct

consequence of PIEO’s design, which unlike PIFO, exploits the mem-

ory hierarchy available in hardware to efficiently distribute storage

and processing across SRAM and flip-flops. Finally, even with 2×

SRAM overhead ( Invariant 1), the total SRAM consumption for

PIEO’s implementation is fairly modest (Fig. 9).

6.2 Scheduling rate

In this section, we evaluate the rate at which PIEO scheduler can

make the scheduling decisions. Scheduling rate is typically a func-

tion of: (a) the clock rate of the scheduler circuit, and (b) number of

cycles needed to execute each primitive operation
6
. Each primitive

operation in PIEO takes 4 clock cycles and Fig. 10 shows the clock

rate of PIEO circuit against increasing PIEO size. The clock rate

naturally decreases with increasing circuit complexity, but even at

80 MHz and assuming a non-pipelined design, one can execute a

6
For output-triggered model (§3.2.1), the complexity of Pre-Enqueue function also

affects the scheduling rate, as explained in §3.2.1.

PIEO primitive operation every 50 ns, which is sufficient to schedule

MTU-sized packets at 100 Gbps line rate.

PIEO’s scheduling rate can be further improved by pipelining the

primitive operations. In a fully pipelined design, one could execute

one primitive operation every clock cycle. However, PIEO’s design

is limited by the number of SRAM access ports. As such, the mem-

ory stages of each primitive operation (cycle 2 and 4) uses both the

available access ports of dual-port SRAM to read/write two sublists.

Hence, memory stages of different primitive operations cannot be

executed in parallel, thus preventing a fully pipelined design. In

principle, by carefully scheduling the primitive operations, one can

still achieve some degree of pipelining, resulting in a better sched-

uling rate than a non-pipelined design. However, for simplicity, our

prototype only implements the non-pipelined design, and all the

analysis and results in the paper are for a non-pipelined design.

Further, the clock rates achieved by PIEO is a function of both

the PIEO design and the hardware device used to run the design.

We expect our design to run at much higher clock rates on more

powerful FPGAs [18], but even more importantly, on an ASIC hard-

ware, as ASIC based implementations tend to be more performant

than an equivalent FPGA based implementation of the same design

[20]. To back this using a concrete example, we note that PIFO’s

design on top of our FPGA was clocked at 57 MHz, as opposed to

1 GHz on an ASIC hardware as shown in [37]. At 1 GHz clock rate,

each primitive operation in PIEO would only take 4 ns.

PIEO vs. PIFO trade-offs. Unlike PIEO, PIFO’s hardware design

can be fully pipelined, partly because it does not access SRAM at all,

and hence PIFO scheduler can schedule at a higher rate than PIEO.

This is the price we pay in PIEO’s hardware design to achieve order

of magnitude more scalability than PIFO. Alternatively, one can

also implement PIEO primitive using PIFO’s hardware design
7
and

achieve more expressibility than PIFO without compromising on

scheduling rate, albeit at a much smaller scale. We, however, argue

that the trade-off made in PIEO’s hardware design is a good trade-

off to make, as PIEO’s design is still extremely fast and can schedule

at tens of nanosecond timescale (even less at higher clock rates),

while also scale to tens of thousands of flows, which is critical in

today’s multi-tenant cloud networks [31, 32].

7
Porting PIEO primitive to PIFO’s hardware design is trivial despite PIEO support-

ing a more complex dequeue function, because the kind of predicates used in PIEO

implementation can be evaluated in parallel in flip-flops in one clock cycle.
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Figure 11: Rate-limit enforcement in PIEO prototype.

Figure 12: Fair queue enforcement in PIEO prototype.

6.3 Programmability

We show in §4 that one can express a wide range of scheduling

algorithms using the PIEO primitive. In this section, we program

two such algorithms, namely Token Bucket (§4.2) andWF
2
Q+ (§4.1),

atop our FPGA prototype using System Verilog as the programming

language. The two chosen algorithms implement two of the most

widely-used scheduling policies in practice, namely rate-limiting

and fair queuing.

We program a two-level hierarchical scheduler using our pro-

totype, with ten nodes at level-2 and ten flows within each node,

for a total of 100 flows. We implement packet generators, one per

flow, on the FPGA to simulate the flows. The link speed is 40 Gbps,

and we schedule at MTU granularity. For experiments, we assign

varying rate-limit values to each node at level-2 in the hierarchy,

and enforce it using the Token Bucket algorithm. The rate-limit

value of a particular node at level-2 is then shared fairly across

all it’s ten flows using WF
2
Q+ algorithm. In Fig. 11, we sample a

random level-2 node, and show that PIEO scheduler very accurately

enforces the rate-limit on that node. Further, in Fig. 12, we show

that for each rate-limit value assigned to the chosen level-2 node,

PIEO scheduler very accurately enforces fair queuing across all the

flows within that level-2 node.

7 RELATEDWORK

Packet scheduling in hardware. Packet schedulers in hardware

have traditionally been fixed-function, that either implement spe-

cific scheduling primitives, such as rate-limit, as in [31, 24], and

fairness, as in [39, 33], or implement specific scheduling algo-

rithms, such as shortest-job-first, as in [4]. More recently, there

have been proposals for programmable packet schedulers, such

as PIFO [37], and universal packet scheduling algorithms, such as

UPS [27], whose goals align very closely with our work. We discuss

the limitations of PIFO and UPS in §2.3. Somewhat complementary

to our work, Loom [38] proposes a flexible packet scheduling frame-

work in the NIC, using a new abstraction for expressing scheduling

policies, and an efficient OS/NIC interface for scheduling, while

leveraging the PIFO scheduler for enforcing the scheduling policies.

In principle, systems like Loom can use PIEO scheduler instead of

PIFO and achieve more expressibility and scalability.

Datastructures for hardware packet schedulers. Most packet

schedulers in hardware rely on FIFO-based datastructures as it en-

ables fast and scalable scheduling, at the cost of limited programma-

bility or accuracy (§2.3). A priority queue allows ordered scheduling

of elements, and hence can express a wide range of scheduling al-

gorithms. P-heap [7] is a scalable heap-based implementation of

priority queue in hardware. Unfortunately, a heap-based priority

queue cannot efficiently implement the "Extract-Out" primitive in

PIEO. PIFO [37] also provides a priority queue abstraction, but

implements it using an ordered list datastructure, also used to im-

plement PIEO. However, PIFO’s hardware implementation of the

ordered list is not scalable (Fig. 8). In this paper, we presented both

a fast and scalable implementation of an ordered list in hardware.

8 DISCUSSION

PIEO as an Abstract Dictionary Data Type. In general, PIEO

primitive can be viewed as an abstract dictionary data type [43],
which maintains a collection of (key, value) pairs, indexed by key,
and allows operations such as search, insert, delete and update.

PIEO presents an extremely efficient implementation of the dictio-

nary data type in hardware, which can do all the above mentioned

operations in O(1) time, while also being scalable. Further, it can

also very efficiently support certain other key dictionary operations

considered traditionally challenging, such as filtering a set of keys

within a range, as PIEO implementation described in §5 can be

naturally extended to support predicates of the form a ≤ key ≤ b.
Dictionary data types are one of the most widely used data types

in computer science, and PIEO presents a potential alternative to

the traditional hardware implementations of the dictionary data

type, such as hashtables and search trees.

9 CONCLUSION

We presented a new packet scheduling primitive, called Push-In-
Extract-Out (PIEO), which could express a wide range of packet

scheduling algorithms. PIEO assigns each element a rank and an

eligibility predicate, both of which could be programmed based

on the choice of the scheduling algorithm, and at any given time,

schedules the "smallest ranked eligible" element.We presented a fast

and scalable hardware design of PIEO scheduler, and prototyped it

on a FPGA. Our prototype could schedule at tens of nanosecond

timescale, while also scale to tens of thousands of flows.
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