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SDPs and QMPs
e Semidefinite program

(SDP) = inf {(MO, Y):

(M;,Y) +d; =0, Vi € [m] }
YeSntk

Y >0
® Convex, but most existing methods too slow for large n + &

e Quadratic matrix program
(QMP) = inf {qo(X): ¢(X) =0, Vi € [m]}
XeRnxk
where ¢;(X) = tr(XTA; X) + 2 (B;, X) + ¢; is a quadratic matrix function
* Nonconvex and NP-hard, nk can be much smaller than (n + k)2

e Sneak peek: “k-exact” SDPs can be converted to easy instances of QMP

Related: Beck [2007], Beck et al. [2012], Wang and Kiling-Karzan [2020]
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Structural assumptions on SDP

Y eSn+k Y t 0
Z sup {dW: Mo+ 7iM; = 0}
yER™ —
M ()
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Structural assumptions on SDP
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e L-exact SDPs:
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* W, subspace of dimension n such that Y;,, >~ 0 is known
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Yesntk
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m
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e L-exact SDPs:

e Strong duality holds, both are solvable, there exists Y* and ~*
e Strict complementarity: rank(Y*) = k£ and rank(M (v*)) =n

* W, subspace of dimension n such that Y;,, >~ 0 is known
* Thistalk: W =R" x {0} and Y}},, = Iy

Related: Alizadeh et al. [1997], Ding et al. [2021]
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e L-exact SDPs

e Strong duality, strict complementarity with rank &, and Y{j,, = Iy
- XX X*
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Recap of structural assumptions

e L-exact SDPs

e Strong duality, strict complementarity with rank &, and Y{j,, = Iy
- XX X*
e SDP optimizer Y* = < T Ik) =Y(X™)

X" = ?;(rgRI}LlXiEUMO,Y(X)) D (M, Y(X)) + di =0, Vi € [m]}

=argmin {qo(X) : ¢:(X) =0, Vi € [m]}
XeRnxk

¢ Have reduced SDP —— QMP (Easy?)
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@ How to use k-exactness? ... Strongly convex reformulation
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Lagrangian reformulation

e Take the Lagrangian to get minimax problem without constraints

X* =argmin {q(X) : ¢(X) =0, Vi € [m]}
XeRnxk
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Lagrangian reformulation

e Take the Lagrangian to get minimax problem without constraints
X* =argmin {q(X) : ¢(X) =0, Vi € [m]}
XeRnxk

m
= argmin sup ¢o(X) + Z 74 (X)
XeRnxk yER™ i=1

= q(7, X)
® ¢(v,X)=tr(XTA(y)X) + ... where
A(vy) = top-left block of M ()
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Deriving a strongly convex minimax problem

* Thought experiment: strong duality + strict complementarity implies

X* =argmin sup ¢(v,X)
XGR"X" ’YERm

= argming(y*, X)
XER"X’“
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* Thought experiment: strong duality + strict complementarity implies

X* =argmin sup ¢(v,X)
XER"X" ’YERm

= argming(y*, X)
XGR"X"

e Strict complementarity A(y*) =0 q(v*, X) is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)

Suppose v* € C C R™ and A(~) > 0 for all v € C, then

X* = argmin max g(v, X)
XcRnxk y€eC
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Deriving a strongly convex minimax problem

* Thought experiment: strong duality + strict complementarity implies

X* =argmin sup ¢(v,X)
XER"X" ’YERm

= argming(y*, X)
XGR"X"

e Strict complementarity A(y*) =0 q(v*, X) is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)

Suppose v* € C C R™ and A(~) > 0 for all v € C, then
X* = argmin max g(v, X)
XcRnxk y€eC

e Algorithm:
e Construct C
® Solve strongly convex quadratic matrix minimax problem (QMMP)
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® Algorithms
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Algorithms: CautiousAGD

¢ How to solve strongly convex QMMP?

arg min max q(y, X)
XeRnxk VEC

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]
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Algorithms: CautiousAGD

¢ How to solve strongly convex QMMP?

arg min max q(y, X)
XeRnxk VEC

® Accelerated gradient descent (AGD) method for minimax functions
® Issue: Requires solving a “prox-map” in each iteration

® Solve prox-map approximately and bound error in AGD
° CautiousAGD

Theorem (CautiousAGD)

CautiousAGD produces iterates X; such that
glggq(v,Xt) < H}gnglggq(%X) +e

after O (log(e™!)) iterations, O(me~'/2) matrix-vector products per iteration

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]
Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 8/12



Algorithms: CertSDP

e How to construct C?

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? ~v* € C

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C

{yeR™: A(y) = 0}

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C
e ~* is optimizer of dual problem, there exist (slow) algorithms (") — ~*

{yeR™: A(y) = 0}

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C
e ~* is optimizer of dual problem, there exist (slow) algorithms (") — ~*

~) {v€R™: A(y) = 0}

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C
e ~* is optimizer of dual problem, there exist (slow) algorithms (") — ~*

~) {vy€R™: A(y) = 0}

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C
e ~* is optimizer of dual problem, there exist (slow) algorithms (") — ~*

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C

* ~* is optimizer of dual problem, there exist (slow) algorithms ~() — ~*
* Issue: How do we know close enough?

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C

* ~* is optimizer of dual problem, there exist (slow) algorithms v(*) — 4*
* Issue: How do we know close enough?
Use CautiousAGD!

Wang, Kiling-Karzan Accelerated FOMs for a Class of SDPs 9/12



Algorithms: CertSDP

e How to construct C? v* € C, A(v) = Oforally € C

* ~* is optimizer of dual problem, there exist (slow) algorithms v(*) — 4*
* Issue: How do we know close enough?
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CertSDP convergence behavior
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CertSDP guarantees

Theorem (CertSDP)
CertSDP produces iterates X; such that
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Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macédo [2016], Shinde et al. [2021]
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Conclusion

e Summary: New FOM for k-exact SDPs

® | ow iteration complexity, cheap iterations, and low storage requirement
® Promising numerical performance as well!

e Questions:

® Rates depend on p*, what are the optimal rates? Lower bounds?
* Understanding how error propagates if Y};,, only known up to some error?

Thank you! Questions?

https://arxiv.org/abs/2206.00224
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