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Sparse recovery setup

• Recovery task: Recover x♯ ∈ Rn from A ∈ Rm×n, b = A(x♯)

• Suppose A entrywise i.i.d. N(0, 1/m2)∣∣∣supp(x♯)∣∣∣ ≤ k ≪ n m ≍ k log(n)

• Conceptual approach: min
x∈Rn

{|supp(x)| : Ax = b}

• Convex optimization approach: In this regime, x♯ is unique minimizer of

(Constrained) min
x∈Rn

{∥x∥1 : Ax = b}

Related: Candes and Tao [2005], Recht et al. [2010], Candès et al. [2013]
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Sparse recovery questions

A ∈ Rm×n

b = A(x♯)
Opt. alg. for (Constrained)x♯ (A, b) x̃

• If no noise in sensing process and no error in optimization algorithm, x̃ = x♯

• Questions:

• What if the algorithm receives b̃ = A(x♯) + δ?
• What if algorithm only produces a ϵ-optimal and ϵ-feasible solution?
• What algorithm to apply to (Constrained) / other convex problem?
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Penalty formulation and sharpness

• Penalty formulation: let r ≍
√
k and define

F (x) := ∥x∥1 + r ∥Ax− b∥1

A ∈ Rm×n

b = A(x♯)
Opt. alg. for Fx♯ (A, b) x̃

Theorem (Structural)

F is µ-sharp in the ℓ1 norm with µ ≍ 1

F (x)− F (x♯) ≥ µ
∥∥x− x♯

∥∥
1
, ∀x

and L-Lipschitz in the ℓ1 norm with L ≍
√
k

|F (x)− F (y)| ≤ L ∥x− y∥1 , ∀x, y.

• Rearrange proof that x♯ optimizes (Constrained) with larger RIP constant
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Robustness of recovery procedure

A ∈ Rm×n

b̃ = A(x♯) + δ
Opt. alg. for F̃x♯ (A, b̃) x̃

Corollary (Robustness)

Let x̃ be an ϵ minimizer of F̃ .
• (to small noise) x̃ satisfies

∥∥x̃− x♯
∥∥
1
≲ ∥δ∥1 + ϵ

• (to sparse noise) If |supp(δ)|
m ≲ 1/

√
k, then

∥∥x̃− x♯
∥∥
1
≲ ϵ
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Algorithms for minimizing F

A ∈ Rm×n

b = A(x♯)
RMD for Fx♯ (A, b) x̃

Corollary (Algorithms)

Restarted mirror descent (RMD) algorithm produces an ϵ-optimal solution to F in

O
(
k log(n) log(ϵ−1)

)
iterations of the mirror descent update.

Related: Polyak [1969], Roulet et al. [2015], Roulet and d’Aspremont [2017], Yang and Lin [2018], Renegar
and Grimmer [2022]
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Algorithms for minimizing F

• Suppose we run mirror descent from x0 for t iterations with step size η and
mirror map

h(x) ≈ 1

2
∥x− x0∥21

• Mirror descent guarantee: output y

F (y)− F (x♯) ≤ L2η lnn

2
+

Dh(x
♯||x0)

2ηt
≈ L2η lnn

2
+

∥∥x♯ − x0

∥∥2
1

4ηt

• Optimizing in η and applying sharpness −→

F (y)− F (x♯) ≤ 1

2

(
F (x0)− F (x♯)

)
after ≍ L2

µ2 lnn iterations

Related: Polyak [1969], Roulet et al. [2015], Roulet and d’Aspremont [2017], Yang and Lin [2018], Renegar
and Grimmer [2022]
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Conclusion

• Sparse recovery

• Structural: ℓ1 sharp and Lipschitz penalty formulation
• Robustness: to observation error and optimization error
• Algorithms: Restarted Mirror Descent converges linearly

• Similar guarantees for phase retrieval, low-rank matrix sensing, covariance
estimation

Thank you! Questions?

https://arxiv.org/abs/2307.06873
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