Accelerated first-order methods for a class of semidefinite programs

Alex L. Wang, Carnegie Mellon University \rightarrow Centrum Wiskunde \& Informatica Fatma Kılınç-Karzan, Carnegie Mellon University

ICCOPT, July 27, 2022
(1) What structure? ... k-exactness

(2) How to use k-exactness?

(3) Algorithms
(4) Conclusion

SDPs and QMPs

- Semidefinite program

Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]

SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$

[^0]
SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$
- Quadratic matrix program

[^1]
SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$
- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

[^2]
SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$
- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$
- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

- Nonconvex and NP-hard

SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$
- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

- Nonconvex and NP-hard, $n k$ can be much smaller than $(n+k)^{2}$

SDPs and QMPs

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Convex, but most existing methods too slow for large $n+k$
- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

- Nonconvex and NP-hard, $n k$ can be much smaller than $(n+k)^{2}$
- Sneak peek: " k-exact" SDPs can be converted to easy instances of QMP

Structural assumptions on SDP

Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\left\{d^{\top} \gamma: M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}
\end{aligned}
$$

Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[\mathrm{~m}] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:

Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[\mathrm{~m}] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both are solvable, there exists Y^{*} and γ^{*}

[^3]
Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[\mathrm{~m}] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both are solvable, there exists Y^{*} and γ^{*}
- Strict complementarity

[^4]
Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[\mathrm{~m}] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both are solvable, there exists Y^{*} and γ^{*}
- Strict complementarity: $\operatorname{rank}\left(Y^{*}\right)=k$ and $\operatorname{rank}\left(M\left(\gamma^{*}\right)\right)=n$

[^5]
Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both are solvable, there exists Y^{*} and γ^{*}
- Strict complementarity: $\operatorname{rank}\left(Y^{*}\right)=k$ and $\operatorname{rank}\left(M\left(\gamma^{*}\right)\right)=n$
- W, subspace of dimension n such that $Y_{W^{\perp}}^{*} \succ 0$ is known

[^6]
Structural assumptions on SDP

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- k-exact SDPs:
- Strong duality holds, both are solvable, there exists Y^{*} and γ^{*}
- Strict complementarity: $\operatorname{rank}\left(Y^{*}\right)=k$ and $\operatorname{rank}\left(M\left(\gamma^{*}\right)\right)=n$
- W, subspace of dimension n such that $Y_{W^{\perp}}^{*} \succ 0$ is known
- This talk: $W=\mathbb{R}^{n} \times\left\{0_{k}\right\}$ and $Y_{W^{\perp}}^{*}=I_{k}$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{n \times k}$

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{n \times k}$
- Let $Y(X):=\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{n \times k}$
- Let $Y(X):=\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$, then

$$
q_{i}(X)=\left\langle M_{i}, Y(X)\right\rangle=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & c_{i} I_{k} / k
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle
$$

Related: Ben-Tal and Nemirovski [2001], Beck [2007], Wang and Kılınç-Karzan [2022]

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{n \times k}$
- Let $Y(X):=\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$, then

$$
\begin{gathered}
q_{i}(X)=\left\langle M_{i}, Y(X)\right\rangle=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & c_{i} I_{k} / k
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle \\
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle=0, \forall i \in[m]\right\}
\end{gathered}
$$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{n \times k}$
- Let $Y(X):=\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$, then

$$
\begin{aligned}
& q_{i}(X)=\left\langle M_{i}, Y(X)\right\rangle=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & c_{i} I_{k} / k
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle \\
&(\mathbf{Q M P})= \inf _{X \in \mathbb{R}^{n \times k}}\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle=0, \forall i \in[m]\right\} \\
& \geq \inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{cc}
* & * \\
* & I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}=(\mathbf{S D P})
\end{aligned}
$$

Motivation

- SDP relaxation of QMP in $X \in \mathbb{R}^{n \times k}$
- Let $Y(X):=\left(\begin{array}{cc}X X^{\top} & X \\ X^{\top} & I_{k}\end{array}\right)$, then

$$
q_{i}(X)=\left\langle M_{i}, Y(X)\right\rangle=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & c_{i} I_{k} / k
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle
$$

$$
\begin{aligned}
(\mathbf{Q M P}) & =\inf _{X \in \mathbb{R}^{n \times k}}\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle=0, \forall i \in[m]\right\} \\
& \geq \inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{cc}
* & * \\
* I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}=(\mathbf{S D P})
\end{aligned}
$$

Know $Y_{W \perp}^{*}=I_{k}$

Recap of structural assumptions

- k-exact SDPs

Recap of structural assumptions

- k-exact SDPs
- Strong duality

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$
- SDP optimizer $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* T} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)$

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$
- SDP optimizer $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)=Y\left(X^{*}\right)$

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$
- SDP optimizer $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)=Y\left(X^{*}\right)$

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle+d_{i}=0, \forall i \in[m]\right\}
$$

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$
- SDP optimizer $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)=Y\left(X^{*}\right)$

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle+d_{i}=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
\end{aligned}
$$

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$
- SDP optimizer $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)=Y\left(X^{*}\right)$

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle+d_{i}=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
\end{aligned}
$$

- Have reduced SDP \longrightarrow QMP

Recap of structural assumptions

- k-exact SDPs
- Strong duality, strict complementarity with rank k, and $Y_{W^{\perp}}^{*}=I_{k}$
- SDP optimizer $Y^{*}=\left(\begin{array}{cc}X^{*} X^{* \top} & X^{*} \\ X^{* \top} & I_{k}\end{array}\right)=Y\left(X^{*}\right)$

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{\left\langle M_{0}, Y(X)\right\rangle:\left\langle M_{i}, Y(X)\right\rangle+d_{i}=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
\end{aligned}
$$

- Have reduced SDP \longrightarrow QMP (Easy?)
(2) How to use k-exactness? ... Strongly convex reformulation

(3) Algorithms

(4) Conclusion

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)
\end{aligned}
$$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{gathered}
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{gathered}
$$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{gathered}
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{gathered}
$$

- $q(\gamma, X)=\operatorname{tr}\left(X^{\top} A(\gamma) X\right)+\ldots$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{gathered}
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{gathered}
$$

- $q(\gamma, X)=\operatorname{tr}\left(X^{\top} A(\gamma) X\right)+\ldots$ where

$$
A(\gamma)=\text { top-left block of } M(\gamma)
$$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Algorithm:

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Algorithm:
- Construct \mathcal{C}

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Algorithm:

- Construct \mathcal{C}
- Solve strongly convex quadratic matrix minimax problem (QMMP)
(1) What structure? ... k-exactness
(2) How to use k-exactness?

Strongly convex reformulation

(3) Algorithms

(4) Conclusion

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min _{\max }^{\gamma \in \mathcal{C}}} \boldsymbol{q}(\gamma, X)
$$

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions

[^7]
Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration
- Solve prox-map approximately and bound error in AGD

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min _{\gamma \in \mathcal{C}}} \max _{\gamma} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration
- Solve prox-map approximately and bound error in AGD
- \longrightarrow CautiousAGD

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min _{\gamma \in \mathcal{C}}} \max _{\gamma} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration
- Solve prox-map approximately and bound error in AGD
- \longrightarrow CautiousAGD

Theorem (CautiousAGD)

CautiousAGD produces iterates X_{t} such that

$$
\max _{\gamma \in \mathcal{C}} q\left(\gamma, X_{t}\right) \leq \min _{X} \max _{\gamma \in \mathcal{C}} q(\gamma, X)+\epsilon
$$

after $O\left(\log \left(\epsilon^{-1}\right)\right)$ iterations, $O\left(m \epsilon^{-1 / 2}\right)$ matrix-vector products per iteration

[^8]
Algorithms: CertSDP

- How to construct \mathcal{C} ?

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough?

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough? Use CautiousAGD!

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough? Use CautiousAGD!
- If $\gamma^{*} \in \mathcal{C}^{(i)}$ then CautiousAGD converges to X^{*} rapidly

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough? Use CautiousAGD!
- If $\gamma^{*} \in \mathcal{C}^{(i)}$ then CautiousAGD converges to X^{*} rapidly
- Monitor convergence!

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough?

Use CautiousAGD!

- If $\gamma^{*} \in \mathcal{C}^{(i)}$ then CautiousAGD converges to X^{*} rapidly
- Monitor convergence!
- \longrightarrow CertSDP

CertSDP convergence behavior

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

- Iteration count: $O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

- Iteration count: $O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$
- Iteration complexity: $O\left(m \epsilon^{-1}\right)$ matrix-vector products per iteration

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

- Iteration count: $O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$
- Iteration complexity: $O\left(m \epsilon^{-1}\right)$ matrix-vector products per iteration
- Storage: $O(m+n k)$ storage
(1) What structure? ... k-exactness
(2) How to use k-exactness?

Strongly convex reformulation

(3) Algorithms

(4) Conclusion

Conclusion

- Summary: New FOM for k-exact SDPs

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Promising numerical performance as well!

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Promising numerical performance as well!
- Questions:

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Promising numerical performance as well!
- Questions:
- Rates depend on μ^{*}, what are the optimal rates? Lower bounds?

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Promising numerical performance as well!
- Questions:
- Rates depend on μ^{*}, what are the optimal rates? Lower bounds?
- Understanding how error propagates if $Y_{W \perp}^{*}$ only known up to some error?

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Promising numerical performance as well!
- Questions:
- Rates depend on μ^{*}, what are the optimal rates? Lower bounds?
- Understanding how error propagates if $Y_{W \perp}^{*}$ only known up to some error?

Thank you! Questions?

https://arxiv.org/abs/2206.00224

References I

Alizadeh, F., Haeberly, J. A., and Overton, M. L. (1997). Complementarity and nondegeneracy in semidefinite programming. Math. Program., 77:111-128.
Beck, A. (2007). Quadratic matrix programming. SIAM J. Optim., 17(4):1224-1238.
Beck, A., Drori, Y., and Teboulle, M. (2012). A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett., 40(4):298-302.
Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization, volume 2 of MPS-SIAM Ser. Optim.
Devolder, O., Glineur, F., and Nesterov, Y. (2013). First-order methods with inexact oracle: the strongly convex case. Technical Report 2013016.
Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order methods of smooth convex optimization with inexact oracle. Math. Program., 146(1):37-75.
Ding, L., Yurtsever, A., Cevher, V., Tropp, J. A., and Udell, M. (2021). An optimal-storage approach to semidefinite programming using approximate complementarity. SIAM J. Optim., 31(4):2695-2725.
Friedlander, M. P. and Macêdo, I. (2016). Low-rank spectral optimization via gauge duality. SIAM Journal on Scientific Computing, 38(3):A1616-A1638.

References II

Nesterov, Y. (2005). Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim., 16(1):235-249.
Nesterov, Y. (2018). Lectures on convex optimization. Number 137 in Springer Optim. and its Appl. 2 edition.

Shinde, N., Narayanan, V., and Saunderson, J. (2021). Memory-efficient structured convex optimization via extreme point sampling. SIAM Journal on Mathematics of Data Science, 3(3):787-814.

Wang, A. L. and Killnç-Karzan, F. (2020). A geometric view of SDP exactness in QCQPs and its applications. arXiv preprint, 2011.07155.
Wang, A. L. and Killnç-Karzan, F. (2022). On the tightness of SDP relaxations of QCQPs. Math. Program., 193:33-73.

Yurtsever, A., Tropp, J. A., Fercoq, O., Udell, M., and Cevher, V. (2021). Scalable semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171-200.

[^0]: Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]

[^1]: Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]

[^2]: Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]

[^3]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^4]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^5]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^6]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^7]: Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

[^8]: Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

