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SDPs and QMPs

• Semidefinite program

(SDP) = inf
Y ∈Sn+k

{
⟨M0, Y ⟩ :

⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y ⪰ 0

}
• Convex, but most existing methods too slow for large n+ k

• Quadratic matrix program

(QMP) = inf
X∈Rn×k

{q0(X) : qi(X) = 0, ∀i ∈ [m]}

where qi(X) = tr(X⊺AiX) + 2 ⟨Bi, X⟩+ ci is a quadratic matrix function
• Nonconvex and NP-hard

, nk can be much smaller than (n+ k)2

• Sneak peek: “k-exact” SDPs can be converted to easy instances of QMP

Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]
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Structural assumptions on SDP

• (SDP) = inf
Y ∈Sn+k

{
⟨M0, Y ⟩ :

⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]

Y ⪰ 0

}

≥ sup
γ∈Rm

{
d⊺γ :

M0 +

m∑
i=1

γiMi︸ ︷︷ ︸
M(γ)

⪰ 0

}

• k-exact SDPs:

• Strong duality holds, both are solvable, there exists Y ∗ and γ∗

• Strict complementarity: rank(Y ∗) = k and rank(M(γ∗)) = n

• W , subspace of dimension n such that Y ∗
W⊥ ≻ 0 is known

• This talk: W = Rn × {0k} and Y ∗
W⊥ = Ik

Related: Alizadeh et al. [1997], Ding et al. [2021]
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Motivation

• SDP relaxation of QMP in X ∈ Rn×k

• Let Y (X) :=

(
XX⊺ X
X⊺ Ik

)

, then

qi(X) = ⟨Mi, Y (X)⟩ =
〈(

Ai Bi

B⊺
i ciIk/k

)
,

(
XX⊺ X
X⊺ Ik

)〉
(QMP) = inf

X∈Rn×k
{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ inf
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = (SDP)

Know Y ∗
W⊥ = Ik

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]
Wang, Kılınç-Karzan Accelerated FOMs for a Class of SDPs 4 / 12



Motivation

• SDP relaxation of QMP in X ∈ Rn×k

• Let Y (X) :=

(
XX⊺ X
X⊺ Ik

)

, then

qi(X) = ⟨Mi, Y (X)⟩ =
〈(

Ai Bi

B⊺
i ciIk/k

)
,

(
XX⊺ X
X⊺ Ik

)〉
(QMP) = inf

X∈Rn×k
{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ inf
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = (SDP)

Know Y ∗
W⊥ = Ik

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]
Wang, Kılınç-Karzan Accelerated FOMs for a Class of SDPs 4 / 12



Motivation

• SDP relaxation of QMP in X ∈ Rn×k

• Let Y (X) :=

(
XX⊺ X
X⊺ Ik

)
, then

qi(X) = ⟨Mi, Y (X)⟩ =
〈(

Ai Bi

B⊺
i ciIk/k

)
,

(
XX⊺ X
X⊺ Ik

)〉

(QMP) = inf
X∈Rn×k

{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ inf
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = (SDP)

Know Y ∗
W⊥ = Ik

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]
Wang, Kılınç-Karzan Accelerated FOMs for a Class of SDPs 4 / 12



Motivation

• SDP relaxation of QMP in X ∈ Rn×k

• Let Y (X) :=

(
XX⊺ X
X⊺ Ik

)
, then

qi(X) = ⟨Mi, Y (X)⟩ =
〈(

Ai Bi

B⊺
i ciIk/k

)
,

(
XX⊺ X
X⊺ Ik

)〉
(QMP) = inf

X∈Rn×k
{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ inf
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = (SDP)

Know Y ∗
W⊥ = Ik

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]
Wang, Kılınç-Karzan Accelerated FOMs for a Class of SDPs 4 / 12



Motivation

• SDP relaxation of QMP in X ∈ Rn×k

• Let Y (X) :=

(
XX⊺ X
X⊺ Ik

)
, then

qi(X) = ⟨Mi, Y (X)⟩ =
〈(

Ai Bi

B⊺
i ciIk/k

)
,

(
XX⊺ X
X⊺ Ik

)〉
(QMP) = inf

X∈Rn×k
{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ inf
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = (SDP)

Know Y ∗
W⊥ = Ik

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]
Wang, Kılınç-Karzan Accelerated FOMs for a Class of SDPs 4 / 12



Motivation

• SDP relaxation of QMP in X ∈ Rn×k

• Let Y (X) :=

(
XX⊺ X
X⊺ Ik

)
, then

qi(X) = ⟨Mi, Y (X)⟩ =
〈(

Ai Bi

B⊺
i ciIk/k

)
,

(
XX⊺ X
X⊺ Ik

)〉
(QMP) = inf

X∈Rn×k
{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩ = 0, ∀i ∈ [m]}

≥ inf
Y ∈Sn+k

⟨M0, Y ⟩ :
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =

(
∗ ∗
∗ Ik

)
⪰ 0

 = (SDP)

Know Y ∗
W⊥ = Ik

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]
Wang, Kılınç-Karzan Accelerated FOMs for a Class of SDPs 4 / 12



Recap of structural assumptions

• k-exact SDPs

• Strong duality

, strict complementarity with rank k, and Y ∗
W⊥ = Ik

• SDP optimizer Y ∗ =

(
X∗X∗⊺ X∗

X∗⊺ Ik

)

= Y (X∗)

X∗ = argmin
X∈Rn×k

{⟨M0, Y (X)⟩ : ⟨Mi, Y (X)⟩+ di = 0, ∀i ∈ [m]}

= argmin
X∈Rn×k

{q0(X) : qi(X) = 0, ∀i ∈ [m]}

• Have reduced SDP −→ QMP

(Easy?)
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Lagrangian reformulation

• Take the Lagrangian to get minimax problem without constraints

X∗ = argmin
X∈Rn×k

{q0(X) : qi(X) = 0, ∀i ∈ [m]}

= argmin
X∈Rn×k

sup
γ∈Rm

q0(X) +

m∑
i=1

γiqi(X)︸ ︷︷ ︸
=: q(γ,X)

• q(γ,X) = tr(X⊺A(γ)X) + . . .

where

A(γ) = top-left block of M(γ)
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Deriving a strongly convex minimax problem

• Thought experiment: strong duality + strict complementarity implies

X∗ = argmin
X∈Rn×k

sup
γ∈Rm

q(γ,X)

= argmin
X∈Rn×k

q(γ∗ , X)

• Strict complementarity

−→ A(γ∗) ≻ 0 −→ q(γ∗, X) is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)

Suppose γ∗ ∈ C ⊆ Rm and A(γ) ≻ 0 for all γ ∈ C, then

X∗ = argmin
X∈Rn×k

max
γ∈C

q(γ,X)

• Algorithm:

• Construct C
• Solve strongly convex quadratic matrix minimax problem (QMMP)
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Algorithms: CautiousAGD

• How to solve strongly convex QMMP?

argmin
X∈Rn×k

max
γ∈C

q(γ,X)

• Accelerated gradient descent (AGD) method for minimax functions
• Issue: Requires solving a “prox-map” in each iteration

• Solve prox-map approximately and bound error in AGD

• −→ CautiousAGD

Theorem (CautiousAGD)

CautiousAGD produces iterates Xt such that

max
γ∈C

q(γ,Xt) ≤ min
X

max
γ∈C

q(γ,X) + ϵ

after O
(
log(ϵ−1)

)
iterations, O(mϵ−1/2) matrix-vector products per iteration

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]
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Algorithms: CertSDP

• How to construct C?

γ∗ ∈ C, A(γ) ≻ 0 for all γ ∈ C
• γ∗ is optimizer of dual problem, there exist (slow) algorithms γ(i) → γ∗

• Issue: How do we know close enough?

Use CautiousAGD!
• If γ∗ ∈ C(i) then CautiousAGD converges to X∗ rapidly
• Monitor convergence!

• −→ CertSDP
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CertSDP convergence behavior
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CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates Xt such that〈
M0,

(
XtX

⊺
t Xt

X⊺
t Ik

)〉
≤ OptSDP +ϵ

∥∥∥∥(〈Mi,

(
XtX

⊺
t Xt

X⊺
t Ik

)〉
+ di

)
i

∥∥∥∥
2

≤ ϵ

• Iteration count: O(1) +O
(
log(ϵ−1)

)
• Iteration complexity: O(mϵ−1) matrix-vector products per iteration

• Storage: O(m+ nk) storage

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]
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Conclusion

• Summary: New FOM for k-exact SDPs

• Low iteration complexity, cheap iterations, and low storage requirement
• Promising numerical performance as well!

• Questions:

• Rates depend on µ∗, what are the optimal rates? Lower bounds?
• Understanding how error propagates if Y ∗

W⊥ only known up to some error?

Thank you! Questions?

https://arxiv.org/abs/2206.00224
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