
Seer: Enabling
Future-Aware Online
Caching in Networked
Systems
Jason Lei, Vishal Shrivastav

2

Firewall

NAT

Network
monitoring

Edge caching

Virtual switching
Receive-side

TCP processingLoad
balancing

● 300-600 MB tables
to serve common network
applications [TEA, SIGCOMM ‘20]

Motivation: State-Intensive High-Speed Network Applications

3

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

100+ Gbps
10

0+
 G

bp
s

100+ Gbps

100+ Gbps

10
0+

 G
bp

s

100+ Gbps

10
0+

 G
bp

s

100+ Gbps 100+ Gbps

● < 100 ns inter-packet intervals
● Millions of packet operations

each second

Network
monitoring

Load
balancing

Motivation: State-Intensive High-Speed Network Applications

4

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

● State demands and
performance demands are in
conflict because it is hard to
have large amounts of
high-speed memory

Motivation: State-Intensive High-Speed Network Applications

4

Demand SRAM DRAM

100s of MB -
few GB

100s of Gbps
- few Tbps

NAT
10s of MB several GB

5

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

Motivation: State-Intensive High-Speed Network Applications

● A cache would allow high
capacity memory to be
used while maintaining
high performance

5

6

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

Motivation: State-Intensive High-Speed Network Applications

● A cache would allow high
capacity memory to be
used while maintaining
high performance Takeaway:

High-speed state-intensive network
applications require efficient caching

6

State of Practice Falls Short of Ideal Case

● No shortage of online caching
algorithms - LRU, LFU, ARC,
CLOCK, S3-FIFO, SIEVE, etc.

● All fall short of optimal offline
caching algorithm (Belady) by a
significant margin
○ Ranging from 2-3x higher

cache miss ratio

7

Setup:
2-tier fat-tree network with 144 nodes running in-network

load balancing application with websearch workload

2x 3x

↓ Lower is better

State of Practice Falls Short of Ideal Case

● No shortage of online caching
algorithms - LRU, LFU, ARC,
CLOCK, S3-FIFO, SIEVE, etc.

● All fall short of optimal offline
caching algorithm (Belady) by a
significant margin
○ Ranging from 2-3x higher

cache miss ratio

● ML-based solutions are prone to
mispredictions

8

Setup:
2-tier fat-tree network with 144 nodes running in-network

load balancing application with websearch workload

2x 3x

↓ Lower is better

State of Practice Falls Short of Ideal Case

● No shortage of online caching
algorithms

○ LRU, LFU, ARC, CLOCK,
S3-FIFO, SIEVE, etc.

● All fall short of optimal offline
caching algorithm (Belady) by a
significant margin
○ Ranging from 2-3x higher

cache miss ratio

9

Setup:
2-tier fat-tree network with 144 nodes running in-network

load balancing application with websearch workload

2x 3x

↓ Lower is better

Fundamental Cause of Performance Gap:
Offline algorithm (Belady) uses knowledge of future state

accesses to make optimal caching decisions, but …

Traditional online caching algorithms lack
accurate awareness of future state accesses

9

Key Research Question

How can future-aware caching be realized
accurately in practice (online setting)?

10

Traditional online caching assumes future-awareness is challenging.
However…

Networked setting presents unique
opportunities to provide very accurate

visibility into future state accesses!

Key Insight

11

Hash Function

Insight 1: Header-Based State Indexing

12

flow ID state

1 15

2 0

3 27

4 6

… …

Node A

e.g. 5-tuple

state index

small number of bits
(e.g., 16-20)

Hash Function

Insight 1: Header-Based State Indexing

13

flow ID state

1 15

2 0

3 27

4 6

… …

Node A

e.g. 5-tuple

state index

small number of bits
(e.g., 16-20)

Takeaway 1:

State access indices are carried in
incoming packet headers, and can be
encoded using a small number of bits

14

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

Insight 2: Network Delays Create Opportunities

14

15

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

Insight 2: Network Delays Create Opportunities

: future state access index

15

16

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

Insight 2: Network Delays Create Opportunities

: future state access index

Takeaway 2:

Delays in the network can be leveraged to
forward state index information in

advance!

16

Firewall

NAT

Edge caching

Virtual switchingLoad
balancing

Network
monitoring

Insight 3: Neighbors Are Most Accurate Notifiers

17

Receive-side
TCP processing

● Hard to estimate future packet
(state access) time of arrival

● Needed for optimal caching!

Issue with multi-hop notification:
● Unpredictable queueing delay
● Packet may be dropped

17

Firewall

NAT

Edge caching

Virtual switchingLoad
balancing

Network
monitoring

Insight 3: Neighbors Are Most Accurate Notifiers

18

Receive-side
TCP processing

● Hard to estimate future packet
(state access) time of arrival

● Needed for optimal caching!

Issue with multi-hop notification:
● Unpredictable queueing delay
● Packet may be dropped

Takeaway 3:

Multi-hop notification provides inaccurate
estimation of future state access time, but

optimal algorithm (Belady) heavily relies on it

18

19

Firewall

NAT

Edge caching

Virtual switching
Receive-side

TCP processing

Network
monitoring

Load
balancing

Insight 3: Neighbors Are Most Accurate Notifiers
● Instead, our applications

only rely on notification
from directly connected
neighbors

: future state access index

19

Insight 3: Neighbors Are Most Accurate Notifiers

20

Insight 3: Neighbors Are Most Accurate Notifiers

21

● T: time when packet will reach target node
● t0: current time at target node
● P: size of packet in question P0
● B: bytes of queued data in front of packet P0
● L: link speed
● ε: link propagation delay

T = t0 + (P + B)/L + ε

Insight 3: Neighbors Are Most Accurate Notifiers

22

● T: time when packet will reach target node
● t0: current time at target node
● P: size of packet in question P0
● B: bytes of queued data in front of packet P0
● L: link speed
● ε: link propagation delay

T = t0 + (P + B)/L + ε

Takeaway 4:

Directly connected neighbors provide a
perfectly accurate estimation of future

state access times!

22

1. State access indices are carried in incoming packet
headers, and can be encoded using a small number of bits.

2. Delays in the network can be leveraged to forward state
index information in advance.

3. Directly connected neighbors provide a perfectly accurate
estimate of future state access times.

Putting It All Together

23

Our Contributions

Seer: A Future-Aware Online Caching System

1. Low-Overhead Future State Access Notification

2. Future-Aware Cache Manager

3. Fast Hardware Implementation

24

State access notifications carried
in control packets

25

(1) Low-Overhead Future State Access Notification

Future State Access Notification
for each packet contains:
● State access index
● Future time of arrival of

corresponding packet

Naive solution for notification:
control packets
● High bandwidth overhead – one

control packet per data packet
○ If all pkts are minimum-sized, can

consume half of total bandwidth!

26

Batching reduces number of control packets but
can delay notification while it waits for batch

Future State Access Notification
for each packet contains:
● State access index
● Future time of arrival of

corresponding packet

Naive solution for notification:
control packets
● High bandwidth overhead – one

control packet per data packet
○ If all pkts are minimum-sized, can

consume half of total bandwidth!

(1) Low-Overhead Future State Access Notification

27

How to send future state notifications in a
timely manner and with low overhead?

Future State Access Notification
for each packet contains:
● State access index
● Future time of arrival of

corresponding packet

Naive solution for notification:
control packets
● High bandwidth overhead – one

control packet per data packet
○ If all pkts are minimum-sized, can

consume half of total bandwidth!

Batching reduces number of control packets but
can delay notification while it waits for batch

(1) Low-Overhead Future State Access Notification

28

● Send notifications in IPG
○ Ethernet PHY enforces a

minimum of 96 bit
inter-packet gap (IPG)
between packets

○ Can carry multiple packets’
state access notification
within a single IPG

○ Zero bandwidth overhead
○ Limitation: Limited # of bits

for communication
■ Limits rate at which packet

notifications can be sent

Send notifications using
IPG between packets

(1) Low-Overhead Future State Access Notification

29

● Send notifications over IPG
under normal scenarios

● Send a control packet when
notification queue exceeds
configurable parameter m

(1) Optimization: Opportunistic Batching

30

● Send notifications over IPG
under normal scenarios

● Send a control packet when
notification queue exceeds
configurable parameter m
○ By configuring m, we

control bandwidth
overhead of control pkts

(1) Optimization: Opportunistic Batching

31

● Send notifications over IPG
under normal scenarios

● Send a control packet when
notification queue exceeds
configurable parameter m
○ By configuring m, we

control bandwidth
overhead of control pkts

(1) Optimization: Opportunistic Batching

Best of both worlds:
Timely notification with low bandwidth

overhead and no batching delay

32

(2) Future-Aware Cache Manager

● Cache manager uses received future state access notifications
to make smarter prefetching and cache eviction decisions

● Cache manager consists of two components:
○ Future-Aware Prefetching
○ Future-Aware Cache Eviction

33

● Goal: Fetch state in order of
predicted time of access
○ One received notification queue per

input port
○ Combine into one logically sorted

queue based on future access time
○ Fetch soonest state not in cache

(2) Future-Aware Prefetching

34

● Goal: Fetch state in order of
predicted time of access
○ One received notification queue per

input port
○ Combine into one logically sorted

queue based on future access time
○ Fetch soonest state not in cache

(3) Fast Hardware Implementation
tprefetch = 1 + log(P) + k clock cycles

P: number of ports
k: cache set size

(2) Future-Aware Prefetching

35

● Goal: Fetch state in order of
predicted time of access
○ One received notification queue per

input port
○ Combine into one logically sorted

queue based on future access time
○ Fetch soonest state not in cache
○ If cache is full → eviction algorithm

(2) Future-Aware Prefetching

(3) Fast Hardware Implementation
tprefetch = 1 + log(P) + k clock cycles

P: number of ports
k: cache set size

36

● Goal: Emulate Belady’s algorithm as closely as possible:
● Evict an entry that will be accessed furthest in the future

● Challenge: Knowledge of only a partial set of future state accesses

(2) Future-Aware Cache Eviction

37

(2) Future-Aware Cache Eviction

● Our solution:
○ Split cache into two sets: objects with known access

time vs unknown access time
○ Prioritize evicting objects with unknown access time

using any cache heuristic
○ When cache solely contains objects with known

access time, evict according to Belady’s algorithm

● Bounded performance
○ Worst case: Caching heuristic
○ Best case: Belady’s algorithm

38

● Our solution:
○ Split cache into two sets: objects with known access

time vs unknown access time
○ Prioritize evicting objects with unknown access time

using any cache heuristic
○ When cache solely contains objects with known

access time, evict according to Belady’s algorithm

● Bounded performance
○ Worst case: Caching heuristic
○ Best case: Belady’s algorithm

(2) Future-Aware Cache Eviction

39

(3) Fast Hardware Implementation
tevict = k clock cycles

k: cache set size

(2) Future-Aware Cache Eviction

● Our solution:
○ Split cache into two sets: objects with known access

time vs unknown access time
○ Prioritize evicting objects with unknown access time

using any cache heuristic
○ When cache solely contains objects with known

access time, evict according to Belady’s algorithm

● Bounded performance
○ Worst case: Caching heuristic
○ Best case: Belady’s algorithm

40

Prototype

● FPGA prototype
○ Altera Stratix V FPGA: 234 K adaptive logic

modules, 52 Mbits SRAM, four 10 Gbps
network ports

● Seer modifies Ethernet physical layer (PHY)
to access IPG
○ Replaces default idle 0 values in IPG with state

access notification

41

Evaluation Setup

Packet-level simulator in C

● Two-tier Fattree topology
○ 16 spine switches
○ 9 racks
○ 16 hosts / rack (total 144)
○ Full bisection bandwidth

● 100 Gbps links
● 100 ns per-hop

propagation delay
● 100 ns backing memory

access latency
● 96 bit inter-packet gap

● DCTCP congestion control
● ECMP load balancing
● Switches support ECN

● Evaluation metric:
○ Cache miss ratio

L4 Load Balancing

Intrusion Detection

Applications:

(per connection state)

(per flow state)

● Incast Traffic Pattern:
○ Incast traffic results in most

queueing at neighbor node
○ Provides furthest visibility

into future state accesses
● Seer remains within 7-20%

of Belady
● Seer performs 20-100%

better than LRU

42

Evaluation: Good Case for Seer

↓ Lower is better

Performance for each packet size normalized w.r.t.
corresponding Seer performance

43

Evaluation: Bad Case for Seer

● Permutation Traffic Pattern:
○ Permutation traffic over full

bisection bandwidth fattree
network results in least
queueing at neighbor node

○ Provides least visibility into
future state accesses

● Seer remains within 35-40%
of Belady

● Seer performs 2-5% better
than LRU

↓ Lower is better

Performance for each packet size normalized w.r.t.
corresponding Seer performance

● Websearch workload
○ Representative of datacenter

workload
○ Heavy-tailed flow size

distribution

● 60-180% lower cache miss ratio
for Seer compared to state-of-art

● Flow completion time (FCT) show
similar trend:
○ Seer reduces FCT by 25-75%

compared to LRU

44

Evaluation: Realistic Workload

↓ Lower is better

Normalized w.r.t. Seer

45

Conclusion

● Seer enables future-aware online caching in a networked system

● Seer makes three key technical contributions:
○ Low-Overhead Protocol for Future State Access Notification
○ Design of Future-Aware Cache Manager
○ Fast Hardware Implementation

● Seer performs close to optimal offline caching in practice, with worst
case performance bounded by state-of-the-art caching heuristic

Thank You
Any questions?

