Rack-Scale Memory Disaggregation over Ethernet

Weigao Su, Vishal Shrivastav

Requirements

• Latency: Transmission delay needs to be as close to local memory access as possible (NUMA takes around 280ns) • Utilization: Header encapsulation needs to be efficient since memory flows are extremely small, often less than 64B and potentially a single byte.

Existing Limitations

1. Minimum frame size overhead

2.Inter-frame gap (IFG) overhead.

3.No intra-frame preemption.

4. Layer 2 switching overhead.

5. Transport layer overhead.

6. Queueing delay at switch

(b) EDM Host Network Stack

non-memory

traffic

Decoder

Descrambler

non-men

blocks

FPGA Prototype

Added latency:

Network Simulation

EDM keeps the end-to-end latency

- 268.8ns for read;
- 262.4ns for write

Comparable to one hop NUMA; 4x faster than the raw Ethernet.

within **1.2x** and **1.3x** the ideal unloaded

latency for READs and WRITES

respectively.

WRITE

EDM (Ethernet Disaggregated Memory)

• Centralized flow scheduling: *zero* network queuing + high bandwidth utilization.

- A Maximal-matching: At most one sender sending to a receiver at any time.
- Zero-delay forwarding: No processing needed because of matched circuit.

Reduced transport overhead: A no-loss environment is guaranteed

Compute Node				
MAC	2 * 19.2ns	19.2ns	0	0
PHY (PCS)	2 * 19.2ns	19.2ns	2 * 12.8	3 * 12.8
	2 17.2115	17.2115	+ 32ns	+ 70.4ns
Switch				
Layer 2 fwd	2 * 400ns	400ns	0	0
MAC	4 * 19.2ns	2 * 19.2ns	0	0
PHY (PCS)	4 * 19.2ns	2 * 19.2ns	4 * 12.8	4 * 12.8
	4 17.2115	2 17.2115	+70.4ns	+70.4ns
Memory Node				
MAC	2 * 19.2ns	19.2ns	0	0
PHY (PCS)	2 * 19.2ns	19.2ns	2 * 12.8	12.8
FIII (FCS)	2 19.2115	19.2115	+64ns	+19.2ns
Network Stack Latency	1.11 μ s	553.6ns	268.8ns	262.4ns
Transmission Delay	4 * 51.2ns	2* 51.2ns	6.4 + 51.2ns	12.8+51.2ns
Propagation Delay	4 * 10ns	2 * 10ns	4 * 10ns	4 * 10ns
Total Latency	$1.35 \mu s$	676ns	366.4ns	366.4ns

by matching.

Near-optimal flow completion time: Achieved by a configurable priority queue.

 Bypassing higher layers: minimum latency + header encapsulation overhead

✦ Host: Tx interacts with local application via notification queue, while Rx asynchronously updates a *grant queue* for responding remote requests. States are stored in a *flow state table*.

Switch: maintains a notification (priority) queue to proactively shape traffic.