Accelerated first-order methods for a class of semidefinite programs

Alex L. Wang, CMU \rightarrow CWI \rightarrow Purdue University Fatma Kılınç-Karzan, Carnegie Mellon University

SIAM OP23, June, 2023
(1) What structure? ... k-exactness

(2) How to use k-exactness?

(3) Algorithms
(4) Numerical results
(5) Conclusion

Standard SDP algorithms are expensive

- Semidefinite program

Standard SDP algorithms are expensive

- Semidefinite program

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\begin{array}{ll}
\left\langle M_{0}, Y\right\rangle: & \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}
\end{array}\right\}
$$

Standard SDP algorithms are expensive

- Semidefinite program

$$
\begin{aligned}
& (\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}} \begin{cases}\left.\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}\end{cases} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\left\{d^{\top} \gamma: M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i} \succeq 0\right\}
\end{aligned}
$$

Standard SDP algorithms are expensive

- Semidefinite program

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n}+k}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

Standard SDP algorithms are expensive

- Semidefinite program

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n}+k}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- Convex and expressive, but most existing methods too slow for large $n+k$

Standard SDP algorithms are expensive

- Semidefinite program

$$
\begin{aligned}
(\mathbf{S D P}) & =\inf _{Y \in \mathbb{S}^{n}+k}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[\mathrm{~m}] \\
Y \succeq 0
\end{array}\right\} \\
& \geq \sup _{\gamma \in \mathbb{R}^{m}}\{d^{\top} \gamma: \underbrace{M_{0}+\sum_{i=1}^{m} \gamma_{i} M_{i}}_{M(\gamma)} \succeq 0\}
\end{aligned}
$$

- Convex and expressive, but most existing methods too slow for large $n+k$
- Simply writing down Y requires $O\left((n+k)^{2}\right)$ memory

QMPs and their SDP relaxations

- Quadratic matrix program

Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]

QMPs and their SDP relaxations

- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

[^0]
QMPs and their SDP relaxations

- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

QMPs and their SDP relaxations

- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

- SDP relaxation of QMP

QMPs and their SDP relaxations

- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

- SDP relaxation of QMP

$$
q_{i}(X)=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & c_{i} I_{k} / k
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle=\left\langle M_{i},\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle
$$

QMPs and their SDP relaxations

- Quadratic matrix program

$$
(\mathbf{Q M P})=\inf _{X \in \mathbb{R}^{n \times k}}\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

where $q_{i}(X)=\operatorname{tr}\left(X^{\top} A_{i} X\right)+2\left\langle B_{i}, X\right\rangle+c_{i}$ is a quadratic matrix function

- SDP relaxation of QMP

$$
\begin{aligned}
& q_{i}(X)=\left\langle\left(\begin{array}{cc}
A_{i} & B_{i} \\
B_{i}^{\top} & c_{i} I_{k} / k
\end{array}\right),\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle=\left\langle M_{i},\left(\begin{array}{cc}
X X^{\top} & X \\
X^{\top} & I_{k}
\end{array}\right)\right\rangle \\
& (\mathbf{Q M P}) \geq \inf _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{cc}
* & * \\
* I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}=(\mathbf{S D P})
\end{aligned}
$$

Structural assumptions on SDP

Structural assumptions on SDP

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\begin{array}{ll}
\left.\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right) \\
I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}
$$

- k-exact SDPs:

[^1]
Structural assumptions on SDP

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\begin{array}{ll}
\left\langle M_{0}, Y\right\rangle: & \left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{cc}
* & * \\
* I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}
$$

- k-exact SDPs:
- Strong duality holds, primal and dual are both solvable

[^2]
Structural assumptions on SDP

- k-exact SDPs:
- Strong duality holds, primal and dual are both solvable
- Exactness: $(\mathbf{Q M P})=(\mathbf{S D P})$, i.e., there exists Y^{*} with $\operatorname{rank}\left(Y^{*}\right)=k$

[^3]
Structural assumptions on SDP

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\begin{array}{ll}
\left.\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right) \\
* I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}
$$

- k-exact SDPs:
- Strong duality holds, primal and dual are both solvable
- Exactness: $(\mathbf{Q M P})=(\mathbf{S D P})$, i.e., there exists Y^{*} with $\operatorname{rank}\left(Y^{*}\right)=k$
- Strict complementarity: there exists γ^{*} with $\operatorname{rank}\left(M\left(\gamma^{*}\right)\right)=n$

[^4]
Structural assumptions on SDP

$$
(\mathbf{S D P})=\inf _{Y \in \mathbb{S}^{n+k}}\left\{\begin{array}{ll}
\left.\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle=0, \forall i \in[m] \\
Y=\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right) \\
* I_{k}
\end{array}\right) \succeq 0
\end{array}\right\}
$$

- k-exact SDPs:
- Strong duality holds, primal and dual are both solvable
- Exactness: $(\mathbf{Q M P})=(\mathbf{S D P})$, i.e., there exists Y^{*} with $\operatorname{rank}\left(Y^{*}\right)=k$
- Strict complementarity: there exists γ^{*} with $\operatorname{rank}\left(M\left(\gamma^{*}\right)\right)=n$
- Have reduced SDP \longrightarrow QMP:

$$
Y^{*}=\left(\begin{array}{cc}
X^{*}\left(X^{*}\right)^{\top} & X^{*} \\
\left(X^{*}\right)^{\top} & I_{k}
\end{array}\right)
$$

[^5](2) How to use k-exactness? ... Strongly convex reformulation
(3) Algorithms
(4) Numerical results
(5) Conclusion

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\}
$$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)
\end{aligned}
$$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{gathered}
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{gathered}
$$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{aligned}
$$

- $q(\gamma, X)=\operatorname{tr}\left(X^{\top} A(\gamma) X\right)+\ldots$

Lagrangian reformulation

- Take the Lagrangian to get minimax problem without constraints

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min }\left\{q_{0}(X): q_{i}(X)=0, \forall i \in[m]\right\} \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} \underbrace{q_{0}(X)+\sum_{i=1}^{m} \gamma_{i} q_{i}(X)}_{=: q(\gamma, X)}
\end{aligned}
$$

- $q(\gamma, X)=\operatorname{tr}\left(X^{\top} A(\gamma) X\right)+\ldots$ where

$$
A(\gamma)=\text { top-left block of } M(\gamma)
$$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Algorithm:

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Algorithm:
- Construct \mathcal{C}

Deriving a strongly convex minimax problem

- Thought experiment: strong duality + strict complementarity implies

$$
\begin{aligned}
X^{*} & =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \sup _{\gamma \in \mathbb{R}^{m}} q(\gamma, X) \\
& =\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } q\left(\gamma^{*}, X\right)
\end{aligned}
$$

- Strict complementarity $\longrightarrow A\left(\gamma^{*}\right) \succ 0 \longrightarrow q\left(\gamma^{*}, X\right)$ is strongly convex

Theorem (Certificate of strict compl. gives strongly conv. reform.)
Suppose $\gamma^{*} \in \mathcal{C} \subseteq \mathbb{R}^{m}$ and $A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$, then

$$
X^{*}=\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Algorithm:

- Construct \mathcal{C}
- Solve strongly convex quadratic matrix minimax problem (QMMP)
(1) What structure? k-exactness

(2) How to use k-exactness?

Strongly convex reformulation

(3) Algorithms

(4) Numerical results
(5) Conclusion

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min _{\max }^{\gamma \in \mathcal{C}}} \boldsymbol{q}(\gamma, X)
$$

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration
- Solve prox-map approximately and bound error in AGD

Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration
- Solve prox-map approximately and bound error in AGD
- \longrightarrow CautiousAGD

Algorithms: CautiousAGD

- How to solve strongly convex QMMP?

$$
\underset{X \in \mathbb{R}^{n \times k}}{\arg \min } \max _{\gamma \in \mathcal{C}} q(\gamma, X)
$$

- Accelerated gradient descent (AGD) method for minimax functions
- Issue: Requires solving a "prox-map" in each iteration
- Solve prox-map approximately and bound error in AGD
- \longrightarrow CautiousAGD

Theorem (CautiousAGD)

CautiousAGD produces iterates X_{t} such that

$$
\max _{\gamma \in \mathcal{C}} q\left(\gamma, X_{t}\right) \leq \min _{X} \max _{\gamma \in \mathcal{C}} q(\gamma, X)+\epsilon
$$

after $O\left(\log \left(\epsilon^{-1}\right)\right)$ iterations, $O\left(m \epsilon^{-1 / 2}\right)$ matrix-vector products per iteration

[^6]
Algorithms: CertSDP

- How to construct \mathcal{C} ?

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough?

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough? Use CautiousAGD!

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough? Use CautiousAGD!
- If $\gamma^{*} \in \mathcal{C}^{(i)}$ then CautiousAGD converges to X^{*} rapidly

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough? Use CautiousAGD!
- If $\gamma^{*} \in \mathcal{C}^{(i)}$ then CautiousAGD converges to X^{*} rapidly
- Monitor convergence!

Algorithms: CertSDP

- How to construct \mathcal{C} ? $\gamma^{*} \in \mathcal{C}, A(\gamma) \succ 0$ for all $\gamma \in \mathcal{C}$
- γ^{*} is optimizer of dual problem, there exist (slow) algorithms $\gamma^{(i)} \rightarrow \gamma^{*}$
- Issue: How do we know close enough?

Use CautiousAGD!

- If $\gamma^{*} \in \mathcal{C}^{(i)}$ then CautiousAGD converges to X^{*} rapidly
- Monitor convergence!
- \longrightarrow CertSDP

CertSDP convergence behavior

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

- Iteration count: $O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

- Iteration count: $O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$
- Iteration complexity: $O\left(m \epsilon^{-1}\right)$ matrix-vector products per iteration

Related: Ding et al. [2021], Yurtsever et al. [2021], Friedlander and Macêdo [2016], Shinde et al. [2021]

CertSDP guarantees

Theorem (CertSDP)

CertSDP produces iterates X_{t} such that

$$
\left\langle M_{0},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle \leq \mathrm{Opt}_{\mathrm{SDP}}+\epsilon \quad\left\|\left(\left\langle M_{i},\left(\begin{array}{cc}
X_{t} X_{t}^{\top} & X_{t} \\
X_{t}^{\top} & I_{k}
\end{array}\right)\right\rangle+d_{i}\right)_{i}\right\|_{2} \leq \epsilon
$$

- Iteration count: $O(1)+O\left(\log \left(\epsilon^{-1}\right)\right)$
- Iteration complexity: $O\left(m \epsilon^{-1}\right)$ matrix-vector products per iteration
- Storage: $O(m+n k)$ storage
(1) What structure? k-exactness
(2) How to use k-exactness?
(3) Algorithms

(4) Numerical results

(5) Conclusion

Numerical results: experimental setup

- Random instances of distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{n \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with exact SDP relaxation

Related: Ding et al. [2021], Yurtsever et al. [2021], Souto et al. [2020], O'Donoghue et al. [2016]

Numerical results: experimental setup

- Random instances of distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{n \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with exact SDP relaxation

- Algorithms: CertSDP, CSSDP, SketchyCGAL*, ProxSDP, SCS

Related: Ding et al. [2021], Yurtsever et al. [2021], Souto et al. [2020], O'Donoghue et al. [2016]

Numerical results: experimental setup

- Random instances of distance-minimization QMP

$$
\inf _{X \in \mathbb{R}^{n \times k}}\left\{\|X\|_{F}^{2}: q_{i}(X)=0, \forall i \in[m]\right\}
$$

with exact SDP relaxation

- Algorithms: CertSDP, CSSDP, SketchyCGAL*, ProxSDP, SCS
- $k=m=10, n=10^{3}, 10^{4}, 10^{5}$

Related: Ding et al. [2021], Yurtsever et al. [2021], Souto et al. [2020], O'Donoghue et al. [2016]

Numerical results: convergence comparisons

Numerical results: convergence comparisons

OCertSDP oCSSDP OSketchyCGALOProxSDP OSCS

Numerical results: convergence comparisons

OCertSDP oCSSDP OSketchyCGALoProxSDP OSCS

Numerical results: memory usage

(1) What structure? k-exactness
(2) How to use k-exactness? Strongly convex reformulation
(3) Algorithms
(4) Numerical results

(5) Conclusion

Conclusion

- Summary: New FOM for k-exact SDPs

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement - Future directions:

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement - Future directions:
- Removing structural assumptions

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement - Future directions:
- Removing structural assumptions
- Predicated on knowing a rank k submatrix of Y^{*} that is correlated with Y^{*}

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement - Future directions:
- Removing structural assumptions
- Predicated on knowing a rank k submatrix of Y^{*} that is correlated with Y^{*}
- "Learn" the subspace and the submatrix as part of the algorithm

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Future directions:
- Removing structural assumptions
- Predicated on knowing a rank k submatrix of Y^{*} that is correlated with Y^{*}
- "Learn" the subspace and the submatrix as part of the algorithm
- Ongoing work

Conclusion

- Summary: New FOM for k-exact SDPs
- Low iteration complexity, cheap iterations, and low storage requirement
- Future directions:
- Removing structural assumptions
- Predicated on knowing a rank k submatrix of Y^{*} that is correlated with Y^{*}
- "Learn" the subspace and the submatrix as part of the algorithm
- Ongoing work

Thank you! Questions?

https://arxiv.org/abs/2206.00224

References I

Alizadeh, F., Haeberly, J. A., and Overton, M. L. (1997). Complementarity and nondegeneracy in semidefinite programming. Math. Program., 77:111-128.
Beck, A. (2007). Quadratic matrix programming. SIAM J. Optim., 17(4):1224-1238.
Beck, A., Drori, Y., and Teboulle, M. (2012). A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett., 40(4):298-302.
Burer, S. and Monteiro, R. D. (2003). A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program., 95:329-357.
Devolder, O., Glineur, F., and Nesterov, Y. (2013). First-order methods with inexact oracle: the strongly convex case. Technical Report 2013016.
Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order methods of smooth convex optimization with inexact oracle. Math. Program., 146(1):37-75.
Ding, L., Yurtsever, A., Cevher, V., Tropp, J. A., and Udell, M. (2021). An optimal-storage approach to semidefinite programming using approximate complementarity. SIAM J. Optim., 31(4):2695-2725.
Friedlander, M. P. and Macêdo, I. (2016). Low-rank spectral optimization via gauge duality. SIAM Journal on Scientific Computing, 38(3):A1616-A1638.

References II

Nesterov, Y. (2005). Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim., 16(1):235-249.
Nesterov, Y. (2018). Lectures on convex optimization. Number 137 in Springer Optim. and its Appl. 2 edition.

O'Donoghue, B., Chu, E., Parikh, N., and Boyd, S. (2016). Conic optimization via operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3):1042-1068.
Shinde, N., Narayanan, V., and Saunderson, J. (2021). Memory-efficient structured convex optimization via extreme point sampling. SIAM Journal on Mathematics of Data Science, 3(3):787-814.
Souto, M., Garcia, J. D., and Veiga, A. (2020). Exploiting low-rank structure in semidefinite programming by approximate operator splitting. Optimization, pages 1-28.
Wang, A. L. and Killnç-Karzan, F. (2020). A geometric view of SDP exactness in QCQPs and its applications. arXiv preprint, 2011.07155.
Yurtsever, A., Tropp, J. A., Fercoq, O., Udell, M., and Cevher, V. (2021). Scalable semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171-200.

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathrm{~S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
(\mathbf{S D P})=\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\}
$$

Related: Burer and Monteiro [2003]

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

Related: Burer and Monteiro [2003]

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\begin{array}{ll}
\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

- Too much symmetry!

The Burer-Monteiro method

$$
(\mathbf{S D P})=\min _{Y \in \mathbb{S}^{n+k}}\left\{\left\langle M_{0}, Y\right\rangle: \begin{array}{l}
\left\langle M_{i}, Y\right\rangle+d_{i}=0, \forall i \in[m] \\
Y \succeq 0
\end{array}\right\}
$$

- Suppose SDP is k-exact

$$
\begin{aligned}
(\mathbf{S D P}) & =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}}\left\{\left\langle\tilde{X}, M_{0} \tilde{X}\right\rangle:\left\langle\tilde{X}, M_{i} \tilde{X}\right\rangle+d_{i}=0, \forall i\right\} \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma \\
& =\min _{\tilde{X} \in \mathbb{R}^{(n+k) \times k}} \sup _{\gamma \in \mathbb{R}^{m}: M(\gamma) \succeq 0}\langle\tilde{X}, M(\gamma) \tilde{X}\rangle+d^{\top} \gamma
\end{aligned}
$$

- Too much symmetry! We set $\tilde{X}=\binom{X}{I_{k}}$

[^0]: Related: Beck [2007], Beck et al. [2012], Wang and Kılınç-Karzan [2020]

[^1]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^2]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^3]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^4]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^5]: Related: Alizadeh et al. [1997], Ding et al. [2021]

[^6]: Related: Nesterov [2005], Devolder et al. [2013, 2014], Nesterov [2018]

