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Convex optimization

• Convex optimization is influential in many different fields

Engineering
Controller stability, power
allocation, truss design, +

Statistics
(Linear) Regression,
parameter estimation, +

Finance
Portfolio optimization, risk
analysis, +

• Convex optimization is accurate and efficient
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Convex optimization, meet nonconvex problems

• Unfortunately, many practical optimization problems are nonconvex
• Example: Low-rank matrix completion (Netflix problem)

Movies

U
se

rs


5 4 ? ? 4
3 ? ? 3 ?
? 2 4 1 1
? 3 ? ? 4

 min
X∈Rn×k

{rank(X) : X agrees with revealed entries}

• Rank constraints, binary constraints, sparsity constraints
• Generally hard, but not always!
• Some nonconvex problems can be solved using convex optimization
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Research goal

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

• Completed work:
• Nonconvex problems: quadratically constrained quadratic programs (QCQPs)
• Convex relaxations: semidefinite programs (SDPs)

Today’s questions

Understand structures within QCQPs that enable us to solve them
exactly and efficiently using SDPs
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Today’s outline

• Preliminaries
QCQPs and their applications, the SDP relaxation

• Understand structures within QCQPs that enable us to solve them. . .

• exactly [IPCO 20], [Math. Prog. 21], [Math. Prog. under review]

Objective value, convex hull exactness, applications

• efficiently [Math. Prog. 20], [SIAM J. Optim. under review], [Ongoing]

The generalized trust-region subproblem and regular QCQPs

• Conclusion and future directions
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for structured QCQPs

4 Conclusion and future directions
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Quadratically constrained quadratic programs (QCQPs)

• qobj, q1, . . . , qm : Rn → R quadratic (possibly nonconvex!)

qi(x) = x⊺Aix+ 2b⊺i x+ ci

Opt := inf
x∈Rn

{
qobj(x) : qi(x) ≤ 0, ∀i ∈ [m]

}

• Highly expressive:
• MAX-CUT, MAX-CLIQUE, pooling, truss design, facility location, production planning
• binary program x1(1− x1) = 0

• polynomial optimization problems x1x2 = z12

• NP-hard in general
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The QCQP epigraph

• QCQP epigraph D :=

{
(x, t) ∈ Rn+1 :

qobj(x) ≤ t

qi(x) ≤ 0, ∀i ∈ [m]

}

D q(γ, x) ≤ tq(γ′, x) ≤ t

• How can we derive convex relaxations of D?

• If γ ∈ Rm
+ , then ∀(x, t) ∈ D, qobj(x) +

m∑
i=1

γiqi(x)︸ ︷︷ ︸
=: q(γ, x)

≤ t
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The SDP relaxation

• SDP relaxation = impose all convex aggregated inequalities!

DSDP = ∩ ∩ ∩

• Formally,

Γ :=
{
γ ∈ Rm

+ : q(γ, x) is convex in x
}

=

{
γ ∈ Rm

+ : Aobj +

m∑
i=1

γiAi ⪰ 0

}

DSDP :=
⋂
γ∈Γ

{(x, t) : q(γ, x) ≤ t} =

{
(x, t) ∈ Rn+1 : sup

γ∈Γ
q(γ, x) ≤ t

}
OptSDP := inf

x∈Rn
sup
γ∈Γ

q(γ, x)
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The usual SDP relaxation

inf
x∈Rn

{qobj(x) : qi(x) ≤ 0, ∀i ∈ [m]}

= inf
x∈Rn,X∈Sn

{
⟨Aobj, X⟩+ 2b⊤objx+ cobj :

X = xx⊤

⟨Ai, X⟩+ 2b⊤i x+ ci ≤ 0, ∀i ∈ [m]

}

≥ inf
x∈Rn,X∈Sn

{
⟨Aobj, X⟩+ 2b⊤objx+ cobj :

X − xx⊤ ⪰ 0

⟨Ai, X⟩+ 2b⊤i x+ ci ≤ 0, ∀i ∈ [m]

}
= inf

x∈Rn
inf

X∈Sn
. . .

= inf
x∈Rn

sup
γ∈Γ

q(γ, x)
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Preliminaries recap

• Main objects of interest

nonconvex QCQP convex SDP
Optimum value Opt OptSDP

Epigraph D DSDP

• Useful for analysis:
• q(γ, x) = Lagrangian function
• Γ = aggregation weights giving convex q(γ, x)
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for structured QCQPs

4 Conclusion and future directions
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Forms of exactness

• What does exactness mean?
• Objective value exactness: Opt = OptSDP

• Convex hull exactness: conv(D) = DSDP ← convexification of substructures

SDP

QCQP

SDP

QCQP SDP

Obj. val. ex. ✗ Obj. val. ex. ✓ Obj. val. ex. ✓

Conv. hull ex. ✗ Conv. hull ex. ✗ Conv. hull ex. ✓
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Convex hull exactness

• conv(D) ?
= DSDP

DSDP

D

conv(D) = DSDP ⇐⇒
“Given any point in DSDP\D, exists
direction such that can move for-
ward and backward inside DSDP”
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Sufficient conditions for exactness

• Can carry out this idea for QCQPs!
• Leads to sufficient conditions based on abstract properties
• −→ more concrete conditions

DSDP

D

Theorem ([Math. Prog. 21])

Suppose Γ polyhedral. If for every semidefinite face F ⊴ Γ,

aff
(
ProjV(F) {b(γ) : γ ∈ F}

)
̸= V(F),

then conv(D) = DSDP.

Theorem ([Math. Prog. under review])
If for every (x, t) ∈ DSDP \ D,{

(x′, t′) ∈ Rn+1 :
x′ ∈ ker(A(f))

⟨A(η)x+ b(η), x′⟩ − t′ = 0, ∀(1, η) ∈ G⊥

}
̸= {0} ,

then conv(D) = DSDP.

Based on: [IPCO 19], [Math. Prog. 21], [Math. Prog. under review]
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Example: the trust-region subproblem

• Convex hull exactness in the case of single ball constraint

Opt = inf
x∈Rn

{
qobj(x) : ∥x∥2 ≤ 1

}

• Applications:
• Nonlinear minimization (trust-region methods), combinatorial optimization,

robust optimization

Based on: [IPCO 19], [Math. Prog. 20]
Related: Yakubovich [1971], Yıldıran [2009], Ho-Nguyen and Kılınç-Karzan [2017]
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Example: QCQPs with symmetry

• Convex hull exactness in the case of “highly symmetric” QCQPs

• Suppose Aobj = Ik ⊗ Aobj, Ai = Ik ⊗ Ai for all i ∈ [m]

Ik ⊗ A =


A

A
. . .

A


and k ≥ m

• Applications:
• Robust least squares, sphere packing, QCQPs with spherical constraints,

orthogonal Procrustes problem

Based on: [Math. Prog. under review]
Related: Beck [2007], Beck et al. [2012]
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Example: Random underconstrained quadratic systems

• Obj. val. exactness in the case of random underconstrained quadratic systems

• Solve inf
x∈Rn

{
∥x∥2 : qi(x) = 0, ∀i ∈ [m]

}

• Fix m, let n→∞, if data generated “as Gaussians”, then objective value
exactness w.p. 1− o(1)

Based on: [Math. Prog. under review]
Related: Burer and Ye [2019], Locatelli [2020]
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Summary of Part 1

• Sufficient conditions for convex hull exactness
• Necessary and sufficient if Γ is polyhedral (dual facially exposed)
• Sufficient conditions for objective value exactness
• Rank-one-generated (ROG) cones: strengthening of convex hull exactness
• Applications:

• Diagonal QCQPs with sign-definite linear terms, semi-random QCQPs, ratios of
quadratic functions

Exactness
[IPCO 20], [Math. Prog. 21],
[Math. Prog. under review]

ROG Cones
[Tut. Oper. Res. 21],

[Math. Oper. Res. 21]
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Take-home message

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

SDPs provide exact reformulations for
broad classes of QCQPs!
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for structured QCQPs

4 Conclusion and future directions
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Revisiting the SDP relaxation

• Usual SDP relaxation in x ∈ Rn and X ∈ Sn =⇒ ≈ n2 variables
• Interior point method =⇒ Θ

(
n2 +m2

)
storage

• Our view: OptSDP := inf
x∈Rn

(
sup
γ∈Γ

q(γ, x)

)
is a minimization problem in the original space =⇒ n variables
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The generalized trust-region subproblem (GTRS)

• Special setting with single constraint (≤ or =)

Opt := inf
x∈Rn

{qobj(x) : q1(x) ≤ 0}

• TRS Applications:
• nonlinear programming (trust-region methods),

combinatorial optimization, robust optimization

• GTRS Applications:
• minimizing quartics of the form q(x, p(x))

inf
x∈Rn,α

{q(x, α) : α = p(x)}

(source localization, constrained rank-one approximation),
iterative QCQP solvers
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Linear-time algorithm for the GTRS

• Convex hull exactness holds conv(D) = DSDP =

{
(x, t) : sup

γ∈Γ
q(γ, x) ≤ t

}

• Recall Γ = {γ ∈ R+ : q(γ, x) is convex in x}

q(γ, x)

γ = 0 γ+γ−

Based on: [Math. Prog. 20]
Related: Hazan and Koren [2016], Ho-Nguyen and Kılınç-Karzan [2017], Jiang and Li [2019, 2020]
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Linear-time algorithm for the GTRS

• Γ = [γ−, γ+] =⇒ Opt = OptSDP = inf
x∈Rn

max
γ∈{γ−,γ+}

q(γ, x)

q(γ−, x) q(γ+, x)

max
γ∈{γ−,γ+}

q(γ, x)

• Algorithmic idea
• Compute γ− and γ+ to some accuracy
• Apply accelerated gradient descent

=⇒ Õ

(
N√
ϵ
log

(
n

p

)
log

(
1

ϵ

))
≈ 1√

ϵ

Based on: [Math. Prog. 20]
Related: Hazan and Koren [2016], Ho-Nguyen and Kılınç-Karzan [2017], Jiang and Li [2019, 2020]
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Is this running time optimal?

• GTRS:

inf
x∈Rn

{
qobj(x) : q1(x) ≤ 0

}
Õ
(

N√
ϵ
log
(
n
p

)
log
(
1
ϵ

))
• Minimum eigenvalue:

inf
x∈Rn

{
x⊺Ax : ∥x∥2 = 1

}
O
(

N√
ϵ
log
(
n
p

))
• Smooth convex quadratic:

inf
x∈Rn

qobj(x) O
(

N√
ϵ

)
• But, these are hardest problems within the GTRS!
• Can do better when regularity µ∗ > 0

Based on: [Math. Prog. 20]
Related: Kuczynski and Wozniakowski [1992], Nesterov [2018]
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Linear convergence for regular GTRS

• µ∗ > 0 holds for most GTRS
• Dual problem

OptSDP := inf
x∈Rn

sup
γ∈Γ

q(γ, x) = sup
γ∈Γ

inf
x∈Rn

q(γ, x)

Definition
Let γ∗ be dual optimizer. Define µ∗ := λmin(Aobj + γ∗A1). GTRS instance is
regular if µ∗ > 0.

• Minimum eigenvalue problem is not regular
• Some instances of smooth quadratic minimization are not regular

Based on: [SIAM J. Optim. under review]
Related: Carmon and Duchi [2018]
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Linear convergence for regular GTRS

• Suppose µ∗ > 0

max
γ∈{γ̃−,γ̃+}

q(γ, x)

• Suppose γ∗ ∈ [γ̃−, γ̃+] ⊆ Γ =⇒ Opt = inf
x∈Rn

max
γ∈{γ̃−,γ̃+}

q(γ, x)

• Suffices to estimate γ∗ roughly and can exploit strong convexity

Õ

(
N√
µ∗ log

(
1

µ∗

)
log

(
n

p

)
log

(
1

ϵ

))
≈ log

(
1

ϵ

)
• Linear in N and log(1/ϵ)

Based on: [SIAM J. Optim. under review]
Related: Carmon and Duchi [2018]
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Numerical experiments, n = 1,000
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Numerical experiments, n = 10,000
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Numerical experiments, n = 100,000
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Efficient algorithms for regular QCQPs

• Regularity can also be defined for general QCQPs! (low-rank SDPs)

Definition
Let γ∗ be dual optimizer. Define µ∗ := λmin

(
Aobj +

∑m
i=1 γ

∗
i Ai

)
. QCQP instance is

regular if µ∗ > 0.

• µ∗ > 0 =⇒ objective value exactness
• µ∗ > 0 in a number of statistical recovery problems: phase-retrieval, clustering
• Contributions

• Conceptual: If µ∗ > 0, then can construct strongly convex reformulation in time
independent of ϵ

• Algorithmic: Can solve grad-map efficiently
• Practical: Preliminary implementation and numerical experiments

Based on: [Ongoing]
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Constructing a strongly convex reformulation of regular QCQP

• Consider a subgradient method for dual problem

sup
γ∈Γ

inf
x∈Rn

q(γ, x)

• Iterates γ(1), γ(2), . . . and bounds
∥∥γ(i) − γ∗

∥∥ ≤ ρ(i)

• Then, Opt = inf
x∈Rn

sup
γ∈B(γ(i),ρ(i))∩Γ

q(γ, x)

• Will stop once B(γ(i), ρ(i)) ⊆ int(Γ)

• Independent of ϵ, can be done with O(m+ n) storage

Based on: [ongoing]
Related: Ding et al. [2021]
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Preliminary numerical experiments

• 10 synthetic instances: n = 5000, m = 50, density = 0.001, µ∗ = 0.1

• Primal-dual solver
Section ncalls avg time %tot avg error

Total 10 1740s 100%

dual_solve 10 1691s 97.2% 1.15e-02

eigsolve 33.1k 506ms 96.0%

primal_solve 10 48.7s 2.80% 3.61e-12

• Splitting Conic Solver (SCS): avg time 18150s
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Summary of Part 2

• Efficient algorithms for the GTRS
• Efficient algorithms for regular QCQPs (low-rank SDPs)
• Algorithms for diagonalizing QCQPs

GTRS
[Math. Prog. 20],

[SIAM J. Optim. under review]
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Diagonalizing QCQPs

[Math. Prog. under review]
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Take-home message

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

Some nonconvex problems can be solved efficiently
via first-order methods!
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1 Preliminaries

2 Objective value exactness, convex hull exactness, applications

3 Efficient algorithms for structured QCQPs

4 Conclusion and future directions

A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 35 / 39



Future work

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

• Solving nonconvex problems accurately
• Completed: SDPs provide exact reformulations for broad classes of QCQPs!
• Future:

• Can we understand approximation quality systematically within general framework?
• Can we understand exactness/approximation for more powerful convex relaxations?
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Future work

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

• Solving nonconvex problems efficiently
• Completed: Some nonconvex problems can be solved efficiently via first-order

methods!
• Future:

• Exactness ≈ efficiency?
• Can we develop efficient algorithms for semidefinite programs with low-rank solutions
• Can we approximate “expensive” tools (e.g., SDPs) with cheap tools (e.g., linear

programs, second-order cone programs)
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Summary of my research

Exactness
[IPCO 20], [Math. Prog. 21],
[Math. Prog. under review]

ROG Cones
[Tut. Oper. Res. 21],

[Math. Oper. Res. 21]

GTRS
[Math. Prog. 20],

[SIAM J. Optim. under review]
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Long-term research goal

Understand structures within nonconvex problems that enable us to solve them
“well” using convex optimization

Thank you! Questions?
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Rank-one-generated cones

Definition
Cone S ⊆ Sn+ is rank-one-generated (ROG) if S = conv

(
S ∩

{
xx⊤

})
.

Compare: P ⊆ [0, 1]n is integral if P = conv(P ∩ {0, 1}n)
• Given QCQP, if constraints correspond to ROG cone, then objective value

exactness and convex hull exactness regardless of objective function
• Suppose S =

{
X ∈ Sn+ : ⟨M,X⟩ ≤ 0, ∀M ∈M

}
Goal
What properties ofM = {M1, . . . ,Mk} imply S is ROG?

Based on: [Math. Oper. Res. 21], [Tut. Oper. Res. 21]
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Rank-one-generated cones

Theorem (Sufficient conditions)

S is ROG if
• for all i ̸= j, there exists (α, β) ̸= (0, 0) such that αMi + βMj ⪰ 0, or
• there exists a ∈ Rn such that Mi = ab⊤i + bia

⊤.

Theorem (Characterization of ROG for |M| = 2)

SupposeM = {M1,M2}. Then sufficient condition above is also necessary.

Based on: [Math. Oper. Res. 21], [Tut. Oper. Res. 21]
A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 5 / 12



Diagonalizing QCQPs

Definition
{Ai} ⊆ Sn is simultaneously diagonalizable via congruence (SDC) if there exists
invertible P ∈ Rn×n such that P⊤AiP is diagonal ∀i.

• Nice property because: SDP relaxation of diagonal QCQP is SOCP (faster), Γ
is polyhedral (better understanding of exactness)

Goal
Most sets of matrices are not SDC, can we find other computationally variants of
SDC and understand such properties?

Based on: [Math. Prog. under review]
A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 6 / 12



Diagonalizing QCQPs: variants of SDC

Definition
{Ai} ⊆ Sn is almost SDC (ASDC) if for all ϵ > 0, there exists ∥A′

i −Ai∥ ≤ ϵ such
that {A′

i} is SDC.

• “Limit of SDC sets”

Definition
{Ai} ⊆ Sn is d-restricted SDC (d-RSDC) if there exists A′

i = (Ai ∗
∗ ∗ ) ∈ Sn+d such that

{A′
i} is SDC.

• “Restriction of SDC sets”

Based on: [Math. Prog. under review]
A. L. Wang Accurately and efficiently solving structured nonconvex optimization problems 7 / 12



Diagonalizing QCQPs: ASDC

Theorem
Let {A,B} ⊆ Sn and suppose A invertible. Then {A,B} is ASDC if and only if
A−1B has real spectrum. (+ construction)

Theorem
Let {A,B} ⊆ Sn. If {A,B} is singular, then it is ASDC. (+ construction)

Theorem
Let {A,B,C} ⊆ Sn and suppose A invertible. Then {A,B,C} is ASDC if and only if{
A−1B,A−1C

}
commute and have real spectrum. (+ construction)

Based on: [Math. Prog. under review]
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Diagonalizing QCQPs: d-RSDC

Theorem
Let {A,B} ⊆ Sn. If A is invertible and A−1B has simple eigenvalues, then {A,B} is
1-RSDC. (+ construction)

• Condition holds generically

Based on: [Math. Prog. under review]
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“Fuzzy” spectral partitioning

• Connected graph G = (V,E)

• Vertex masses µ : V → R++ and edge weights κ : E → R++

• Laplacian L = D −A w.r.t. κ

Theorem (Cheeger’s inequality)

If µv = dv, then
Φ2

2
≤ λ2(L,M) ≤ 2Φ

• λ2(L,M) is first nontrivial generalized eigenvalue
• Φ is sparsest cut

Based on: [APPROX 19]
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“Fuzzy” spectral partitioning

• We define “Fuzzy cuts”

Definition

Ψ ≈ min
A,B

{
κeff(A,B)

min (µ(A), µ(B))
, A,B ̸= ∅, A ∩B = ∅

}

• Φ must partition, Ψ may leave out. Ψ = Φ if A,B is a partition.

Theorem
Ψ

4
≤ λ2(L,M) ≤ Ψ

Based on: [APPROX 19]
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Stable Euclidean k-means

• k-means clustering: {x1, . . . , xn} ⊆ Rd

• Suppose there exist true clustering that is unique optimum even if for all i,
xi 7→ x′i ∈ B(xi, ϵ)

Theorem
Two clusters. There exists c ≥ 1 such that for any fixed ϵ > 0, we can recover true
clustering in time d · nO(ϵ−c).

Additional results for ≥ 3 clusters given an additional “separation” assumption

Based on: [NeurIPS 17]
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