Accurately and efficiently solving structured nonconvex optimization problems

Alex L. Wang

Carnegie Mellon University

These slides are publicly available at cs.cmu.edu/~alw1

Collaborators

Carnegie Mellon University (OR, Math, CS), Northwestern University, Fudan University, Peking University

Convex optimization

- Convex optimization is influential in many different fields

Engineering

Controller stability, power allocation, truss design, +

Statistics
(Linear) Regression, parameter estimation, +

Finance
Portfolio optimization, risk analysis, +

- Convex optimization is accurate and efficient

Convex optimization, meet nonconvex problems

- Unfortunately, many practical optimization problems are nonconvex
- Example: Low-rank matrix completion (Netflix problem)

- Rank constraints, binary constraints, sparsity constraints
- Generally hard, but not always!
- Some nonconvex problems can be solved using convex optimization

Research goal

Long-term research goal

Understand structures within nonconvex problems that enable us to solve them "well" using convex optimization

- Completed work:
- Nonconvex problems: quadratically constrained quadratic programs (QCQPs)
- Convex relaxations: semidefinite programs (SDPs)

Today's questions

Understand structures within QCQPs that enable us to solve them exactly and efficiently using SDPs

Today's outline

- Preliminaries

QCQPs and their applications, the SDP relaxation

- Understand structures within QCQPs that enable us to solve them...
- exactly
[IPCO 20], [Math. Prog. 21], [Math. Prog. under review]
Objective value, convex hull exactness, applications
- efficiently
[Math. Prog. 20], [SIAM J. Optim. in prep.], [Ongoing] The generalized trust-region subproblem and regular QCQPs
- Conclusion and future directions
(2) Objective value exactness, convex hull exactness, applications
(3) Efficient algorithms for structured QCQPs
(4) Conclusion and future directions

Quadratically constrained quadratic programs (QCQPs)

- $q_{\text {obj }}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic (possibly nonconvex!)

$$
\begin{gathered}
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \\
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\}
\end{gathered}
$$

- Highly expressive:
- MAX-CUT, MAX-CLIQUE, pooling, truss design, facility location, production planning
- binary program $\quad x_{1}\left(1-x_{1}\right)=0$
- polynomial optimization problems $x_{1} x_{2}=z_{12}$
- NP-hard in general

The QCQP epigraph

- QCQP epigraph

$$
\mathcal{D}:=\left\{(x, t) \in \mathbb{R}^{n+1}: \begin{array}{l}
q_{\mathrm{obj}}(x) \leq t \\
\\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}
$$

- How can we derive relaxations of \mathcal{D} ?
- If $\gamma \in \mathbb{R}_{+}^{m}$, then

$$
\forall(x, t) \in \mathcal{D}, \quad \underbrace{q_{\mathrm{obj}}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x)}_{=: q(\gamma, x)} \leq t
$$

The SDP relaxation

- SDP relaxation = impose all convex aggregated inequalities

- Formally,

$$
\begin{aligned}
\Gamma & :=\left\{\gamma \in \mathbb{R}_{+}^{m}: q(\gamma, x) \text { is convex in } x\right\}=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\} \\
\mathcal{D}_{\mathrm{SDP}} & :=\bigcap_{\gamma \in \Gamma}\{(x, t): q(\gamma, x) \leq t\}=\left\{(x, t) \in \mathbb{R}^{n+1}: \sup _{\gamma \in \Gamma} q(\gamma, x) \leq t\right\} \\
\mathrm{Opt}_{\mathrm{SDP}} & :=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma} q(\gamma, x)
\end{aligned}
$$

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
&=\inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{l}
X=x x^{\top} \\
\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\} \\
& \geq \inf _{x \in \mathbb{R}^{n}, X \in \mathbb{S}^{n}}\left\{\left\langle A_{\mathrm{obj}}, X\right\rangle+2 b_{\mathrm{obj}}^{\top} x+c_{\mathrm{obj}}: \begin{array}{l}
X-x x^{\top} \succeq 0 \\
\left\langle A_{i}, X\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i \in[m]
\end{array}\right\} \\
&=\inf _{x \in \mathbb{R}^{n}} \inf _{X \in \mathbb{S}^{n}} \ldots \\
&=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma} q(\gamma, x)
\end{aligned}
$$

Preliminaries recap

- Main objects of interest
nonconvex QCQP convex SDP
- Useful for analysis:
- $q(\gamma, x)=$ Lagrangian function
- $\Gamma=$ aggregation weights giving convex $q(\gamma, x)$
(2) Objective value exactness, convex hull exactness, applications
(3) Efficient algorithms for structured QCQPs
(4) Conclusion and future directions

Forms of exactness

- What does exactness mean?
- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$
- Convex hull exactness: $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }} \leftarrow$ convexification of substructures

Obj. val. ex. X
Conv. hull ex. X

Obj. val. ex.
Conv. hull ex. \boldsymbol{X}

Obj. val. ex.
Conv. hull ex.

Convex hull exactness

- $\operatorname{conv}(\mathcal{D}) \stackrel{?}{=} \mathcal{D}_{\text {SDP }}$

Sufficient conditions for exactness

- Can carry out this idea for QCQPs!
- Leads to sufficient conditions based on abstract properties

[^0]```
Theorem ([Math. Prog. under review])
If for every \((x, t) \in \mathcal{D}_{\text {SDP }} \backslash \mathcal{D}\),
 \(\left\{\left(x^{\prime}, t^{\prime}\right) \in \mathbb{R}^{n+1}: \begin{array}{l}x^{\prime} \in \operatorname{ker}(A(f)) \\ \left\langle A(\eta) x+b(\eta), x^{\prime}\right\rangle-t^{\prime}=0, \forall(1, \eta) \in \mathcal{G}^{\perp}\end{array}\right\} \neq\{0\}\)
then \(\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}\).
```

Based on: [IPCO 19], [Math. Prog. 21], [Math. Prog. under review]

## Example: the trust-region subproblem

- Convex hull exactness in the case of single ball constraint

$$
\text { Opt }=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x):\|x\|^{2} \leq 1\right\}
$$

- Applications:
- Nonlinear minimization (trust-region methods), combinatorial optimization, robust optimization


## Example: QCQPs with symmetry

- Convex hull exactness in the case of "highly symmetric" QCQPs
- Suppose $A_{\mathrm{obj}}=I_{k} \otimes \mathbb{A}_{\mathrm{obj}}, A_{i}=I_{k} \otimes \mathbb{A}_{i}$ for all $i \in[m]$

$$
I_{k} \otimes \mathbb{A}=\left(\begin{array}{llll}
\mathbb{A} & & & \\
& \mathbb{A} & & \\
& \ddots & \\
& & \mathbb{A}
\end{array}\right)
$$

and $k \geq m$

- Applications:
- Robust least squares, sphere packing, QCQPs with spherical constraints, orthogonal Procrustes problem


## Example: Random underconstrained quadratic systems

- Obj. val. exactness in the case of random underconstrained quadratic systems
- Solve

$$
\inf _{x \in \mathbb{R}^{n}}\left\{\|x\|^{2}: q_{i}(x)=0, \forall i \in[m]\right\}
$$



- Fix $m$, let $n \rightarrow \infty$, if data generated "as Gaussians", then objective value exactness w.p. $1-o(1)$

Related: Burer and Ye [2019], Locatelli [2020]

## Summary of Part 1

- Sufficient conditions for convex hull exactness
- Necessary and sufficient if $\Gamma$ is polyhedral (dual facially exposed)
- Sufficient conditions for objective value exactness
- Rank-one-generated (ROG) cones: strengthening of convex hull exactness
- Applications:
- Diagonal QCQPs with sign-definite linear terms, semi-random QCQPs, ratios of quadratic functions

| Exactness | ROG Cones |
| :---: | :---: |
| $[I P C O$ 20], [Math. Prog. 21], | [Tut. Oper. Res. 21], |
| $[$ [Math. Prog. under review] |  |

## Take-home message

## Long-term research goal

Understand structures within nonconvex problems that enable us to solve them "well" using convex optimization

## SDPs provide exact reformulations for broad classes of QCQPs!


(2) Objective value exactness, convex hull exactness, applications
(3) Efficient algorithms for structured QCQPs
(4) Conclusion and future directions

## Revisiting the SDP relaxation

- Usual SDP relaxation in $x \in \mathbb{R}^{n}$ and $X \in \mathbb{S}^{n} \Longrightarrow \approx n^{2}$ variables
- Our view:

$$
\text { Opt }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}}\left(\sup _{\gamma \in \Gamma} q(\gamma, x)\right)
$$

is a minimization problem in the original space $\Longrightarrow n$ variables

## The generalized trust-region subproblem (GTRS)

- Special setting with single constraint ( $\leq$ or $=$ )

$$
\text { Opt }:=\inf _{x \in \mathbb{R}^{n}}\left\{q_{\mathrm{obj}}(x): q_{1}(x) \leq 0\right\}
$$

- TRS Applications:
- nonlinear programming (trust-region methods), combinatorial optimization, robust optimization
- GTRS Applications:
- minimizing quartics of the form $q(x, p(x))$

$$
\inf _{x \in \mathbb{R}^{n}, \alpha}\{q(x, \alpha): \alpha=p(x)\}
$$

(source localization, constrained rank-one approximation), iterative QCQP solvers

## Linear-time algorithm for the GTRS

- Convex hull exactness holds $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}=\left\{(x, t): \sup _{\gamma \in \Gamma} q(\gamma, x) \leq t\right\}$
- Recall

$$
\Gamma=\left\{\gamma \in \mathbb{R}_{+}: q(\gamma, x) \text { is convex in } x\right\}
$$



## Based on: [Math. Prog. 20]

Related: Hazan and Koren [2016], Ho-Nguyen and Kılınç-Karzan [2017], Jiang and Li [2019, 2020]

## Linear-time algorithm for the GTRS

- $\Gamma=\left[\gamma_{-}, \gamma_{+}\right] \Longrightarrow \mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}=\inf _{x \in \mathbb{R}^{n}} \max _{\gamma \in\left\{\gamma_{-}, \gamma_{+}\right\}} q(\gamma, x)$



## - Algorithmic idea

- Compute $\gamma_{-}$and $\gamma_{+}$to some accuracy $\Longrightarrow \tilde{O}\left(\frac{N}{\sqrt{\epsilon}} \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right) \approx \frac{1}{\sqrt{\epsilon}}$


## Based on: [Math. Prog. 20]

Related: Hazan and Koren [2016], Ho-Nguyen and Kılınç-Karzan [2017], Jiang and Li [2019, 2020]

## Is this running time optimal?

- GTRS:

$$
\inf _{x \in \mathbb{R}^{n}}\left\{q_{\text {obj }}(x): q_{1}(x) \leq 0\right\} \quad \tilde{O}\left(\frac{N}{\sqrt{\epsilon}} \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right)
$$

- Minimum eigenvalue:

$$
\inf _{x \in \mathbb{R}^{n}}\left\{x^{\top} A x:\|x\|^{2}=1\right\} \quad O\left(\frac{N}{\sqrt{\epsilon}} \log \left(\frac{n}{p}\right)\right)
$$

- Smooth convex quadratic:

$$
\inf _{x \in \mathbb{R}^{n}} q_{\text {obj }}(x) \quad O\left(\frac{N}{\sqrt{\epsilon}}\right)
$$

- But, these are hardest problems within the GTRS!
- Can do better when regularity $\mu^{*}>0$


## Linear convergence for regular GTRS

- $\mu^{*}>0$ holds for most GTRS
- Dual problem

$$
\text { Opt }{ }_{\text {SDP }}:=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma} q(\gamma, x)=\sup _{\gamma \in \Gamma} \inf _{x \in \mathbb{R}^{n}} q(\gamma, x)
$$

## Definition

Let $\gamma^{*}$ be dual optimizer. Define $\mu^{*}:=\lambda_{\min }\left(A_{\mathrm{obj}}+\gamma^{*} A_{1}\right)$. GTRS instance is regular if $\mu^{*}>0$.

- Minimum eigenvalue problem is not regular
- Some instances of smooth quadratic minimization are not regular


## Linear convergence for regular GTRS

- Suppose $\mu^{*}>0$

- Suffices to estimate $\gamma^{*}$ roughly and can exploit strong convexity

$$
\tilde{O}\left(\frac{N}{\sqrt{\mu^{*}}} \log \left(\frac{1}{\mu^{*}}\right) \log \left(\frac{n}{p}\right) \log \left(\frac{1}{\epsilon}\right)\right) \approx \log \left(\frac{1}{\epsilon}\right)
$$

- Linear in $N$ and $\log (1 / \epsilon)$


## Numerical experiments, $n=1,000$



Numerical experiments, $n=1,000$





## Numerical experiments, $\mathrm{n}=10,000$






## Numerical experiments, $n=100,000$






## Efficient algorithms for regular QCQPs

- Regularity can also be defined for general QCQPs!


## Definition

Let $\gamma^{*}$ be dual optimizer. Define $\mu^{*}:=\lambda_{\min }\left(A_{\mathrm{obj}}+\sum_{i=1}^{m} \gamma_{i}^{*} A_{i}\right)$. QCQP instance is regular if $\mu^{*}>0$.

- $\mu^{*}>0 \Longrightarrow$ objective value exactness
- $\mu^{*}>0$ in a number of statistical recovery problems
- If $\gamma^{*} \in B(\tilde{\gamma}, \delta) \subseteq \Gamma$

$$
\text { Opt }=\mathrm{Opt}_{\mathrm{SDP}}=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in \Gamma} q(\gamma, x)=\inf _{x \in \mathbb{R}^{n}} \sup _{\gamma \in B(\tilde{\gamma}, \delta)} q(\gamma, x)
$$

- Applications:
- TRS, GTRS, random QCQPs, phase-retrieval, clustering


## Summary of Part 2

- Efficient algorithms for the GTRS
- Efficient algorithms for regular QCQPs
- Algorithms for diagonalizing QCQPs



## Take-home message

## Long-term research goal

Understand structures within nonconvex problems that enable us to solve them "well" using convex optimization

## Some nonconvex problems can be solved efficiently via first-order methods!


(2) Objective value exactness, convex hull exactness, applications
(3) Efficient algorithms for structured QCQPs
(4) Conclusion and future directions

## Future work

## Long-term research goal

Understand structures within nonconvex problems that enable us to solve them "well" using convex optimization

- Solving nonconvex problems accurately
- Completed: SDPs provide exact reformulations for broad classes of QCQPs!
- Future:
- Can we understand approximation quality systematically within general framework?
- Can we understand exactness/approximation for more powerful convex relaxations?


## Future work

## Long-term research goal

Understand structures within nonconvex problems that enable us to solve them "well" using convex optimization

- Solving nonconvex problems efficiently
- Completed: Some nonconvex problems can be solved efficiently via first-order methods!
- Future:
- Exactness $\approx$ efficiency?
- Can we develop efficient algorithms for semidefinite programs with low-rank solutions
- Can we approximate "expensive" tools (e.g., SDPs) with cheap tools (e.g., linear programs, second-order cone programs)


## Summary of my research



## Long-term research goal

Understand structures within nonconvex problems that enable us to solve them "well" using convex optimization

## Thank you! Questions?



## References I

Argue, C., Kllıç-Karzan, F., and Wang, A. L. (2020). Necessary and sufficient conditions for rank-one generated cones. arXiv preprint, 2007.07433.
Beck, A. (2007). Quadratic matrix programming. SIAM J. Optim., 17(4):1224-1238.
Beck, A., Drori, Y., and Teboulle, M. (2012). A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett., 40(4):298-302.
Burer, S. and Ye, Y. (2019). Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program., 181:1-17.
Carmon, Y. and Duchi, J. C. (2018). Analysis of Krylov subspace solutions of regularized nonconvex quadratic problems. pages 10728-10738.
Dutta, A., Vijayaraghavan, A., and Wang, A. L. (2017). Clustering stable instances of Euclidean k-means. In Advances in Neural Information Processing Systems, pages 6500-6509.
Hazan, E. and Koren, T. (2016). A linear-time algorithm for trust region problems. Math. Program., 158:363-381.
Ho-Nguyen, N. and Kilınç-Karzan, F. (2017). A second-order cone based approach for solving the Trust Region Subproblem and its variants. SIAM J. Optim., 27(3):1485-1512.

## References II

Jiang, R. and Li, D. (2019). Novel reformulations and efficient algorithms for the Generalized Trust Region Subproblem. SIAM J. Optim., 29(2):1603-1633.
Jiang, R. and Li, D. (2020). A linear-time algorithm for generalized trust region problems. SIAM J. Optim., 30(1):915-932.
Killiç-Karzan, F. and Wang, A. L. (2021). Exactness in SDP relaxations of QCQPs: Theory and applications. Tut. in Oper. Res. INFORMS.
Kuczynski, J. and Wozniakowski, H. (1992). Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094-1122.
Locatelli, M. (2020). KKT-based primal-dual exactness conditions for the Shor relaxation. arXiv preprint, 2011.05033.
Miller, G. L., Walkington, N. J., and Wang, A. L. (2019). Hardy-Muckenhoupt bounds for Laplacian eigenvalues. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), pages 8:1-8:19.
Nesterov, Y. (2018). Lectures on convex optimization, volume 137 of Springer Optimization and Its Applications. Springer.

## References III

Wang, A. L. and Jiang, R. (2021). New notions of simultaneous diagonalizability of quadratic forms with applications to QCQPs. arXiv preprint, 2101.12141.
Wang, A. L. and Kilınç-Karzan, F. (2020a). The generalized trust region subproblem: solution complexity and convex hull results. Math. Program. Forthcoming.

Wang, A. L. and Kilınç-Karzan, F. (2020b). A geometric view of SDP exactness in QCQPs and its applications. arXiv preprint, 2011.07155.
Wang, A. L. and Kilınç-Karzan, F. (2020c). On convex hulls of epigraphs of QCQPs. In Integer Programming and Combinatorial Optimization (IPCO 2020), pages 419-432. Springer.
Wang, A. L. and Killnç-Karzan, F. (2021). On the tightness of SDP relaxations of QCQPs. Math. Program. Forthcoming.
Yakubovich, V. A. (1971). S-procedure in nonlinear control theory. Vestnik Leningrad Univ. Math., pages 62-77.
Yildıran, U. (2009). Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control Inform., 26(4):417-450.

## Rank-one-generated cones

## Definition

Cone $\mathcal{S} \subseteq \mathbb{S}_{+}^{n}$ is rank-one-generated $(\mathrm{ROG})$ if $\mathcal{S}=\operatorname{conv}\left(\mathcal{S} \cap\left\{x x^{\top}\right\}\right)$.
Compare: $P \subseteq[0,1]^{n}$ is integral if $P=\operatorname{conv}\left(P \cap\{0,1\}^{n}\right)$

- Given QCQP, if constraints correspond to ROG cone, then objective value exactness and convex hull exactness regardless of objective function
- Suppose $\mathcal{S}=\left\{X \in \mathbb{S}_{+}^{n}:\langle M, X\rangle \leq 0, \forall M \in \mathcal{M}\right\}$


## Goal

What properties of $\mathcal{M}=\left\{M_{1}, \ldots, M_{k}\right\}$ imply $\mathcal{S}$ is ROG?

## Rank-one-generated cones

## Theorem (Sufficient conditions)

$\mathcal{S}$ is ROG if

- for all $i \neq j$, there exists $(\alpha, \beta) \neq(0,0)$ such that $\alpha M_{i}+\beta M_{j} \succeq 0$, or
- there exists $a \in \mathbb{R}^{n}$ such that $M_{i}=a b_{i}^{\top}+b_{i} a^{\top}$.


## Theorem (Characterization of ROG for $|\mathcal{M}|=2$ )

Suppose $\mathcal{M}=\left\{M_{1}, M_{2}\right\}$. Then sufficient condition above is also necessary.

## Diagonalizing QCQPs

## Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is simultaneously diagonalizable via congruence (SDC) if there exists invertible $P \in \mathbb{R}^{n \times n}$ such that $P^{\top} A_{i} P$ is diagonal $\forall i$.

- Nice property because: SDP relaxation of diagonal QCQP is SOCP (faster), $\Gamma$ is polyhedral (better understanding of exactness)


## Goal

Most sets of matrices are not SDC, can we find other computationally variants of SDC and understand such properties?

## Diagonalizing QCQPs: variants of SDC

## Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is almost $\operatorname{SDC}$ (ASDC) if for all $\epsilon>0$, there exists $\left\|A_{i}^{\prime}-A_{i}\right\| \leq \epsilon$ such that $\left\{A_{i}^{\prime}\right\}$ is SDC.

- "Limit of SDC sets"


## Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is $d$-restricted SDC $\left(d\right.$-RSDC) if there exists $A_{i}^{\prime}=\binom{A_{i} *}{*} \in \mathbb{S}^{n+d}$ such that $\left\{A_{i}^{\prime}\right\}$ is SDC.

- "Restriction of SDC sets"


## Diagonalizing QCQPs: ASDC

## Theorem

Let $\{A, B\} \subseteq \mathbb{S}^{n}$ and suppose $A$ invertible. Then $\{A, B\}$ is ASDC if and only if $A^{-1} B$ has real spectrum. (+ construction)

## Theorem

Let $\{A, B\} \subseteq \mathbb{S}^{n}$. If $\{A, B\}$ is singular, then it is ASDC. (+ construction)

## Theorem

Let $\{A, B, C\} \subseteq \mathbb{S}^{n}$ and suppose $A$ invertible. Then $\{A, B, C\}$ is ASDC if and only if $\left\{A^{-1} B, A^{-1} C\right\}$ commute and have real spectrum. (+ construction)

## Diagonalizing QCQPs: $d-$ RSDC

## Theorem

Let $\{A, B\} \subseteq \mathbb{S}^{n}$. If $A$ is invertible and $A^{-1} B$ has simple eigenvalues, then $\{A, B\}$ is 1-RSDC. (+ construction)

- Condition holds generically


## "Fuzzy" spectral partitioning

- Connected graph $G=(V, E)$
- Vertex masses $\mu: V \rightarrow \mathbb{R}_{++}$and edge weights $\kappa: E \rightarrow \mathbb{R}_{++}$
- Laplacian $L=D-A$ w.r.t. $\kappa$


## Theorem (Cheeger's inequality)

If $\mu_{v}=d_{v}$, then

$$
\frac{\Phi^{2}}{2} \leq \lambda_{2}(L, M) \leq 2 \Phi
$$

- $\lambda_{2}(L, M)$ is first nontrivial generalized eigenvalue
- $\Phi$ is sparsest cut


## "Fuzzy" spectral partitioning

- We define "Fuzzy cuts"


## Definition

$$
\Psi \approx \min _{A, B}\left\{\frac{\kappa_{\mathrm{eff}}(A, B)}{\min (\mu(A), \mu(B))}, A, B \neq \varnothing, A \cap B=\varnothing\right\}
$$

- $\Phi$ must partition, $\Psi$ may leave out. $\Psi=\Phi$ if $A, B$ is a partition.


## Theorem

$$
\frac{\Psi}{4} \leq \lambda_{2}(L, M) \leq \Psi
$$

## Stable Euclidean $k$-means

- $k$-means clustering: $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{d}$
- Suppose there exist true clustering that is unique optimum even if for all $i$, $x_{i} \mapsto x_{i}^{\prime} \in B\left(x_{i}, \epsilon\right)$


## Theorem

Two clusters. There exists $c \geq 1$ such that for any fixed $\epsilon>0$, we can recover true clustering in time $d \cdot n^{O\left(\epsilon^{-c}\right)}$.

Additional results for $\geq 3$ clusters given an additional "separation" assumption


[^0]:    Theorem ([Math. Prog. 21])
    Suppose $\Gamma$ polyhedral. If for every semidefinite face $\mathcal{F} \unlhd \Gamma$, aff $\left(\operatorname{Proj}_{\mathcal{V}(\mathcal{F})}\{b(\gamma): \gamma \in \mathcal{F}\}\right) \neq \mathcal{V}(\mathcal{F})$,
    then $\operatorname{conv}(\mathcal{D})=\mathcal{D}_{\text {SDP }}$.

