
Seer: Future-Aware Caching System for Network Processors

Jason Lei
Purdue University

Vishal Shrivastav
Purdue University

Abstract
State-intensive network and distributed applications rely heav-
ily on online caching heuristics for high performance. How-
ever, there remains a fundamental performance gap between
online caching heuristics and the optimal offline caching al-
gorithm due to the lack of visibility into future state access
requests in an online setting. Driven by the observation that
state access requests in network and distributed applications
are often carried in incoming network packets, we present
Seer, an online caching solution for networked systems, that
exploits the delays experienced by a packet inside a network –
most prominently, transmission and queuing delays – to no-
tify in advance of future packet arrivals to the target network
nodes (switches/routers/middleboxes/end-hosts) implement-
ing caching. Using this as a building block, Seer presents
the design of an online cache manager that leverages visibil-
ity into (partial) set of future state access requests to make
smarter prefetching and cache eviction decisions. Our evalu-
ations show that Seer achieves up to 65% lower cache miss
ratio and up to 78% lower flow completion time compared to
LRU for key network applications over realistic workloads.

1 Introduction
Online caching is a key component of every class of computer
systems, ranging from microprocessors [19] to file and storage
systems [35] to networked and distributed systems [8, 15, 37].
It is well-known that the optimal (offline) caching algorithm
for minimizing cache misses, namely Belady [7], requires
visibility into all future access requests, thus making it im-
practical in an online setting. Hence, there have been several
works [6, 13, 30, 56, 59, 60] over the past several decades de-
signing online caching heuristics that closely emulate Belady.
However, there remains a fundamental gap between the per-
formance of online caching heuristics and the optimal offline
algorithm due to the lack of effective mechanisms to provide
visibility into future access requests in an online setting.

In this paper, we present Seer, that aims to bridge the per-
formance gap between online and optimal offline caching in a
networked system, by providing a perfectly accurate visibility
into (partial) set of future access requests to the target network
nodes (switches/routers/middleboxes/end-hosts) implement-
ing caching. We assume that the target nodes have a small
cache with a larger backing store, and run network/distributed
applications that operate over large amounts of state that may
not fit entirely in the cache. Examples of such applications
include virtual switching [15,37], stateful load balancing [31],

NATs and firewalls [25], receive-side host network stack pro-
cessing [10], CDN caching [8], distributed key-value [34],
network monitoring [33], content-based networking [9], and
network intrusion detection [21]. Further, we note that the
state access requests in such applications are often carried
in incoming network packets, e.g., NAT accesses the address
translation table based on the address carried in incoming
packets, virtual switch and stateful load balancer access the
flow table based on the flow id carried in received packets, and
CDN server accesses the content based on content id carried
in incoming client packets. Thus there lies an opportunity to
provide visibility into future access requests to target nodes
implementing caching for such applications, if only one could
notify them of the state access metadata carried in future
incoming packets well in advance before those packets arrive.

To achieve this, Seer leverages the fact that packets expe-
rience various forms of delays in the network – most promi-
nently, transmission and queuing delays – and while the pack-
ets are waiting at a network node to be transmitted, one could
put that delay to good use by notifying in advance the tar-
get nodes implementing caching about the future incoming
packets. More specifically, in Seer, the directly connected
neighbors of each target node continuously forward the rele-
vant state access metadata carried in the packets (e.g., the flow
id or the object id) for all the packets in their egress queues
to the respective target nodes. Thus, while the packets are
still waiting in the neighbor queues for transmission, the for-
warded metadata about the future state access requests allow
the target nodes to make closer to optimal caching decisions
in terms of what to prefetch to the cache and what to evict
from the cache.

However, implementing the above idea in practice requires
solving several key challenges.

Challenge # 1. Notifying of future state access requests in a
timely manner with low bandwidth overhead.

A neighbor node must forward the relevant state access meta-
data in every queued packet destined to the target node as
soon as possible, to provide the target node maximum visibil-
ity into future access requests. However, doing this naively
would require generating a control packet corresponding to
every packet destined to the target node, thus resulting in high
bandwidth overhead.

In §3.1, we describe Seer’s solution to reduce the band-
width overhead of control packets. The key idea is to leverage
the inter-packet gap (IPG) to exchange control information at
zero bandwidth overhead.

Challenge # 2. Caching with partial future visibility.
In an online system, it is impractical to provide full visibility
into all future access requests. Hence fundamentally, Seer
could only provide a partial visibility into future requests, and
in practice, at any given time, Seer only provides visibility into
the future requests currently queued at the directly connected
neighbors of a target node. This presents the challenge of de-
signing a cache manager for a new caching design point, that
sits somewhere in between the two previously explored design
points of optimal offline caching (that assumes full visibility
into future access requests) and online caching heuristics (that
assume no visibility into future access requests).

In §3.2, we describe the design of Seer’s cache manager.
The cache manager implements cache prefetching and cache
eviction algorithms in Seer. For prefetching, the cache man-
ager uses the knowledge of future access requests to prefetch
corresponding state to the cache in the order of future re-
quest arrival. This reduces cache misses for future arrivals.
For cache eviction, Seer dynamically combines a default on-
line caching heuristic1 with Belady’s optimal offline cache
eviction policy, based on the current degree of visibility into
future requests. In the best case, Seer emulates Belady, while
in the worst case, Seer simply reduces to the default online
caching heuristic.

Challenge # 3. Limited time budget for caching decisions.
Seer’s cache manager has a limited time budget to make the
prefetching and cache eviction decisions, as determined by
the access time of the backing store. In particular, Seer must
be able to make caching decisions in lesser time than the
backing store access time in order to ensure that fetching
data from the backing store remains the bottleneck for cache
replacement throughput. To make matters worse, the time
budget for caching decisions can be as small as 10s to 100s
of nanoseconds for a backing store such as DRAM, which is
a common backing store for several state-intensive network
applications [15, 31, 38].

In §4, we describe the hardware implementation of Seer’s
cache manager, that exploits massive hardware parallelism to
implement both the prefetching and cache eviction algorithms
in a total of log(P)+2k+1 clock cycles, where k is the cache
set size (in a set associative cache) and P is the number of
ingress ports in the target network node implementing caching.
In practice, this translates to ∼100 ns latency on FPGA/NIC
target and ∼25 ns latency on ASIC switch/router target.

We implement and prototype Seer’s design on an FPGA
(§5). Our evaluations on a small hardware testbed show that
Seer achieves up to 80% fewer cache misses compared to
LRU while remaining within 20% of Belady. Based on larger-
scale network simulations (§6), we show that Seer achieves up
to 65% lower cache miss ratio and up to 78% lower flow com-
pletion time compared to LRU for key network applications
over realistic workloads.

1Any existing online caching heuristic can be used for this purpose.

2 Seer: Overview and Insights
Seer is an online caching system for state-intensive network
and distributed applications. Seer is designed for networked
systems, where a subset of network nodes implement online
caching (called "target nodes"). A network node in Seer could
be any networking device, including switches, routers, mid-
dleboxes, or end-host NICs and processors.
Network node model. Seer assumes an abstract model of a
network node, where a node has N ingress and egress ports.
To support differential service, each egress port has k priority
classes implemented using k strict priority FIFO queues, i.e.,
packets from a lower priority FIFO are scheduled if and only
if all the higher priority FIFOs are empty. Strict priority FIFOs
are widely implemented in modern networking devices due
to their scalability, e.g., datacenter switches typically have
8 strict priority FIFO classes [18]. Further, recent works [2]
have shown that strict priority FIFOs are also expressive and
can implement wide range of packet scheduling algorithms.
Finally, each target node in Seer is assumed to have a small
local cache (e.g., SRAM) and a larger backing store (e.g.,
DRAM). The backing store could either be local or remote.

Seer’s protocol runs between a target node and its directly
connected neighbor node(s), with the goal to provide the target
node a visibility into future state access requests. The objec-
tive in Seer is to minimize cache misses using the future
visibility. Seer’s design is based on following key insights.

Insight # 1. For network/distributed applications, state access
requests are often carried in incoming network packets.

State accesses in several key network and distributed appli-
cations are triggered by incoming network packets. The state
in these applications are typically indexed by some metadata
carried in the incoming packets, e.g., address translation table
in NAT is indexed by the address field of incoming packets,
flow table in a virtual switch or a stateful load balancer is
indexed by the flow id (such as hash of 5-tuple) of incoming
packets, and the content store in a CDN is indexed by the
content id carried in client packets. Thus, by notifying the
target nodes in advance of the state access metadata carried in
future incoming packets, one could provide the target nodes a
visibility into future state access requests.

Insight # 2. Network delays can be leveraged to provide visi-
bility into future state access requests.

In a networked system, a packet typically hops through multi-
ple network nodes before arriving at the destination. At each
hop, the packet can experience various delays in the form of
transmission, propagation, processing, and queuing delays.
The key insight in Seer is that these delays can be leveraged
to notify the target nodes of future state access requests. Sup-
pose a packet p arrives at a node Y at time 0, and is destined
to target node X after a further network delay of T time units.
Thus, if Y notifies X of the state access metadata in p by time
t < T , X will get visibility into a future state access request.

state[p1.id]
state[p4.id]

state[p2.id]
state[p1.id]
state[p4.id]

state[p2.id]
state[p1.id]
state[p3.id]

state[p2.id]
state[p4.id]
state[p3.id]

state[p1.id]
state[p4.id]

state[p2.id]
state[p1.id]
state[p4.id]

state[p2.id]
state[p3.id]
state[p4.id]

state[p2.id]
state[p3.id]
state[p4.id]

state[p2.id]
state[p3.id]
state[p4.id]

p1.id
t = 120

p2.id
t = 240

p3.id
t = 360

p4.id
t = 480

t = 120

p1 arrives
HIT

p2 arrives
MISS

LRU
state[p4.id] evicted

following LRU

state[p2.id] fetched
to cache

t = 240 t = 360 t = 480

t = 120 t = 240 t = 360 t = 480

p3 arrives
MISS

state[p3.id] fetched
to cache

state[p1.id] evicted
following LRU

p4 arrives
MISS

state[p4.id] fetched
to cache

p1 arrives
HIT

state[p2.id]
prefetched
to cache

p2 arrives
HIT

state[p1.id] evicted
as it will be accessed

farthest in the future (Belady)

state[p3.id] prefetched
to cache

p3 arrives
HIT

p4 arrives
HIT

SeerReceived notifications about
future state accesses in Seer

Cache state
at node B

Timeline of cache accesses at node B (LRU vs. Seer)

Egress queue at node A

t = 0

t = 0

p1p2p3p4

t = 0

Neighbor node A Target node B

Packet metadata storing
state access index

(e.g., flow id)

Advance
notifications

at t = 0

Figure 1: A toy example illustrating the potential of Seer in terms of minimizing cache misses over Least Recently Used (LRU) [56]
policy. Example assumes two directly connected nodes A and B. Node A has four packets p1, p2, p3, p4 in its egress queue.
Transmission delay of each packet is 120 ns and propagation delay is 0. The time to fetch a state from the backing store is 100 ns
(e.g., DRAM). In Seer, node B has already received notifications from node A at time t = 0 about the future state accesses along
with the expected time of arrival of corresponding packets. Seer is able to use this information to minimize cache misses by (i)
prefetching states into the cache well before the packets that will access those states arrive (done at t=120 and t =240), and (ii)
evicting cache entries that will be accessed farthest in the future (done at t=240) following Belady’s optimal offline algorithm.

Insight # 3. Even small network delays can provide enough
visibility into future requests to result in significant gains.

We illustrate this insight using an example. Consider an
extreme case of zero queuing delay, where an MTU-sized
packet p arrives at t = 0 in an empty egress queue of node
X . Over a 100 Gbps link, it would take 120 ns to transmit this
packet. Thus the packet will reach the next hop node Y at
t = 120+ ε ns, where ε is the propagation delay. Hence, if
Seer could notify Y of the arrival of p at t = 0, Y could poten-
tially prefetch the state p would access into the cache before
p arrives at Y , assuming a backing store such as DRAM with
access time of 50–100 ns. Thus one can avoid a cache miss
even in this extreme case scenario of zero queuing delay. In
practice, due to many-to-one (incast) traffic pattern, bursty
traffic, routing inefficiencies, and bandwidth oversubscription,
the queuing delay experienced by a packet is much higher.

Insight # 4. An accurate estimation of the time of arrival of
future packets is necessary for optimal caching.

Notifying the target nodes of future state access requests is
not sufficient for optimal caching. Target nodes also need an

accurate estimation of when in the future those states will
be accessed, i.e., an accurate estimate of the arrival times
of packets corresponding to each future state access request.
This knowledge would allow the target nodes to create a
global arrival order of future packets (potentially coming from
different sources over different paths), which can then be
leveraged to prefetch states in the order of their (future) access
time, and implement optimal cache eviction policy that evicts
state that will be accessed farthest in the future [7].

Insight # 5. A directly connected neighbor can provide a
perfectly accurate estimation of future packet arrival times.

If two network nodes X and Y are separated by multiple
hops, it becomes extremely challenging to provide an accurate
estimate of when a packet p currently queued at node X would
eventually arrive at Y , due to non-deterministic queuing along
the path from X to Y . In fact, in the worst case, p could be
dropped along the path from X to Y and may never arrive
at Y . However, if X and Y are directly connected, X could
accurately calculate when a packet queued at X would arrive
at Y . Consider an egress queue Q at X directly connected

to Y with B bytes of queued data. If a packet p of size P
bytes arrives at queue Q at time t, then p will arrive at Y
at time T = t +(B+P)/L+ ε time units (assuming a FIFO
queue), where L is the link speed and ε is the link propagation
delay. Based on this insight, Seer’s protocol only runs between
directly connected nodes in a network.

Putting it all together, Figure 1 shows the potential of Seer
in terms of minimizing cache misses over the most popular
online caching heuristic, LRU [56], that assumes no visibility
into future state access requests.

3 Design
In this section, we describe the two key design components in
Seer—(i) a low overhead notification protocol (§3.1) running
between directly connected nodes in a network, that notifies
target nodes of future state access requests and correspond-
ing packet arrival times in a timely manner, and (ii) a cache
manager (§3.2) that leverages the future visibility into state
access requests and packet arrivals to make smarter caching
decisions in terms of prefetching and cache eviction. Finally,
in §3.3, we discuss the limits of Seer’s design.

3.1 Future Packet Notification Protocol
As mentioned in §2, an N-port network node in Seer has k
FIFO queues (priority classes) per egress port, thus totaling
N ∗ k egress queues per node. Each neighbor node of a target
node in Seer maintains a Future Packet Metadata (FPM)
queue per egress queue, thus totaling N ∗ k FPM queues per
node, as shown in Figure 2. Each FPM queue is a FIFO queue.
Every time a packet is added to an egress queue, Seer en-
queues a corresponding FPM of the form <request id, pkt size,
expected delay> to the tail of the corresponding FPM queue.
A FPM encodes the state access request corresponding to a
given packet. Seer assumes that the state at the target node
is indexed by request id. For most network applications, the
request id is the hash of a subset of packet header fields, e.g.,
the flow table (state) in a virtual switch or a stateful load bal-
ancer is indexed by the hash of 5-tuple (request id), whereas
the address translation table (state) in a NAT is indexed by
the hash of <IP address, port> (request id). Seer assumes that
a target node and its neighbors share the same hash function.

The expected delay field in a FPM is written once a FPM
is dequeued and ready to be transmitted on the link. This field
represents the expected delay since the FPM transmission
until the corresponding packet arrives at the target node. The
expected delay for a packet is calculated as follows:

Assume at egress port P, the currently dequeued FPM cor-
responds to a packet p in priority class i. Assume priority
classes at port P are indexed from 1 to k, such that for any two
priority classes i and j, if i< j, then i has higher priority. Next,
let t j = total transmission delay2 of all packets queued in prior-
ity class j (j ̸= i). Let ti = total transmission delay of packet p
plus all packets queued ahead of p in priority class i. And let

2transmission delay = packet size / link bandwidth.

p3.id, p3.sizep4.id, p4.size

p5.id, p5.sizep6.id, p6.sizep7.id, p7.size

p8.id, p8.sizep9.id, p9.size

p3p4

p5p6p7

p10p11

p14p13p8p9

p1p2

p3.id, p3.size

p3.td = TD (FPM) + TD (p1)
 + TD (p2) + TD (p3)

<p3.id, p3.size, p3.td>

p8.td = TD (FPM) + TD (p10)
 + TD (p11) + TD (p14)
 + TD (p13) + TD (p8)

FPM

TD (p) = transmission delay
for packet p

FPM
Queue

Packet
QueuePr

io
rit

y C
las

s 1
Pr

io
rit

y C
las

s 2
Pr

io
rit

y C
las

s 1
Pr

io
rit

y C
las

s 2

<p8.id, p8.size, p8.td>
FPM

Egress Port 1

Egress Port 2

Figure 2: Illustrates the functioning of FPM queues in Seer.
It assumes the network node has two egress ports and each
port has two priority classes (Priority Class 1 has higher
priority). It also assumes that the FPMs corresponding to
packets p1 and p2 have already been transmitted via egress
port 1, as well as FPMs corresponding to packets p10, p11,
p13 and p14 have already been transmitted via egress port
2. The figure shows the next FPMs being transmitted via the
two egress ports, and the calculation of expected delay for the
packets corresponding to those FPMs.

tFPM = transmission delay of packet carrying FPM. Then the
expected delay for packet p is td = ∑

i−1
j=1 t j + ti + tFPM . This

calculation is illustrated in Figure 2 for packets p3 and p8.
Once a FPM reaches the directly connected target node, the
target node can easily estimate the expected time of arrival
for packet p by simply adding td to its current time.

Finally, each egress port continuously dequeues the FPM
from the head of one of its k FPM queues, and sends it out
to the target node directly connected to that egress port. The
scheduling of FPM queues follow the same (strict) priority
order as the packet queues, i.e., a FPM queue at an egress port
is selected for dequeue only when all the FPM queues with
higher priority at that port are empty (as illustrated for egress
port 2 in Figure 2). This ensures that FPMs are transmitted in
the same order as respective packets.

Balancing timely notification and bandwidth overhead.
Seer needs to send a FPM corresponding to each packet in the
egress queue. Unfortunately, if done naively, this could result
in high bandwidth overhead. The naive approach would gener-
ate one control packet (of size equal to the minimum allowed
packet size) for each FPM. This could result in high band-
width overhead for applications with small sized packets—in
the worst case where all packets are minimum sized, the con-
trol packets would end up consuming half the total bandwidth.
One could potentially reduce the number of control packets
by batching multiple FPMs into a single control packet. How-

p0Packet Queue p1p2

p0p1p2

p1p2p3p4p5p6p7p8

p1p2p3p4p5p6p7p8p9

p2p3p4p5p6p7p8p9

p9

p0p1, p0
IPG

p7,……, p2

Control
packet

t = T1

t = T2

t = T3

p9, p8
IPG

FPM Queue

m = 6

p1all 0s
IPG

Figure 3: Illustrates how Seer efficiently navigates the trade-
off between timely delivery of FPMs and bandwidth overhead
incurred. It assumes Seer only generates a control packet
when FPM queue size reaches 6 or beyond, i.e., m = 6. Also
assumes that a control packet can batch up to 6 FPMs and
IPG can batch up to 2 FPMs. At t = T 1, since FPM queue size
is less than 6, Seer uses IPG to send FPM. Now suppose at
t = T 2, egress port receives a burst of 7 packets p3− p9 due
to incast. Now the FPM queue size exceeds 6, and hence Seer
generates a control packet that can batch 6 FPMs, p2− p7,
while the remaining two FPMs, p8− p9, can be carried in
IPG. Thus, within just two packet transmission times, the
neighbor knows about all the incoming packets. And this
comes at the bandwidth overhead of just 1 control packet.
Instead, if we had only used IPG, it would have resulted in
zero bandwidth overhead, but it would have taken five packet
transmission times to notify the neighbor of all incoming
packets. Finally, if we had used the classic approach of control
packets only with, say, a batch size of 6, to send FPMs, then it
would have waited till t = T 2 before transmitting FPMs p0−
p5 in 1 control packet, and again would have kept waiting
starting at t = T 2 for two more packets to arrive so it could
batch them with FPMs p6− p9 to form a batch size of 6. Thus,
this approach would not only have required 1 extra control
packet compared to Seer, but would have also added high
non-deterministic latency in the delivery of the FPMs.

ever, batching could result in delayed notifications, as Seer
would need to wait for as many packets as the batch size to
arrive before sending out the control packet. Ideally, Seer
would like to send FPMs as soon as possible, so that at any
given time, the target node has maximum possible visibility
into the future state access requests.

IPG for exchanging FPMs. To overcome the aforemen-
tioned challenge, Seer uses the insight of using inter-packet
gap (IPG) to exchange FPMs. A given communication proto-
col typically enforces a minimum IPG between consecutive
packet transmissions, e.g., IEEE 802.3ae standard for Ether-
net enforces a minimum IPG of 96 bits (called "idle" bits).
The physical layer at the sender adds the idle bits (set to 0 by

default) at the end of each transmitted packet, and the physical
layer at the directly connected receiver removes the idle bits
before sending the packet to higher layers. Thus, idle bits are
only accessible at the physical layer.

Seer re-purposes the idle bits in IPG by overwriting the
default 0s with FPMs on the transmit side, and extracting the
FPMs and overwriting them with default 0s on the receive side
(implementation details can be found in §5). Thus Seer effec-
tively creates a side channel for exchanging control messages
(FPMs) between directly connected nodes, with zero band-
width overhead for normal data communication. This is in the
same spirit as prior works that have leveraged idle bits in IPG
to build systems such as a covert channel [28], a bandwidth
estimator [55], and a time synchronization protocol [27, 43].

Opportunistic batching using control packets. While
using IPG to exchange FPMs results in zero bandwidth over-
head, it also limits the maximum rate at which Seer can ex-
change FPMs. Assuming one could encode X FPMs in each
IPG, the rate of exchange reduces to X FPMs per packet trans-
mission time. This is not ideal for scenarios where a burst of
packets arrive at a queue in a short duration of time (e.g., in-
cast). Assuming a burst of k packets arrive at an empty queue
at time 0, it would take Seer k/X packet transmission times to
transmit the FPMs for all k packets. Ideally, one would want
to transmit the FPMs for all k packets at time 0 itself, so as
to provide maximum future visibility to the target node. Seer
achieves this by using the insight that in scenarios where the
FPM queue size grows large, one can batch all the FPMs in
a single control packet without incurring the batching delay.
Of course this would result in bandwidth overhead, but the
amount of overhead can be controlled by tuning how often
Seer generates these control packets. In particular, Seer uses
two tuning parameters, m and t, where Seer only generates
a control packet when the total FPM queue size at an egress
port exceeds m entries and at least t time units have elapsed
since the last control packet was generated on that egress port.
Otherwise, Seer exchanges FPMs using IPG. This way, Seer
is able to balance the trade-off between timely notification
and bandwidth overhead, as illustrated in Figure 3. We tune
m and t for realistic experiments in §6.

3.2 Cache Manager
The cache manager in Seer is implemented on the target nodes
implementing caching. The cache manager leverages the re-
ceived FPMs to minimize cache misses using a novel prefetch-
ing and cache eviction algorithm as described below.
Assumptions. Seer assumes that the state stored in the back-
ing store is indexed by request id carried in FPMs. Fur-
ther, Seer assumes that the cache is a k-way set-associative
cache [50] storing the <key (request id), value (state)> pairs
for a subset of state from the backing store. If we set k=1,
the cache becomes a direct-mapped cache, and if we set k=N,
where N is the maximum number of cache lines, the cache
becomes a fully-associative cache.

Data structures. The key data structure in Seer’s cache man-
ager is a set of queues, one per ingress port, storing the re-
ceived FPMs from the neighbors directly connected to those
ingress ports. The queue corresponding to ingress port i is
shown as Fi in Algorithm 1. On receiving a FPM of the
form <m.id, m.size, m.td> on ingress port i, Seer first cal-
culates the expected time of arrival for the corresponding
packet, tarrival = tcurr +m.td , where tcurr is the current time at
the receiver. Seer then adds the updated FPM <m.id, m.size,
m.tarrival> to the queue Fi. Finally, Seer also maintains a
global queue, shown as X in Algorithm 1, that stores any
FPM whose corresponding state has been (pre)fetched to the
cache but the state has not yet been accessed by the packet
corresponding to the FPM.
Prefetching algorithm. The visibility into future state ac-
cess requests provides Seer the opportunity to prefetch the
corresponding states to the cache before the packets that will
access those states arrive at the target node, thus minimizing
cache misses. To achieve this, Seer prefetches the states in the
order of increasing expected time of arrival of packets that
will access those states.

Algorithm 1 describes Seer’s prefetching algorithm in its
entirety. It is an endless iterative algorithm that iterates over
each queue Fi in parallel (lines 7–8 in Algorithm 1). In each
iteration, the algorithm finds the FPM e with the minimum
tarrival across all the queues Fi (lines 9–18 in Algorithm 1) and
whose corresponding state is not in the cache (lines 11–15 in
Algorithm 1). It then fetches the corresponding state (indexed
by e.id) from the backing store to the cache, provided the
cache is not full (lines 25–27 in Algorithm 1). In case the
cache is full, Seer first calls its cache eviction algorithm (lines
19-20 in Algorithm 1) to evict an entry from the cache. If the
cache eviction algorithm succeeds, Seer replaces the evicted
entry with the fetched state from the backing store (lines
21–24 in Algorithm 1).

One key thing to note in Algorithm 1 is that it does not
destroy a FPM after the corresponding state has been fetched
to the cache. Instead, it stores all such FPMs in a separate
queue, X (lines 12, 22 in Algorithm 1). This is done to make
sure that we don’t loose the tarrival information for the states
already fetched to the cache, as that information will be later
used by Seer’s cache eviction algorithm to make optimal
eviction decisions.

A FPM is finally removed from all queues and destroyed
once either the corresponding state has been accessed in the
cache by the corresponding packet or the packet correspond-
ing to the FPM is dropped at the target node, perhaps due to
excessive queuing at the ingress (lines 29–32 in Algorithm 1).
Cache eviction algorithm. The cache eviction algorithm is
triggered when Seer tries to add a state to the cache, but the
cache is full. The eviction algorithm applies to a "cache set" in
a set-associative cache (shown as S in Algorithm 2) to which
the index of the state being added is mapped to. In a k-way
set-associative cache, a cache set size is k cache lines.

Algorithm 1 Seer’s Prefetching Algorithm

1: P: number of ingress ports
2: m: a FPM with attributes m.id, m.size, m.tarrival
3: Sm: a cache set in a k-way set associative cache mapped

to state index m.id (where state[m.id] may be cached)
4: Fi: queue storing received FPMs on ingress port i
5: X : queue storing FPMs whose corresponding states have

been fetched to the cache but not yet accessed
6: X = {}
7: while True do
8: for i = 1 to P do in parallel:
9: Yi← NULL

10: m← entry in Fi with minimum tarrival
11: if m.id ∈ Sm then
12: Remove m from Fi and add it to X
13: else
14: Yi ← m
15: end if
16: end for
17: idx← index in Y with minimum tarrival
18: e← Yidx
19: if Se is full then
20: Evict an entry from Se using Algorithm 2
21: if Algorithm 2 succeeds then
22: Remove e from Fidx and add it to X
23: Fetch state at index e.id from backing store
24: end if
25: else
26: Fetch state at index e.id from backing store
27: end if
28: end while
29: Asynchronously do:
30: if state indexed by m.id is accessed in the cache or packet

corresponding to m is dropped at the target node then
31: Remove m from X and F
32: end if

Algorithm 2 Seer’s Cache Eviction Algorithm

1: S: cache set under consideration for eviction
2: e.id: index of the state being considered for fetch
3: A← {x.id ∈ S: ∃ m s.t. x.id = m.id and m ∈

⋃P
i=1 Qi∪X}

4: B← {x.id ∈ S: x.id /∈ A}
5: if B not empty then
6: Evict an entry from B using any caching heuristic
7: return Success
8: else
9: m.id← entry in A with maximum tarrival

10: if e.tarrival < m.tarrival then
11: Evict m.id from A
12: return Success
13: end if
14: end if
15: return Failure

Intuitively, Seer’s cache eviction algorithm tries to emulate
the optimal (offline) algorithm for minimizing cache misses,
namely Belady’s algorithm [7]. Belady evicts the cache entry
that will be accessed farthest in the future. However, unlike
Belady, which assumes full visibility into the future requests,
Seer only has a partial view of the future, i.e., at any given
time, Seer only knows about a partial set of future state ac-
cess requests (namely, the requests corresponding to packets
currently queued at a neighbor node). Thus, it may be possi-
ble that there are entries in the cache for which Seer has no
knowledge of when those entries will be accessed in the future
(i.e., there is no received FPM corresponding to the packet
that will access that cache entry). Thus, Seer’s cache eviction
algorithm first separates all the entries in the cache set into
two sets — set A (line 3 in Algorithm 2) which includes all
the entries in the cache set for which tarrival is known, and
set B (line 4 in Algorithm 2) which includes all the remain-
ing entries in the cache set. Thus, set A stores all the states
that will be accessed in the near future, while the states in
set B are expected to be accessed farther in the future, if at
all. Hence, in the spirit of Belady, Seer prioritizes set B over
set A for eviction (line 5 in Algorithm 2). To evict an entry
from set B, Seer relies on some default caching heuristic, such
as LRU [56] (line 6 in Algorithm 2). Note that any caching
heuristic can be used for this purpose. On the other hand, to
evict an entry from set A, Seer uses Belady’s algorithm (lines
8–14 in Algorithm 2). Overall, in the best case, when set B is
empty, Seer emulates Belady, while in the worst case, when
set A is empty, Seer reduces to the default caching heuristic.

An interesting consequence of Seer’s design is that it may
result in scenarios where the cache eviction algorithm fails
to evict an entry from the cache set, thus aborting the current
state fetch from the backing store. This is because in Seer,
states are prefetched to the cache and that too in the order of
their tarrival . Thus, if currently every entry in the cache set has
tarrival value less than the tarrival value for the entry currently
being considered for prefetching from the backing store (and
replace an existing entry in the cache), Seer does not evict any
existing entry in the cache and the fetch is aborted, otherwise
eviction succeeds (lines 9–13 in Algorithm 2). This is in the
spirit of Belady, where the state that will be accessed farthest
in the future (in this case, the state that is currently being
considered for prefetching) is evicted from the cache.

3.3 Limits of Seer
In this section, we discuss some of the limits of Seer’s design.

The gains of Seer’s cache eviction algorithm over existing
online caching heuristics is dependent on the degree of future
visibility, which in turn, is dependent on the degree of queuing
at the neighbor nodes — the more the queuing, the higher the
gains. In the worst case, when queuing is extremely small,
Seer’s cache eviction algorithm would reduce to the default
caching heuristic. On the other hand, the effectiveness of
Seer’s prefetching algorithm is dependent on both the degree

of queuing at the neighbors and the access time of the backing
store. In particular, for prefetching to be effective, the amount
of queuing delay for a packet must be greater than the access
time of the backing store, in order to ensure that the state has
been fetched to the cache before that packet arrives. Hence
prefetching will be most effective for high-speed network and
distributed applications that use a faster backing store such
as DRAM (with SRAM as cache). However, note that even
for applications that use a slower backing store compared
to the typical network queuing delays, Seer’s cache eviction
algorithm will continue to provide gains, e.g., by ensuring one
does not evict an entry that will be accessed in the near future.
Finally, Seer’s design is also somewhat susceptible to FPM
drops. If a FPM is dropped (e.g., queue tail drop at either the
neighbor or the target node) but the corresponding packet is
not dropped, Seer might end up with a non-continuous view
of future state access requests. This may result in priority
inversion, e.g., replacing a cache entry with another entry that
will be accessed farther in the future. Fortunately, it is fairly
easy to avoid FPM drops in Seer, by provisioning sufficient
memory for FPM queues at both the neighbors and the target
nodes. Given the size of a FPM is very small, the amount of
memory needed to avoid drops in practice is nominal (§6).

4 Implementation
In this section, we describe the implementation Seer’s cache
manager. We start by first discussing the performance goals
for the cache manager, followed by an implementation that
achieves those goals.
Performance goals. Seer’s cache manager operates itera-
tively, and in each iteration it can have three potential perfor-
mance bottlenecks – (i) time taken to decide what state to
prefetch (tpre f etch), (ii) time taken to evict a cache entry (tevict),
and (iii) time taken to fetch the state from backing store into
the cache (tbkStore). Prefetching decision and eviction needs
to happen sequentially in each iteration, but they both can
be parallelized with the state fetch from the backing store
from the previous iteration. Thus the goal of Seer’s implemen-
tation is to ensure that tpre f etch + tevict ≤ tbkStore, so that the
backing store access time remains the bottleneck for cache
replacement throughput. Further, we also want to ensure that
the received FPMs are added to the respective queues in the
cache manager in ideally O(1) time, so that the prefetching
and eviction algorithms get access to the FPMs as soon as
they arrive at the target node.
Primitives. Next, we present the key primitives needed to
implement Seer’s prefetching and cache eviction algorithms.

1. insert(m,Q): Adds an element m to queue Q (lines 12, 22
in Algorithm 1).

2. delete(m,Q): Removes an element m from queue Q (lines
12, 22, 31 in Algorithm 1).

3. max-min(Q): Returns the max (line 9 in Algorithm 2) or
the min (line 10 in Algorithm 1) value in a queue Q.

4. min(Y1,Y2,,YP): Returns the min value (line 18 in Al-
gorithm 2) in an un-ordered set of entries Yi, i=1 to P.

5. intersect(S1, S2): Returns the set of elements present in
both sets S1 and S2 (line 3 in Algorithm 2).

6. difference(S1, S2): Returns the set of elements present in
set S1 but not in set S2 (line 4 in Algorithm 2).

We bundle primitives 1–4 into order primitives and primi-
tives 5, 6 into set primitives. Next, we describe the implemen-
tation of both sets of primitives.
Implementing order primitives. To find the minimum ele-
ment in an un-ordered set of P elements, one fundamentally
requires at least O(log(P)) time. Thus, Seer implements prim-
itive 4, min(Y1,Y2,,YP), in log(P) clock cycles.

Next, we focus on primitives 1–3 that operate over a queue.
The natural data structure for implementing max/min (primi-
tive 3) would be a priority queue. A priority queue can return
the max/min value in O(1) time. However, insertions and
deletions may take O(log(N)) time, where N is the queue
size. To make matters worse, in Seer, adding an element to
a queue may require updating the value of the attribute over
which max/min is calculated for n (n ≤ N) other elements
in the queue, thus resulting in an added O(n(log(N)) time to
re-insert each updated element to the queue. This is because
of the presence of multiple priority classes. A packet p1 in
a higher priority class will be transmitted before a packet p2
queued in a lower priority class at the same egress port, even
if p2 arrived before p1. As a result, the tarrival field in the
received FPM corresponding to p2 will need to be updated
once the FPM for p1 arrives at a later time. This update can be
done by adding the transmission delay for packet p1 to p2’s
current expected time of arrival, i.e., p2.tarrival += p1.size /
link bandwidth. This is illustrated in Figure 4.

Seer solves the above challenge by replacing the priority
queues with fully ordered lists. A fully ordered list maintains
the invariant that the list is always sorted (by tarrival in Seer)
even under insertions, deletions, and updates. This automati-
cally reduces the time complexity for max/min operations to
1 clock cycle. Seer implements a fully ordered list of size N
using N flip-flops, which allows parallel access to each of the
N elements in the list. To add an element m to the list, Seer
first determines the right index in the list to add m that would
still keep the list sorted. This can be done in 1 clock cycle by
comparing the tarrival value for m against the tarrival values of
each element in the list in parallel. Once the right location
has been determined, Seer adds m to that location and shifts
the rest of the elements in the list in parallel, again requiring
only 1 clock cycle. Further, parallel access also allows Seer to
update the tarrival values of multiple elements in the list in just
1 clock cycle. Note that in Seer, the tarrival values of the exist-
ing elements are all updated by the same amount (namely, the
transmission delay of m), and hence their relative positions in
a fully ordered list will not change. So, Seer does not need to
re-insert the updated elements. This entire design is an adapta-

p3p4

p2p5

p3p4

p1

FPM
Queue

Pr
io

rit
y C

las
s 1

Pr
io

rit
y C

las
s 2

Pr
io

rit
y C

las
s 1

Pr
io

rit
y C

las
s 2

p1.id,
p1.size

p1.t = 10

Neighbor Node

Ne
w

 S
ta

te

Egress Ingress

Egress Ingress

Update Update

current time = 0

p2.id,
p2.size

p2.t = 20

p3.id,
p3.size

p3.t = 30

p2.id,
p2.size

p2.t = 20

p3.id,
p3.size

p3.t = 40

p4.id,
p4.size

p4.t = 50

p5.id,
p5.size

p5.t = 30

current time = 10
{p5.id, p5.size,

p5.td = 20}

p2

p1

p4.id,
p4.size

p4.t = 40

curr time +
p5.td

Target Node

In
iti

al
 S

ta
te Received FPMs

Received FPMs

Figure 4: Illustrates that with multiple priority classes, adding
a FPM to a queue at the target node may require updating
existing elements in the queue. Assumes the transmission
delay for each packet is 10 time units and propagation delay
0. Initially, the FPMs for packets p1− p4 were all received
at the target node at time 0. Then at some later time, packet
p5 arrived at the neighbor node, and its corresponding FPM
was received at the target node at time 10. Since p5 arrived
in a higher priority class, it will be transmitted right after
p2, preempting p3 and p4. Thus, the expected delay for p5 is
only 20 time units (sum of transmission delays of p5 and p2).
But it also pushes the transmission of p3, p4 back by 10 time
units (equal to p5’s transmission delay). Hence, the current
expected time of arrival for p3, p4 need to be updated at the
target node, by adding to them the transmission delay for p5.

tion of the classic parallel compare-and-shift architecture [32]
that has also been used recently in other contexts, such as
packet scheduling [40, 45] and filtering [41]. Overall, with
an ordered list, Seer can implement max-min(Q) in 1 clock
cycle, delete(m, Q) in 2 clock cycles, and insert(m, Q) in 3
clock cycles (including the updates triggered by an insert).

Implementing set primitives. Implementing the queues
in Seer’s cache manager using flip-flops also helps with
fast implementations of the two set primitives, namely
intersect(S1,S2) and difference(S1,S2). In Seer, S1 is a cache
set of size k in a k-way set-associative cache. Implementa-
tion of the cache itself is outside the purview of Seer, but
we assume that it takes O(k) time to locate an element in a
cache set of size k. On the other hand, set S2 in Seer refers
to queues Fi and X in Algorithm 1, which we implement as
fully ordered lists using flip-flops, as discussed above. Fur-
ther, in Seer, the intersect and difference operations execute
synchronously over the same input sets (lines 3–4 in Algo-
rithm 2). Hence, Seer implements the two primitives jointly
(in parallel) as described below.

Seer iteratively compares the id of each state s in the cache
set (set S1) with all the elements in

⋃
Fi and X (set S2) in

parallel. Since flip-flops allow parallel access, this can be
done in k clock cycles, where k is the cache set size. If the id
of s matches the id of an element m in Fi or X , Seer adds it to
set A (output of intersect(S1,S2)), else it adds it to set B (output
of difference(S1,S2)). Thus, it takes a total of k clock cycles
to implement both the intersect and difference primitives.
Additionally, Seer also calculates the max tarrival within set
A (line 9 in Algorithm 2) in parallel while building set A.
Essentially, while adding an element m to set A, Seer updates
the current max tarrival value, tmax, to max(tmax, m.tarrival), and
accordingly updates the state id with the current max tarrival ,
idmax, to m.id if m.tarrival > tmax. Thus, after k iterations, idmax
stores the state id in set A with max tarrival . Hence, Seer could
execute the entire cache eviction algorithm in k clock cycles.
Overall performance. Overall, Seer takes k clock cycles
for the cache membership check (line 11 in Algorithm 1),
1+ log(P) clock cycles to find the FPM with minimum tarrival
(lines 10 + 17 in Algorithm 1), and k clock cycles in the best
case or k clock cycles plus the latency of the default caching
heuristic (for LRU the best known implementation has O(1)
time) in the worst case, to evict an element from the cache.
Thus, tpre f etch + tevict = log(P) + 2k + 1 clock cycles. The
value of k, the cache set size, is typically 4–8 for modern
caches [52]. The value of P, number of ports, varies from 2–4
for NICs and FPGAs to few 100s for switches and routers.
Assuming clock rates of around 100–200 MHz as typically ob-
served for NICs and FPGAs, and clock rates of around 1 GHz
as typically observed for ASIC switches and routers [42], the
total tpre f etch + tevict time would be 100–200 ns for NICs and
FPGAs and under 25 ns for ASIC switches and routers.

5 Prototype
We prototype Seer in System Verilog (∼1200 LOCs) on an
Altera Stratix V [49] FPGA comprising 234 K Adaptive Logic
Modules, 52 Mbits SRAM, and four 10 Gbps network ports.
The architecture of the prototype is shown in Figure 5.

To implement Seer’s future packet notification protocol
using IPG, as described in §3.1, we modify Ethernet’s phys-
ical layer (PHY) as shown in Figure 5. Once the Physical
Coding Sublayer (PCS) in PHY receives a packet from higher
layers to transmit, the Encoder module in PCS reformats the
packet into a sequence of one /S/ block (Start of an Ethernet
frame), multiple /D/ data blocks, and one /T/ block (End
of an Ethernet frame). PCS inserts at least twelve 8-bit idle
characters (/I/) between two Ethernet frames (IPG). The /I/
characters are set to 0 by default. The /T/ block can have
0–7 /I/ characters, and PCS inserts one or more special /E/
block with eight /I/ characters to make up the minimum
requirement of twelve /I/ characters. Note that if there are
no Ethernet frames to transmit, PCS continuously keeps trans-
mitting /E/ blocks. The /T/ and /E/ blocks (and hence the
/I/ characters) are accessible as part of the output from the

Physical Medium Dependent (PMD)

Physical Medium Attachment (PMA)

Encoder

Seer TX

Scrambler

Gearbox

Decoder

Seer RX

Descrambler

Blocksync

Physical Coding Sublayer (PCS)

XSBI 644.53125 MHz

Physical Layer (PHY)

Reconciliation Sublayer (RS)
Media Access Control (MAC)

XGMII 156.25 MHz

O
rd

er
ed

 li
st

(fl
ip

-fl
op

s)

Recvd
FPM

logic

Cache Manager

id2, val2id1, val1

id6, val6id3, val3

id1, val1
id2,val2

id100, val100

id98, val98
id99,val99

2-way set associative
SRAM cache

DRAM Fetch

Evict

2 Priority Classes (FIFOs)

FP
MPK

T

Egress Ingress

Figure 5: Seer’s FPGA prototype. Seer’s modules are shown
in gray boxes.

Encoder on the TX path and input to the Decoder on RX path.
Hence, we implement Seer’s logic after the Encoder/Decoder
modules. On the TX path, Seer creates a separate data path
(shown using red lines in Figure 5) that bypasses the nor-
mal data path for Ethernet frames, and connects Seer’s PHY
module directly to the FPM FIFO queues. If any of the FPM
queues are non-empty, Seer immediately dequeues an FPM
from the queue and overwrites the outgoing /I/ characters
with the FPM. On the RX path, when Seer receives a /T/ or
an /E/ block, it extracts the FPM from the /I/ characters in
those blocks, and overwrites those bits with all 0s before send-
ing to Decoder, following the Ethernet standard. Seer adds
the extracted FPM to the fully ordered list of FPMs through
another separate data path (shown using a red line in Figure 5)
bypassing the normal Ethernet frame’s data path. Finally, we
also implement Seer’s cache manager as described in §4.

Queue size
FPGA ASIC

Clock Logic Clock Area
N = 128 170 MHz 8% 4.2 GHz 0.012 mm2

N = 256 150 MHz 15% 4.1 GHz 0.022 mm2

N = 512 120 MHz 30% 3.7 GHz 0.042 mm2

N = 1024 100 MHz 60% 3.5 GHz 0.085 mm2

N = 2048 – >100% 3.4 GHz 0.167 mm2

N = 4096 – >100% 3.2 GHz 0.324 mm2

Table 1: Clock speed and resource usage for Seer’s prototype
with varying size of the fully ordered list data structure.

5.1 Resource Usage
The most resource consuming component of Seer’s design
(and also the bottleneck for clock speed) is the fully ordered
list used to store the received FPMs. This is the price we way
for parallelism via flip-flops. Table 1 shows Seer’s overall
clock speed and resource consumption for varying sizes of
the fully ordered list. We also synthesize Seer’s RTL design
on Synopsys Design Compiler tool [53] using an open-source
15 nm process technology [29], and report the results in Ta-
ble 1. On the FPGA, we are unable to synthesize a design
beyond queue size of 1024, as we run out of FPGA logic re-
sources. On the ASIC however, Seer is able to support much
larger queue sizes with clock rates in excess of 3 GHz. To
put this in perspective, modern switching chips typically run
at around 1 GHz clock rate [42, 45]. Chip area increases lin-
early with queue size. Note that the numbers reported are
for a single queue. If the processor has multiple ports, the
area usage will be multiplied by the number of ports, as Seer
maintains one queue per ingress port. Thus, for N = 4096,
and 100 ports, the total area consumed will be 32 mm2. This
is between 5%–10% overhead for switching chips whose chip
areas vary from 300–700 mm2 [12].

5.2 Prototype Experiments
We directly connect two FPGA prototypes from Figure 5
using an optical cable of length 2 m (propagation delay of
around 10 ns). One FPGA emulates the neighbor node while
the other emulates the target node. On the neighbor FPGA,
we implement two priority classes at the egress. We also im-
plement a packet generator on the FPGA to feed the packets
into the priority classes. Packet generator randomly decides
which priority class to put a packet into. Packets arrive ac-
cording to a Poisson process. We assign a random flow id to
each packet, chosen uniformly at randomly from 0 to 100 K,
thus emulating 100 K flows. On the target FPGA, we populate
the DRAM with 100 K flow state entries. Each flow state is
512 bits. We implement a 2-way set associative cache of size
2 MB in SRAM (can cache around 30 K flow states).
Parameters. The default packet size to 256 B. The default
average rate of packet generation is 6 Gbps. The FPM queue
size at both the egress and ingress is 256 entries. The size of
each FPM is 44 bits – 17 bits for flow id, 11 bits for packet

(a) Incast workload. (b) Permutation workload.

Figure 6: Cache miss ratio for Seer vs. LRU and Belady for
different packet sizes and packet generation rates. For each
data point, all the cache miss ratios are normalized w.r.t. the
corresponding cache miss ratio for Seer.

size, and 16 bits for td . Thus we can send two FPMs in the
minimum sized Ethernet IPG. The control packet size is 64 B,
and we send a control packet only when the FPM queue size at
egress exceeds 8 entries (m = 8) and at least 5 us have elapsed
since the last control packet was sent (t=5 us). This limits the
bandwidth overhead of control packets to ∼ 1%. The default
caching heuristic used in Seer is LRU [56] (Algorithm 2).
Evaluation metric. We use cache miss ratio, i.e., number of
cache misses divided by total cache access requests.
Baselines. We use LRU [56] and Belady [7] as the baselines.
Experiment results. Figure 6a shows the cache miss ratio
against packet size. Seer outperforms LRU for all packet sizes,
but the gains decrease for larger packet sizes (80% gain for
64 B vs. 20% for 1500 B). This is because with smaller packet
sizes, the number of packets in a queue of given size (in bytes)
would be higher. This works to Seer’s advantage, as Seer re-
ceives higher number of FPMs within a given time window,
thus allowing it to make more informed prefetching and evic-
tion decisions. Finally, we also note that Seer performs very
close to Belady (within 20%) for all packet sizes.

Next, Figure 6b shows the cache miss ratio against differ-
ent packet generation rates. As the packet generation rates
increase, Seer outperforms LRU by a bigger margin (by 8% at
2 Gbps vs. 94% at 9 Gbps). Similarly, Seer performs closer to
Belady at higher packet generation rates (within 5% at 9 Gbps
vs. 20% at 2 Gbps). This is because higher packet generation
rate leads to more queuing at the egress, thus providing Seer
with more visibility into the future state access requests.

6 Simulations
In this section, we do large scale network simulations to eval-
uate the performance of Seer over state-intensive network
applications. Our simulator is written in C built on top of [44].
Setup. We simulate a two-tier Fattree [1] topology with 16
spine switches, 9 ToR switches, and 16 hosts per ToR switch,
for a total of 144 hosts. All links in the network are 100 Gbps.
Per-hop propagation delay is 100 ns. Each host in the network
is running DCTCP [3] congestion control and each switch
supports ECN. Switches do ECMP [51] load balancing.

(a) Incast workload. (b) Permutation workload. (c) Websearch workload. (d) Datamining workload.

Figure 7: Cache miss ratio for Seer vs. LRU and Belady for different packet sizes. For each packet size, all the cache miss ratios
are normalized w.r.t. the corresponding cache miss ratio for Seer.

Applications. Each spine switch in the network runs a stateful
layer 4 load balancing application, similar to SilkRoad [31].
Each ToR switch in the network runs an intrusion detection ap-
plication [57] that stores several per-flow states in the switch,
e.g., packet counts, packet inter-arrival times, etc. By default,
we assume the cache in each switch can store up to 20% of
the total flow states. We assume DRAM as the backing store.

Workloads. We evaluate Seer against a variety of workloads
– (i) a permutation workload, where each host sends and re-
ceives exactly one flow; (ii) an incast workload, where we
select a rack as the incast destination and all other hosts in the
network send to the hosts in that incast rack; (iii) websearch
workload [3]; and (iv) datamining workload [17]. Websearch
and datamining are representative datacenter workloads, with
heavy-tailed flow size distribution. Flows arrive according to
a Poisson process for a target network load of 0.6.

Baselines. We evaluate Seer against a variety of state-of-
the-art online caching algorithms – LRU [56], LFU [13],
ARC [30], S3-FIFO [59], and SIEVE [60]. We also evalu-
ate Seer against the optimal offline algorithm, Belady [7].

Evaluation metrics. We use two evaluation metrics – (i)
cache miss ratio aggregated across all the switches running
the above applications, and (ii) flow completion time (FCT).

Parameters. The FPM queue size at each egress and ingress
port is 1024 entries. The size of each FPM is 44 bits – 17 bits
for flow id, 11 bits for packet size, and 16 bits for td . Thus we
can send two FPMs in the minimum sized Ethernet IPG. The
control packet size is 64 B, and we send a control packet only
when the FPM queue size at egress exceeds 8 entries (m = 8)
and at least 500 ns have elapsed since the last control packet
was sent (t=500 ns). This limits the bandwidth overhead of
control packets to ∼ 1%. The default caching heuristic used
in Seer is LRU [56] (Algorithm 2).

Experiment results. Figure 7 shows that for incast work-
load, Seer significantly outperforms LRU for all packet sizes.
This is due to the fact that incast workload results in signifi-
cant queuing in the network, which allows Seer to get better
visibility into future state access requests. In contrast, for
the permutation workload, Seer performs very close to LRU,
since this workload observes least queuing in the network.

This is also the reason why for this workload, the gap be-
tween the performance of Seer and Belady is largest. Next,
even for realistic datacenter workloads, namely websearch
and datamining, Seer significantly outperforms LRU (by up
to 65%) while remaining between 15–35% of Belady for all
packet sizes. Finally, across all the four workloads, as the
packet sizes increase, the gains of Seer over LRU decrease
and the performance gap between LRU and Belady increase.
The reason for this trend is explained in §5.2.

Next, Figure 8 shows the performance of Seer with varying
cache capacity. As expected, as the cache capacity increases,
the number of cache misses decrease for both Seer and the
baselines. However, Seer performs consistently better than
LRU for all cache sizes. While the gains are more for smaller
cache sizes, but even for larger cache sizes, the gains are
significant. This is because even with a large cache size, LRU
is unable to avoid cold cache misses, where a state is fetched to
the cache for the first time. However, Seer can avoid such cold
misses due to its prefetching algorithm leveraging visibility
into future state access requests.

Next, Figure 9 shows the performance of Seer against
state-of-the-art online caching heuristics. LFU performs the
worst, which is an indication that frequency is perhaps not the
right metric for caching in these experiments. ARC is based
upon LRU while S3-FIFO and SIEVE are recent FIFO-based
caching heuristics designed to be more scalable than LRU.
But ultimately, all these heuristics are limited by the lack of
visibility into future state access requests, which both Seer
and Belady exploit to gain much better performance.

Finally, in Figure 10, we show the performance of Seer in
terms of flow completion time. The trend here is similar to
the trend observed with cache miss ratio, since higher cache
misses at the switches result in higher latency (and lower
throughput) for in-network packet processing, ultimately re-
sulting in higher flow completion time.

7 Related Work
Belady’s algorithm [7] exemplifies an optimal caching algo-
rithm. While a true implementation of Belady’s algorithm
would be ideal, it is impractical due to its fully offline nature.
Seer attempts a practical, best-effort emulation of Belady.

(a) Incast workload. (b) Websearch workload.

Figure 8: Number of cache misses for different cache capaci-
ties. A cache capacity of X% means the cache can hold X%
of total state. The packet size used is 64B.

(a) Incast workload. (b) Websearch workload.

Figure 9: Cache miss ratio for Seer vs. state-of-the-art online
caching heuristics and Belady. The cache miss ratios are
normalized w.r.t. the cache miss ratio for Seer. The packet
size used is 64B.

(a) Websearch workload. (b) Datamining workload.

Figure 10: Flow completion time (FCT) for Seer vs. LRU.
FCTs are normalized w.r.t. to the FCT for Seer.

Recency and frequency metrics form the backbone of tra-
ditional caching heuristics, such as LRU [56], LFU [13],
LRU-K [36], 2Q [23], ARC [30], SLRU [24], GDSF [11],
EELRU [46], LRFU [26], CAR [5], CLOCK-Pro [22],
TinyLFU [14], S3-FIFO [59], and SIEVE [60]. The LRU
algorithm maintains an ordered queue based on access re-
cency, evicting the oldest entry whenever necessary. LRU-K,
2Q, ARC, SLRU, and EELRU use multiple LRU queues in
tandem to improve performance or cover weaknesses of LRU,
such as thrashing. Frequency also serves an important role in
caching, most notably with LFU. For example, LRFU com-

bines recency and frequency into a single metric for consider-
ation. Tiny-LFU augments any arbitrary caching algorithm
with an LFU-like admission policy. Real world factors are
also often taken into consideration with caching. For exam-
ple, GDSF optimizes around the time cost disparity between
different memory accesses. Practical-minded cache designers
may instead use CLOCK-based algorithms such as CAR and
CLOCK-Pro, or FIFO-based algorithms, such as S3-FIFO
and SIEVE, due to their speed and ease of implementation
in real-world settings. These algorithms all attempt to ap-
proximate Belady’s algorithm to varying degrees of success.
However, they are ultimately limited by their online design,
as being oblivious to future state access requests leaves much
performance on the table.

Machine learning has also been used to aid caching, espe-
cially in web caching or content delivery settings. LHD [6],
Raven [20], LeCaR [54], CACHEUS [39], LRB [47], GL-
Cache [58] and HALP [48] are examples, each of which
integrate ML into their designs in different ways. Some al-
gorithms like LHD and Raven are probability-based, while
others such as LeCaR and CACHEUS learn weights between
well-studied algorithms. Others, such as LRB and HALP
use network statistics to learn an approximation of Belady’s
algorithm. Still others take wholly unique angles, such as GL-
Cache, which classifies objects together for grouped cache
management. ML-based algorithms have their time and place.
However, their reliance on the historical or statistical patterns
to make future predictions is their achilles heel. In contrast,
Seer provides a perfectly accurate mechanism for visibility
into future state access requests in a networked setting.

Some solutions do not neatly fit into the above categories,
such as Belatedly and its practical approximation MAD [4],
which minimize cache delay instead of cache misses as tradi-
tional algorithms do. And finally, Reframer [16] intentionally
delays and reorders packets belonging to different flows to re-
duce end-host cache misses, however is challenging to imple-
ment at line rate, and introduces delay to reordered packets.

8 Conclusion
We presented Seer which is an online caching system for
state-intensive network and distributed applications. Seer min-
imizes cache misses by providing visibility into future state
access requests. Seer leverages the delays experienced by
packets in a network to notify network nodes implementing
caching of future state access requests carried in incoming
network packets that are currently queued at a neighbor node.
Using this as a building block, we presented the design of an
online cache manager that leverages visibility into (partial)
set of future state access requests to make smarter prefetching
and cache eviction decisions. Seer’s design has been proto-
typed and implemented on an FPGA. Our evaluations showed
that Seer achieves up to 65% lower cache miss ratio and up
to 78% lower flow completion time compared to LRU for key
network applications over realistic workloads.

Acknowledgments
We thank the anonymous NSDI reviewers and our shepherd,
Anuj Kalia, for their valuable feedback. This work was sup-
ported in part by an NSF CAREER Award 2239829 and a
Ross Ph.D. fellowship.

References
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin

Vahdat. A Scalable, Commodity Data Center Network
Architecture. SIGCOMM, 2008.

[2] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. SP-PIFO: Approximating Push-In First-Out
Behaviors using Strict-Priority Queues. NSDI, 2020.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). SIGCOMM, 2010.

[4] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S.
Berger. Caching with Delayed Hits. SIGCOMM, 2020.

[5] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with Adaptive Replacement. FAST, 2004.

[6] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving hit rate by maximizing hit density.
NSDI, 2018.

[7] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems Journal,
1966.

[8] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the Hot Ob-
ject Memory Cache in a Content Delivery Network.
NSDI, 2017.

[9] Daniel Bittman, Robert Soulé, Ethan L. Miller, Vishal
Shrivastav, Pankaj Mehra, Matthew Boisvert, Avi Sil-
berschatz, and Peter Alvaro. Don’t Let RPCs Constrain
Your API. HotNets, 2021.

[10] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. SIGCOMM, 2021.

[11] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. USITS, 1997.

[12] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
Ariel Orda, and Tom Edsall. dRMT: Disaggregated
Programmable Switching. SIGCOMM, 2017.

[13] John Dilley and Martin Arlitt. Improving proxy cache
performance: Analysis of three replacement policies.
IEEE Internet Computing, 1999.

[14] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM Trans-
actions on Storage, 2017.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Public
Cloud. NSDI, 2018.

[16] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-
sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,
Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.
Packet Order Matters! Improving Application Perfor-
mance by Deliberately Delaying Packets. NSDI, 2022.

[17] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A Scalable and Flexible Data Center Network.
SIGCOMM, 2009.

[18] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues Don’t Matter When You
Can JUMP Them! NSDI, 2015.

[19] John Hennessy and David Patterson. Computer Archi-
tecture: A Quantitative Approach Sixth Edition. Morgan
Kaufmann, 2019.

[20] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and
Zhi-Li Zhang. Raven: Belady-Guided, Predictive
(Deep) Learning for in-Memory and Content Caching.
CoNEXT, 2022.

[21] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and
Mohit Tawarmalani. Leo: Online ML-based Traffic Clas-
sification at Multi-Terabit Line Rate. NSDI, 2024.

[22] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-
Pro: an effective improvement of the CLOCK replace-
ment. ATC, 2005.

[23] Theodore Johnson and Dennis Shasha. 2Q: A Low
Overhead High Performance Buffer Management Re-
placement Algorithm. VLDB, 1994.

[24] R. Karedla, J.S. Love, and B.G. Wherry. Caching strate-
gies to improve disk system performance. Computer,
1994.

[25] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan.
TEA: Enabling State-Intensive Network Functions on
Programmable Switches. SIGCOMM, 2020.

[26] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H. Noh,
Sang Lyul Min, Yookun Cho, and Chong Sang. LRFU:
a spectrum of policies that subsumes the least recently
used and least frequently used policies. IEEE Transac-
tions on Computers, 2001.

[27] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally Synchronized Time via Data-
center Networks. SIGCOMM, 2016.

[28] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. PHY
Covert Channels: Can you see the Idles? NSDI, 2014.

[29] Mayler Martins, Jody Maick Matos, Renato P. Ribas,
André Reis, Guilherme Schlinker, Lucio Rech, and Jens
Michelsen. Open Cell Library in 15nm FreePDK Tech-
nology. ISPD, 2015.

[30] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. FAST,
2003.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
SIGCOMM, 2017.

[32] Sung-Whan Moon, Jennifer Rexford, and Kang G. Shin.
Scalable hardware priority queue architectures for high-
speed packet switches. Transactions on Computers,
2000.

[33] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
Directed Hardware Design for Network Performance
Monitoring. SIGCOMM, 2018.

[34] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. NSDI, 2013.

[35] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H
Noh. Caching less for better performance: balancing
cache size and update cost of flash memory cache in
hybrid storage systems. FAST, 2012.

[36] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K Page Replacement Algorithm For
Database Disk Buffering. SIGMOD, 1993.

[37] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martín Casado. The design and implementation of
open vSwitch. NSDI, 2015.

[38] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano.
FlowBlaze: Stateful Packet Processing in Hardware.
NSDI, 2019.

[39] Liana V. Rodrigues, Farzana Yusuf, Steven Lyons,
Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,
and Giri Narasimhan. Learning Cache Replacement
with CACHEUS. FAST, 2021.

[40] Vishal Shrivastav. Fast, Scalable, and Programmable
Packet Scheduler in Hardware. SIGCOMM, 2019.

[41] Vishal Shrivastav. Programmable Multi-Dimensional
Table Filters for Line Rate Network Functions. SIG-
COMM, 2022.

[42] Vishal Shrivastav. Stateful Multi-Pipelined Pro-
grammable Switches. SIGCOMM, 2022.

[43] Vishal Shrivastav, Ki Suh Lee, Han Wang, and Hakim
Weatherspoon. Globally Synchronized Time via Data-
center Networks. IEEE/ACM Transactions on Network-
ing, 2019.

[44] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A Network Architec-
ture for Disaggregated Racks. NSDI, 2019.

[45] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable Packet Scheduling
at Line Rate. SIGCOMM, 2016.

[46] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson.
EELRU: simple and effective adaptive page replacement.
SIGMETRICS, 1999.

[47] Zhenyu Song, Daniel S. Berger, Kai Li, Anees Shaikh,
Wyatt Lloyd, Soudeh Ghorbani, Changhoon Kim,
Aditya Akella, Arvind Krishnamurthy, Emmett Witchel,
et al. Learning relaxed belady for content distribution
network caching. NSDI, 2020.

[48] Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Altin-
buken, Eugene Brevdo, Jimmy Coleman, Xiao Ji, Pawel
Jurczyk, Richard Schooler, and Ramki Gummadi. Halp:
Heuristic aided learned preference eviction policy for
youtube content delivery network. NSDI, 2023.

[49] http://de5-net.terasic.com.tw. DE5-Net FPGA
Development Kit. Terasic, 2021.

[50] https://en.wikipedia.org/wiki/Cache_
placement_policies.
Cache Placement Policies. Wikipedia, 2023.

[51] https://en.wikipedia.org/wiki/Equal-cost_
multi-path_routing. Equal-cost multi-path routing.
Wikipedia, 2023.

[52] https://www.intel.com/content/dam/develop/
external/us/en/documents/architecture-
instruction-set-extensions-programming-
reference.pdf. Intel Architecture. Intel, 2023.

[53] https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test/dc-
ultra.html.
DC Ultra RTL Synthesis. Synopsys, 2021.

[54] Giuseppe Vietri, Liana V. Rodrigues, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming

Zhao, and Giri Narasimhan. Driving cache replacement
with ML-based LeCaR. hotStorage, 2018.

[55] Han Wang, Ki Suh Lee, Erluo Li, Chiun Lin Lim,
Ao Tang, and Hakim Weatherspoon. Timing is Every-
thing: Accurate, Minimum Overhead, Available Band-
width Estimation in High-Speed Wired Networks. IMC,
2014.

[56] Maurice V Wilkes. Slave memories and dynamic stor-
age allocation. IEEE Transactions Electronic Comput-
ers, 1965.

[57] Bruno Missi Xavier, Rafael Silva Guimarães, Giovanni
Comarela, and Magnos Martinello. Programmable
Switches for in-Networking Classification. INFOCOM,
2021.

[58] Juncheng Yang, Ziming Mao, Yao Yue, and K. V.
Rashmi. GL-Cache: Group-level learning for efficient
and high-performance caching. FAST, 2023.

[59] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,
and K. V. Rashmi. FIFO Queues are ALL You Need for
Cache Eviction. SOSP, 2023.

[60] Yazhuo Zhang, Juncheng Yang, Yao Yue, and Ymir Vig-
fusson. SIEVE is Simpler than LRU: an Efficient Turn-
Key Eviction Algorithm for Web Caches. NSDI, 2024.

http://de5-net.terasic.com.tw
https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

	Introduction
	Seer: Overview and Insights
	Design
	Future Packet Notification Protocol
	Cache Manager
	Limits of Seer

	Implementation
	Prototype
	Resource Usage
	Prototype Experiments

	Simulations
	Related Work
	Conclusion

