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Convex optimization

• Convex optimization is influential in many different fields

Engineering
Controller stability, power
allocation, truss design, +

Statistics
(Linear) Regression,
parameter estimation, +

Finance
Portfolio optimization, risk
analysis, +

• Convex optimization is accurate and efficient
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Convex optimization, meet nonconvex problems

• Unfortunately, many practical optimization problems are nonconvex
• Example: Low-rank matrix completion (Netflix problem)

Movies

U
se

rs


5 4 ? ? 4
3 ? ? 3 ?
? 2 4 1 1
? 3 ? ? 4

 min
X∈Rn×k

{rank(X) : X agrees with revealed entries}

• Rank constraints, binary constraints, sparsity constraints←− generally hard
• But not always!

Some nonconvex problems can be solved using convex optimization
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Research goal

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

• Completed work:
• Nonconvex problems: quadratically constrained quadratic programs (QCQPs)
• Convex relaxations: semidefinite programs (SDPs)

Today’s questions

Understand structures within QCQPs that enable us to solve them
exactly and efficiently using SDPs
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Today’s outline

• Preliminaries
QCQPs and their applications, the SDP relaxation

• Understand structures within QCQPs that enable us to solve them. . .

• exactly [IPCO 20], [Math. Prog. 21], [Math. Prog. under review]

Objective value, convex hull exactness, applications

• efficiently [Math. Prog. 20], [SIAM J. Optim. under review], [Ongoing]

The generalized trust-region subproblem and regular QCQPs

• Conclusion and future directions
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for regular QCQPs

4 Conclusion and future directions
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Quadratically constrained quadratic programs (QCQPs)

• qobj, q1, . . . , qm : Rn → R quadratic (possibly nonconvex!)

Opt := inf
x∈Rn

{
qobj(x) : qi(x) ≤ 0, ∀i ∈ [m]

}
qi(x) = x⊺Aix+ 2b⊺i x+ ci

• Highly expressive:
• MAX-CUT, MAX-CLIQUE, pooling, truss design, facility location, production planning
• binary programs x1(1− x1) = 0

• polynomial optimization problems x1x2 = z12

• NP-hard in general
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The QCQP epigraph

• QCQP epigraph D :=

{
(x, t) ∈ Rn+1 :

qobj(x) ≤ t

qi(x) ≤ 0, ∀i ∈ [m]

}

D q(γ, x) ≤ tq(γ′, x) ≤ t

• How can we derive convex relaxations of D?

• If γ ∈ Rm
+ , then ∀(x, t) ∈ D, qobj(x) +

m∑
i=1

γiqi(x)︸ ︷︷ ︸
=: q(γ, x)

≤ t
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The SDP relaxation

• SDP relaxation = impose all convex aggregated inequalities!

DSDP = ∩ ∩ ∩

• Formally,

Γ :=
{
γ ∈ Rm

+ : q(γ, x) is convex in x
}

=

{
γ ∈ Rm

+ : Aobj +

m∑
i=1

γiAi ⪰ 0

}

DSDP :=
⋂
γ∈Γ

{(x, t) : q(γ, x) ≤ t} =

{
(x, t) ∈ Rn+1 : sup

γ∈Γ
q(γ, x) ≤ t

}
OptSDP := inf

x∈Rn
sup
γ∈Γ

q(γ, x)
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The usual SDP relaxation

inf
x∈Rn

{qobj(x) : qi(x) ≤ 0, ∀i ∈ [m]}

= inf
x∈Rn,Y ∈Sn

{
⟨Aobj, Y ⟩+ 2b⊤objx+ cobj :

Y = xx⊤

⟨Ai, Y ⟩+ 2b⊤i x+ ci ≤ 0, ∀i ∈ [m]

}

≥ inf
x∈Rn,Y ∈Sn

{
⟨Aobj, Y ⟩+ 2b⊤objx+ cobj :

Y − xx⊤ ⪰ 0

⟨Ai, Y ⟩+ 2b⊤i x+ ci ≤ 0, ∀i ∈ [m]

}
= inf

x∈Rn
inf

Y ∈Sn
. . .

= inf
x∈Rn

sup
γ∈Γ

q(γ, x)
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Preliminaries recap

• Main objects of interest

nonconvex QCQP convex SDP
Optimum value Opt OptSDP

Epigraph D DSDP

• Useful for analysis:
• q(γ, x) = Lagrangian function
• Γ = aggregation weights such that q(γ, x) is convex
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for regular QCQPs

4 Conclusion and future directions
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Forms of exactness

• What does exactness mean?
• Objective value exactness: Opt = OptSDP

• Convex hull exactness: conv(D) = DSDP ←− convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓
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Convex hull exactness

• conv(D) ?
= DSDP

DSDP

D

conv(D) = DSDP ⇐⇒
“Given any point in DSDP\D, exists
direction such that can move for-
ward and backward inside DSDP”

• When do these directions exist? ←− Can carry out this idea for QCQPs!
• Sufficient conditions based on abstract properties −→ concrete conditions

Based on: [IPCO 19], [Math. Prog. 21], [Math. Prog. under review]
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Example: the trust-region subproblem

• Convex hull exactness in the case of single ball constraint

Opt = inf
x∈Rn

{
qobj(x) : ∥x∥2 ≤ 1

}

• Applications:
• Nonlinear minimization (trust-region methods), combinatorial optimization,

robust optimization

Based on: [IPCO 19], [Math. Prog. 20]
Related: Yakubovich [1971], Yıldıran [2009], Ho-Nguyen and Kılınç-Karzan [2017]
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Example: QCQPs with symmetry

• Convex hull exactness in the case of “highly symmetric” QCQPs

• Suppose Aobj = Ik ⊗ Aobj, Ai = Ik ⊗ Ai for all i ∈ [m]

A = Ik ⊗ A =


A

A
. . .

A


and k ≥ m

• Applications:
• Robust least squares, sphere packing, QCQPs with spherical constraints,

orthogonal Procrustes problem

Based on: [Math. Prog. under review]
Related: Beck [2007], Beck et al. [2012]
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Example: QCQPs with sign-definite linear terms

• Objective value exactness in the case of diagonal, sign-definite QCQPs
• Suppose Aobj, . . . , Am diagonal and

∀j ∈ [n],
{
(bobj)j , (b1)j , . . . , (bm)j

}
have the same sign

• Example:

min
x∈Rn

{
x⊤Aobjx+ 2b⊤objx+ cobj : ∥x∥2 ≤ 1, ∥x∥∞ ≤ α

}

Based on: [Tut. Oper. Res. 21]
Related: Burer and Ye [2019], Sojoudi and Lavaei [2014]
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Summary of Part 1

• Sufficient conditions for convex hull exactness
• Necessary and sufficient if Γ is polyhedral (dual facially exposed)
• Sufficient conditions for objective value exactness
• Rank-one-generated (ROG) cones: QCQP-SDP analogue of integrality
• Applications:

• Random, semi-random QCQPs, ratios of quadratic functions

Exactness
[IPCO 20], [Math. Prog. 21],
[Math. Prog. under review]

ROG Cones
[Tut. Oper. Res. 21],

[Math. Oper. Res. 21]
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Take-home message

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

SDPs provide exact reformulations for
broad classes of QCQPs!

A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 18 / 36



1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for regular QCQPs

4 Conclusion and future directions
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Revisiting the SDP relaxation

• SDPs polynomial time←− too expensive in modern machine learning regimes
• Usual SDP relaxation

• Interior point method −→ iterations expensive O(mn3 +m2n2 +m3) time

We can solve an SDP more efficiently if it is exact (regular)!

• Our view: OptSDP := inf
x∈Rn

(
sup
γ∈Γ

q(γ, x)

)
is a minimization problem in the original space
• Regularity will allow us to deal with max-type structure

Based on: [Math. Prog. 20], [SIAM J. Optim. under review], [Ongoing]
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Regularity

• Dual problem

OptSDP := inf
x∈Rn

sup
γ∈Γ

q(γ, x) = sup
γ∈Γ

inf
x∈Rn

q(γ, x)

Definition
Let γ∗ be dual optimizer. Define µ∗ := λmin

(
Aobj +

∑m
i=1 γ

∗
i Ai

)
.

QCQP is regular if µ∗ > 0.

• Regularity =⇒ optimizer exactness

µ∗ > 0 =⇒ argmin
x∈Rn

{qobj(x) : qi(x) ≤ 0, ∀i ∈ [m]} = argmin
x∈Rn

sup
γ∈Γ

q(γ, x)

Based on: [Ongoing]
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The generalized trust-region subproblem (GTRS)

• Special setting with single constraint (≤ or =)

Opt := inf
x∈Rn

{qobj(x) : q1(x) ≤ 0}

• TRS applications:
• nonlinear programming (trust-region methods),

combinatorial optimization, robust optimization

• GTRS applications:
• minimizing quartics of the form q(x, p(x))

inf
x∈Rn,α

{q(x, α) : α = p(x)}

(source localization, constrained rank-one approximation),
regression with adversarial data, iterative QCQP solvers

• Assume µ∗ > 0←− most GTRS

Based on: [Math. Prog. 20], [SIAM J. Optim. under review], [under review]
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Efficient algorithms for regular GTRS: Intuition

• Γ = {γ ∈ R+ : q(γ, x) is convex in x}

γ = 0

q(γ, x)

Γ γ∗γ− γ+

• Thought experiment: If γ∗ known

OptSDP = min
x∈Rn

q(γ∗, x)

• Key observation: If γ∗ ∈ [γ−, γ+] ⊆ Γ, then

OptSDP = min
x∈Rn

max
γ∈[γ−,γ+]

q(γ, x)

q(γ∗, x)

max
γ∈{γ−,γ+}

q(γ, x)

Based on: [SIAM J. Optim. under review]
A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 22 / 36



Efficient algorithms for regular GTRS

• Key observation: If γ∗ ∈ [γ−, γ+] ⊆ Γ, then

OptSDP = min
x∈Rn

max
γ∈{γ−,γ+}

q(γ, x) max
γ∈{γ−,γ+}

q(γ, x)

• Algorithmic idea:
• Solve for γ∗ to low accuracy, γ∗ ∈ [γ−, γ+] ⊆ int(Γ)
• Apply Accelerated Gradient Descent

←− for strongly convex nonsmooth function
• Putting pieces together:

=⇒ Õ

(
T√
µ∗ log

(
1

ϵ

))
where T is time for matrix vector product←− think O(n)

Based on: [SIAM J. Optim. under review]
Related: Carmon and Duchi [2018], Jiang and Li [2019], Adachi and Nakatsukasa [2019]
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Numerical experiments, n = 1,000
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Based on: [Math. Prog. 20], [SIAM J. Optim. under review]
Related: Ben-Tal and den Hertog [2014], Jiang and Li [2019], Adachi and Nakatsukasa [2019]
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Numerical experiments, n = 1,000
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Numerical experiments, n = 10,000
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Numerical experiments, n = 100,000
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Efficient algorithms for regular QCQPs: Algorithm

• Regularity =⇒ optimizer exactness
• Regularity holds in a number of statistical recovery problems:

phase-retrieval, clustering
• Will leverage regularity to design efficient algorithms
• Key observation: If γ∗ ∈ U ⊆ Γ, then

OptSDP = min
x∈Rn

max
γ∈U

q(γ, x)

• Algorithm sketch:
• Construct U −→ O(1) iterations, O

(
mT√

ϵ

)
/ iter.

• Solve min-max problem −→ O
(

1√
µ∗ log

(
1
ϵ

))
iterations, O

(
mT
ϵ

)
/ iter.

Based on: [Ongoing]
A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 28 / 36



Convergence behavior
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Based on: [Ongoing]
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Preliminary numerical experiments

• 10 synthetic instances: n = 5000, m = 50, density = 0.001, µ∗ = 0.1

• Primal-dual solver
Section ncalls avg time %tot avg error

Total 10 1740s 100%

dual_solve 10 1691s 97.2% 1.15e-02

eigsolve 33.1k 506ms 96.0%

primal_solve 10 48.7s 2.80% 3.61e-12

• Splitting Conic Solver (SCS): avg time 18150s

Based on: [Ongoing]
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Summary of Part 2

• Efficient algorithms for the GTRS
−→ nonlinear programming, iterative QCQP solvers, regression

• Efficient algorithms for regular QCQPs (low-rank SDPs)
−→ statistical recovery problems

• Algorithms for diagonalizing QCQPs

GTRS
[Math. Prog. 20],

[SIAM J. Optim. under review],
[under review]
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Regular QCQPs

[Ongoing]
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Diagonalizing QCQPs

[Math. Prog. under review]
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Take-home message

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

Some nonconvex problems can be solved efficiently
via first-order methods!
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for regular QCQPs

4 Conclusion and future directions
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Future work

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

• Solving nonconvex problems accurately
• Completed: SDPs provide exact reformulations for broad classes of QCQPs!
• Future:

• Can we understand approximation quality systematically within general framework?
• Can we understand exactness/approximation for other convex relaxations?
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Future work

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

• Solving nonconvex problems efficiently
• Completed: Some nonconvex problems can be solved efficiently via first-order

methods!
• Future:

• Exactness ≈ efficiency?
• Can we develop efficient algorithms for semidefinite programs with low-rank solutions
• Can we approximate “expensive” tools (e.g., SDPs) with cheap tools (e.g., linear

programs, second-order cone programs)
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Summary of my research

Exactness
[IPCO 20], [Math. Prog. 21],
[Math. Prog. under review]

ROG Cones
[Tut. Oper. Res. 21],

[Math. Oper. Res. 21]

GTRS
[Math. Prog. 20],

[SIAM J. Optim. under review],
[under review]
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[Ongoing]
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Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

Thank you! Questions?
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Rank-one-generated cones

Definition
Cone S ⊆ Sn+ is rank-one-generated (ROG) if S = conv

(
S ∩

{
xx⊤

})
.

Compare: P ⊆ [0, 1]n is integral if P = conv(P ∩ {0, 1}n)
• Given QCQP, if constraints correspond to ROG cone, then objective value

exactness and convex hull exactness regardless of objective function
• Suppose S =

{
X ∈ Sn+ : ⟨M,X⟩ ≤ 0, ∀M ∈M

}
Goal
What properties ofM = {M1, . . . ,Mk} imply S is ROG?

Based on: [Math. Oper. Res. 21], [Tut. Oper. Res. 21]
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Rank-one-generated cones

Theorem (Sufficient conditions)

S is ROG if
• for all i ̸= j, there exists (α, β) ̸= (0, 0) such that αMi + βMj ⪰ 0, or
• there exists a ∈ Rn such that Mi = ab⊤i + bia

⊤.

Theorem (Characterization of ROG for |M| = 2)

SupposeM = {M1,M2}. Then sufficient condition above is also necessary.

Based on: [Math. Oper. Res. 21], [Tut. Oper. Res. 21]
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ROG and ratios of quadratic functions

• inf
z∈Rn+1

z⊤Mobjz

z⊤Bz
:

z⊤Miz ≤ 0, ∀i ∈ [m]

z⊤Bz > 0

z2n+1 = 1


= inf

z̃∈Rn+1

z̃⊤Mobjz̃ :

z̃⊤Miz̃ ≤ 0, ∀i ∈ [m]

z̃⊤Bz̃ = 1

z̃2n+1 > 0


≥ inf

Z∈Sn+1
+

{
⟨Mobj, Z⟩ :

⟨Mi, Z⟩ ≤ 0, ∀i ∈ [m]

⟨B,Z⟩ = 1

}
• Equality holds if S({M1, . . . ,Mm}) is ROG (+ minor assumptions)
• Example: Regularized total least squares

Based on: [Math. Oper. Res. 21], [Tut. Oper. Res. 21]
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Stackelberg prediction games with least squares losses

• True data (xi, αi, βi)
m
i=1

• Leader (learner) chooses w ∈ Rn

• Follower (data provider) modifies xi → x̃i so that ⟨w, x̃i⟩ ≈ βi

• Leader has loss (⟨w, x̃i⟩ − αi)
2

• min
w∈Rn

{
m∑
i=1

(⟨w, x̃i⟩ − αi)
2 : x̃i ∈ argmin

x∈Rn
γ ∥x− xi∥2 + (⟨w, x⟩ − βi)

2

}

Based on: [under review]
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Stackelberg prediction games with least squares losses

• min
w∈Rn

{
m∑
i=1

(⟨w, x̃i⟩ − αi)
2 : x̃i ∈ argmin

x∈Rn
γ ∥x− xi∥2 + (⟨w, x⟩ − βi)

2

}

= min
w∈Rn

{∥∥∥X̃⊤w − α
∥∥∥2 : X̃ = (γI + ww⊤)−1(γX + wβ⊤)

}
= min

w∈Rn

∥∥∥∥∥∥w∥2 β + γXw

∥w∥2 + γ
− α

∥∥∥∥∥
2

= min
w∈Rn,t∈R

{∥∥∥∥ tβ + γXw

t+ γ
− α

∥∥∥∥2 : t = ∥w∥2
}

= min
w̃∈Rn,t̃∈R

{∥∥∥∥ t̃2β +

√
γ

2
Xw̃ −

(
α− β

2

)∥∥∥∥2 : ∥w̃∥2 + t̃2 = 1

}

Based on: [under review]
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Diagonalizing QCQPs

Definition
{Ai} ⊆ Sn is simultaneously diagonalizable via congruence (SDC) if there exists
invertible P ∈ Rn×n such that P⊤AiP is diagonal ∀i.

• Nice property because: SDP relaxation of diagonal QCQP is SOCP (faster), Γ
is polyhedral (better understanding of exactness)

Goal
Most sets of matrices are not SDC, can we find other computationally variants of
SDC and understand such properties?

Based on: [Math. Prog. under review]
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Diagonalizing QCQPs: variants of SDC

Definition
{Ai} ⊆ Sn is almost SDC (ASDC) if for all ϵ > 0, there exists ∥A′

i −Ai∥ ≤ ϵ such
that {A′

i} is SDC.

• “Limit of SDC sets”

Definition
{Ai} ⊆ Sn is d-restricted SDC (d-RSDC) if there exists A′

i = (Ai ∗
∗ ∗ ) ∈ Sn+d such that

{A′
i} is SDC.

• “Restriction of SDC sets”

Based on: [Math. Prog. under review]
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Diagonalizing QCQPs: ASDC

Theorem
Let {A,B} ⊆ Sn and suppose A invertible. Then {A,B} is ASDC if and only if
A−1B has real spectrum. (+ construction)

Theorem
Let {A,B} ⊆ Sn. If {A,B} is singular, then it is ASDC. (+ construction)

Theorem
Let {A,B,C} ⊆ Sn and suppose A invertible. Then {A,B,C} is ASDC if and only if{
A−1B,A−1C

}
commute and have real spectrum. (+ construction)

Based on: [Math. Prog. under review]
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Diagonalizing QCQPs: d-RSDC

Theorem
Let {A,B} ⊆ Sn. If A is invertible and A−1B has simple eigenvalues, then {A,B} is
1-RSDC. (+ construction)

• Condition holds generically

Based on: [Math. Prog. under review]
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“Fuzzy” spectral partitioning

• Connected graph G = (V,E)

• Vertex masses µ : V → R++ and edge weights κ : E → R++

• Laplacian L = D −A w.r.t. κ

Theorem (Cheeger’s inequality)

If µv = dv, then
Φ2

2
≤ λ2(L,M) ≤ 2Φ

• λ2(L,M) is first nontrivial generalized eigenvalue
• Φ is sparsest cut

Based on: [APPROX 19]
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“Fuzzy” spectral partitioning

• We define “Fuzzy cuts”

Definition

Ψ ≈ min
A,B

{
κeff(A,B)

min (µ(A), µ(B))
, A,B ̸= ∅, A ∩B = ∅

}

• Φ must partition, Ψ may leave out. Ψ = Φ if A,B is a partition.

Theorem
Ψ

4
≤ λ2(L,M) ≤ Ψ

Based on: [APPROX 19]
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Stable Euclidean k-means

• k-means clustering: {x1, . . . , xn} ⊆ Rd

• Suppose there exist true clustering that is unique optimum even if for all i,
xi 7→ x′i ∈ B(xi, ϵ)

Theorem
Two clusters. There exists c ≥ 1 such that for any fixed ϵ > 0, we can recover true
clustering in time d · nO(ϵ−c).

Additional results for ≥ 3 clusters given an additional “separation” assumption

Based on: [NeurIPS 17]
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