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Traditional datacenter networks have been designed primarily us-
ing packet switches. However, due to the end of Moore’s Law and 
Denard Scaling, packet switches face increasing difficulty in scaling 
to meet network demands without consuming unnecessarily large 
amounts of power, both within high-density racks[14] and through-
out the datacenter[1]. As a result, many emerging network designs 
have intentionally avoided using packet switches [5, 7, 9, 10, 12, 
15, 16]. Circuit switches present an exciting alternative to packet 
switches due to their reduced power consumption[1, 14], and poten-
tial to scale to arbitrary bandwidth (in the case of optical switches). 
While slow reconfiguration times have historically made circuit 
switches unable to support low-latency traffic, recent circuit switch 
design have emerged that are capable of nanosecond-scale recon-
figuration times, including both electrical [11] and optical [3, 4, 6] 
switches. Unfortunately, conventional, dynamically-reconfiguring 
circuit-switched network designs have inherent latencies both for 
computing which circuits to deploy and for coordinating switches 
and nodes, limiting the benefits of this new capability.

Oblivious Reconfigurable Networks (ORNs) are a new network 
design paradigm that can realize the potential of modern, rapid 
circuit switches. In ORNs, circuit switches are reconfigured oblivi-
ous to traffic, using a predetermined schedule of timeslots. During 
each timeslot, switch configurations are fixed, connecting nodes 
according to the connection schedule for long enough to send a 
single frame. Timeslots are separated by guard bands, during which 
switches are reconfigured and no data is sent. Guard bands as short 
as 3.84 ns have been demonstrated for optical ORNs [3], and by 
using multiple lanes to parallelize the schedule, timeslots can be 
started every 5.6 ns [14]. To support arbitrary traffic with a fixed 
schedule, ORNs use an indirect routing scheme to route data to 
its destination. By co-designing the schedule and routing scheme,
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Figure 1: A comparison of the throughput and intrinsic la-
tencies achieved by various tunings of EBS for a 100,000-
node network.

good performance can be achieved over all workloads. RotorNet
[8], Shoal [14], and Sirius [3] are three designs following the ORN
concept that have been demonstrated on physical test-beds. How-
ever, all three use schedules based on a single round-robin among
all nodes, as shown in fig. 2a. This schedule maximizes throughput
at the cost of poor latency scaling (linear in system size), limiting
the applicability of these systems to large systems.

Scalable ORNs. Recent theoretical research [2] has developed a fam-
ily of ORN designs, known as EBS1, that achieve multiple different
tradeoffs between throughput and latency, all of which are Pareto
optimal for ORNs (up to a constant factor). These designs gener-
alize the schedule and routing scheme used by existing proposals,
and are practical to implement using the same technologies. Rather
than participating in a single round-robin with all other nodes, each
node instead participates in ℎ smaller round-robins, each of which
has only ℎ

√
𝑁 participants, as shown in fig. 2b. Compared to existing

designs, EBS reduces the latency from O(𝑁 ) to O(ℎ ℎ
√
𝑁 ). While

the throughput is also reduced from 1
2 to 1

2ℎ , the tradeoff is Pareto
optimal (up to a constant factor) [2]. However, new congestion con-
trol mechanisms are needed to achieve these theoretical latencies in
practice. Due to the unique properties of ORNs, existing congestion
control systems, especially end-to-end mechanisms, are a poor fit.

The proof of the Pareto optimality of EBS (as developed in [2])
implies several properties ORNs must have to achieve good per-
formance. First, in order to guarantee throughput across arbitrary
workloads, they must load-balance across manyindirect paths for
each flow, up to O(𝑁 ). Second, in order to achieve scalable latency
characteristics, they must use sufficiently long path lengths.

1Elementary Basis Scheme, named for a mathematical construction used to define it
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(a) Single round-robin schedule for six nodes.

Node
AA BA CA · · · BC CC

Ti
m
es
lo
t 1 BA CA AA · · · CC AC

2 CA AA BA · · · AC BC
3 AB BB CB · · · BA CA
4 AC BC CC · · · BB CB

AA CA

AC CC

CB

BC

BA

AB BB

(b) EBS schedule with ℎ = 2 for nine nodes. Here, each node is la-
beled with two letters, and participates in round robins with nodes
differing by only one letter.

Figure 2: Sample schedules for both existing ORN designs
and EBS with ℎ = 2, with visualizations of all connections
formed over the course of each schedule.

Congestion in ORNs. There are two primary causes of congestion
in ORNs. The first, egress congestion, occurs when frames bound
for the same destination accumulate in queues leading to their
destination. In ORNs, as in other contexts, incast can cause this
type of congestion. However, because each flow must use many
paths in an ORN, it is possible for two frames from the same flow
to experience egress congestion. Unadressed, egress congestion can
be long-lived, and is promoted by heavy-tailed workloads in which
most bytes are sent in long flows.

In the second form of congestion, path-collision congestion, frames
with unrelated destinations happen to be enqueued at the same
node to be sent to the same next hop. Due to the use of indirect
paths, path collisions can occur between many different source
destination pairs. While path-collision congestion is unlikely to be
sustained on its own, it can magnify the impact of egress conges-
tion when both occur simultaneously. Path-collision congestion
can occur spontaneously for all workloads.

Congestion control in scalable ORNs. ORNs pose a unique environ-
ment for congestion control. First, ORNs exhibit heavy reliance on
multi-pathing in order to ensure good throughput across arbitrary
traffic. Traditional congestion control mechanisms, such as the
TCP-suite of algorithms, expect packets from a given flow to take
a single paths, or sometimes a small handfull of paths. However,
ORNs often require O(𝑁 ) paths in order to achieve good perfor-
mance. Short flows may never have two frames traverse the same
path, and difficult-to-untangle fate sharing makes it impractical
to apply congestion information from one path to another with-
out becoming too conservative. The long path lengths necessary to
achieve scalability mean that congestion can occur far from both
the sender and the receiver of a frame. Finally, because queues empty
slower than line-rate, sending only one frame per schedule iteration,
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Figure 3: Buffer occupancies and tail flow completion time
slowdowns for 4096-node EBS with ℎ = 4.

ORNs are especially sensitive to even low levels of queuing delay.
All of these factors suggest that end-to-end congestion control is a
poor fit in the ORN context, motivating the development of novel
congestion control mechanisms for this context.

While existing ORN proposals have congestion control mecha-
nisms, they are enabled by the short, two-hop paths used by these
designs. This prevents them from being used with scalable ORNs
such as EBS, which must use longer paths. We have developed
two congestion control mechanisms that together provide impres-
sive performance for EBS. The first design is a hop-by-hop design
that effectively addresses egress congestion. This design uses Push-
In-Extract-Out queues [13] to pause sending frames to congested
destinations without affecting traffic to other destinations. The sec-
ond is a routing optimization that takes advantage of flexibility in
the first half of paths in EBS. For those hops, rather than sending via
a randomly selected next hop, nodes instead send via a next hop that
has a short local send queue, reducing path collisions. While this
design deviates slightly from EBS’s routing scheme, experiments
have shown that it does not violate the throughput guarantees
of EBS in practice. Together, these designs proactively address all
forms of congestion as soon as they occur within the network.

Figure 3 shows the results of packet-level simulations of a 4096
node network using EBS with ℎ = 4. In these simulations, the
combination of both of our congestion control mechanisms is able to
outperform an idealized, clairvoyant end-to-end congestion control
for both a short-flow and a heavy-tailed workload.
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