Exactness in SDP relaxations of QCQPs *now with 50% more pictures!

Alex L. Wang , CMU Theory Lunch - Speaking Skills Talk

Supported in part by NSF grant CMMI 1454548 and ONR grant N00014-19-1-2321

2 SDP relaxations and convex Lagrange multipliers

3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

6 Conclusion

A. L. Wang

1 Introduction: QCQPs and SDPs

2 SDP relaxations and convex Lagrange multipliers

3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

6 Conclusion

Quadratically constrained quadratic programs (QCQPs)

- Family of highly expressive optimization problems
- Computer science MAX-CUT, MAX-CLIQUE
- Operations research
 Facility location, production planning
- Engineering

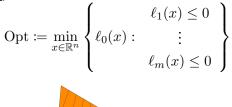
Pooling problem, truss design problem

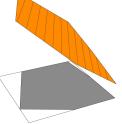
More generally

Binary programming, polynomial programming

From linear programs to quadratic programs

- Linear programs (LPs)
- $\ell_0, \ell_1, \dots, \ell_m : \mathbb{R}^n \to \mathbb{R}$ linear functions $\ell_i(x) = b_i^\top x + c_i$
- Want to find



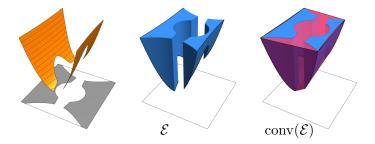


From linear programs to quadratic programs

- Quadratically constrained quadratic programs (QCQPs)
- $q_0, q_1, \dots, q_m : \mathbb{R}^n \to \mathbb{R}$ quadratic functions $q_i(x) = \frac{x^\top A_i x}{x} + 2b_i^\top x + c_i$
 - Want to find $Opt \coloneqq \min_{x \in \mathbb{R}^n} \left\{ \begin{array}{c} q_1(x) \le 0 \\ q_0(x) : & \vdots \\ q_m(x) \le 0 \end{array} \right\}$

The QCQP Epigraph

$$\begin{aligned} \operatorname{Opt} &= \min_{x \in \mathbb{R}^n} \left\{ q_0(x) : q_i(x) \le 0, \, \forall i \in [m] \right\} \\ &= \min_{x,t} \left\{ t : \begin{array}{c} q_0(x) \le t \\ q_i(x) \le 0, \, \forall i \in [m] \end{array} \right\} =: \min_{x,t} \left\{ t : \, (x,t) \in \mathcal{E} \right\} \\ &= \min_{x,t} \left\{ t : \, (x,t) \in \operatorname{conv}(\mathcal{E}) \right\} \end{aligned}$$



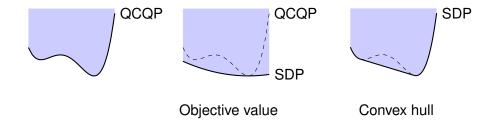
Convex relaxations

- QCQPs are NP-hard in general ⁽²⁾
- One issue with QCQPs is nonconvexity!
- Will look for a convex relaxation

SDP relaxation can be solved efficiently

Convex relaxations

- Properties you might want for a convex relaxation
- Types of "exactness"



• Q: When do these properties hold?

The standard SDP relaxation of QCQP

Standard semidefinite program (SDP) relaxation

$$\begin{aligned} \operatorname{Opt} &= \min_{x} \left\{ q_{0}(x): \quad q_{i}(x) \leq 0, \forall i \right\} \\ &= \min_{x} \left\{ x^{\top} A_{0} x + 2b_{0}^{\top} x + c_{0}: \quad x^{\top} A_{i} x + 2b_{i}^{\top} x + c_{i} \leq 0, \forall i \right\} \\ &= \min_{x} \left\{ \langle A_{0}, Y \rangle + 2b_{0}^{\top} x + c_{0}: \quad \frac{Y = xx^{\top}}{\langle A_{i}, Y \rangle + 2b_{i}^{\top} x + c_{i} \leq 0, \forall i} \right\} \\ &\geq \min_{x} \left\{ \langle A_{0}, Y \rangle + 2b_{0}^{\top} x + c_{0}: \quad \frac{\exists Y \succeq xx^{\top}}{\langle A_{i}, Y \rangle + 2b_{i}^{\top} x + c_{i} \leq 0, \forall i} \right\} \\ &=: \operatorname{Opt}_{\mathsf{SDP}} \end{aligned}$$

SDP epigraph

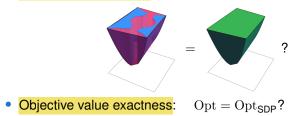
$$Opt_{\mathsf{SDP}} = \min_{x} \left\{ \langle A_0, Y \rangle + 2b_0^\top x + c_0 : \begin{array}{l} \exists Y \succeq xx^\top \\ \langle A_i, Y \rangle + 2b_i^\top x + c_i \le 0, \, \forall i \end{array} \right.$$
$$= \min_{x, t} \left\{ t: \begin{array}{l} \exists Y \succeq xx^\top \\ \langle A_0, Y \rangle + 2b_0^\top x + c_0 \le t \\ \langle A_i, Y \rangle + 2b_i^\top x + c_i \le 0, \, \forall i \end{array} \right\}$$

• Let \mathcal{E}_{SDP} denote the SDP epigraph

Recap

- QCQPs are highly expressive but NP-hard in general
- Solve SDP relaxation instead
- Q: What are sufficient conditions for

• Convex hull exactness: $\operatorname{conv}(\mathcal{E}) = \mathcal{E}_{SDP}$?



Outline

• Main result for today:

If the quadratic forms "interact nicely" and each have "large amounts of symmetry", then convex hull exactness holds

- The set of convex Lagrange multipliers
- The quadratic eigenvalue multiplicity
- Example application: robust least squares
- Additional work in this area
- Future directions

[W and Kılınç-Karzan 19]

A. L. Wang

Introduction: QCQPs and SDPs

2 SDP relaxations and convex Lagrange multipliers

3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

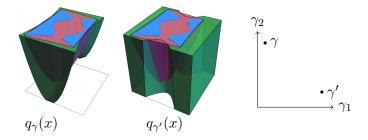
6 Conclusion

Aggregation

• For $\gamma \in \mathbb{R}^m_+$, define

$$q_{\gamma}(x) \coloneqq q_0(x) + \sum_{i=1}^m \gamma_i q_i(x)$$

• For all $\gamma \in \mathbb{R}^m_+$, $(x,t) \in \mathcal{E} \implies q_{\gamma}(x) \leq t$



Aggregation

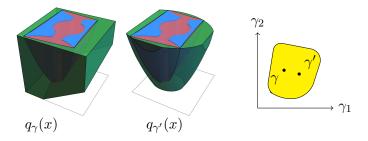
• For $\gamma \in \mathbb{R}^m_+$, define

$$q_{\gamma}(x) \coloneqq q_0(x) + \sum_{i=1}^m \gamma_i q_i(x)$$

Define

$$\Gamma \coloneqq \left\{ \gamma \in \mathbb{R}^m_+ : q_\gamma(x) \text{ is convex} \right\}$$

• For all $\gamma \in \Gamma$, $(x,t) \in \operatorname{conv}(\mathcal{E}) \implies q_{\gamma}(x) \leq t$

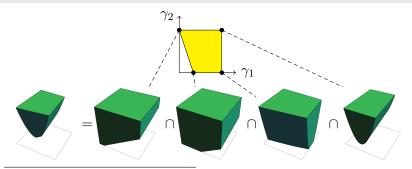


Rewriting the SDP in terms of Γ

Lemma

Suppose primal feasibility and dual strict feasibility, then

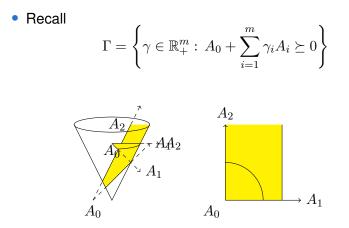
$$\mathcal{E}_{\mathsf{SDP}} = \left\{ (x, t) : \max_{\gamma \in \Gamma} q_{\gamma}(x) \le t \right\}$$



Related: [Fujie and Kojima 97]

A. L. Wang

What does Γ look like?



• When A_i s diagonal $\implies \Gamma$ is polyhedral

Introduction: QCQPs and SDPs

2 SDP relaxations and convex Lagrange multipliers

3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

6 Conclusion

Quadratic eigenvalue multiplicity

Definition

Let $1 \le k \le n$ be the largest integer such that for each i = 0, ..., m, the matrix $A_i \in \mathbb{S}^n$ has the following block form

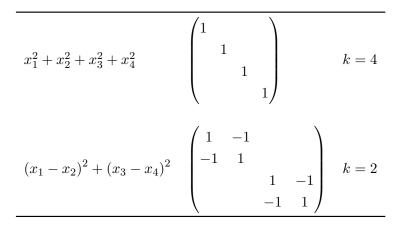
$$A_i = \hat{A}_i \otimes I_k = \begin{pmatrix} \hat{A}_i & & \\ & \hat{A}_i & \\ & & \ddots & \\ & & & \hat{A}_i \end{pmatrix}$$

where $\hat{A}_i \in \mathbb{S}^{n/k}$

Quadratic eigenvalue multiplicity

•
$$A_i = \hat{A}_i \otimes I_k$$

• Suppose
$$n = 4$$
, i.e. $x \in \mathbb{R}^4$



Introduction: QCQPs and SDPs

2 SDP relaxations and convex Lagrange multipliers

3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

6 Conclusion

Some results

Corollary

Suppose primal feasibility and dual strict feasibility. If Γ is polyhedral and

$$k \ge \min(m, |\{b_i \ne 0\}_{i=1}^m| + 1),$$

then

$$\operatorname{Denv}(\mathcal{E}) = \mathcal{E}_{\mathsf{SDP}}$$
 and $\operatorname{Opt} = \operatorname{Opt}_{\mathsf{SDP}}$.

• m = 1

co

• A_i s diagonal and $b_1 = b_2 = \cdots = b_m = 0$

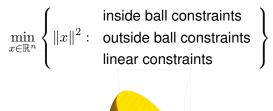
•
$$A_i = \alpha_i I_n$$
 for all i and $n \ge m$

Related: [Yakubovich 79], [Burer and Ye 19]

A. L. Wang

Example: Swiss cheese

Minimizing distance to a piece of Swiss cheese



- inside ball $\mapsto I$, outside ball $\mapsto -I$, linear constraints $\mapsto 0$
- If nonempty and n ≥ m, then the standard SDP relaxation is tight for this QCQP

Some results

Corollary

Suppose primal feasibility and dual strict feasibility.

- If $k \ge m + 2$, then $\operatorname{conv}(\mathcal{E}) = \mathcal{E}_{\mathsf{SDP}}$
- If $k \ge m + 1$, then $Opt = Opt_{SDP}$

Related: [Beck 07]

A. L. Wang

Introduction: QCQPs and SDPs

2 SDP relaxations and convex Lagrange multipliers

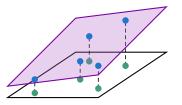
3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

6 Conclusion

Least squares



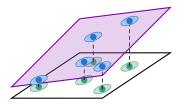
Input, output pairs

$$Y^* = \begin{pmatrix} (y_1^*)^\top \\ \vdots \\ (y_n^*)^\top \end{pmatrix} \in \mathbb{R}^{n \times k}, \qquad z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{R}^n$$

• Want $Y^* \ell \approx z$

$$\min_{\ell \in \mathbb{R}^k} \|Y^*\ell - z\|_2^2$$

Robust least squares



- Empirical measurement \hat{Y} and uncertainty \mathcal{U} , i.e., $Y^* \in \hat{Y} + \mathcal{U}$
- Want to minimize

$$\min_{\ell \in \mathbb{R}^k} \max_{X \in \mathcal{U}} \left\| (\hat{Y} + X)\ell - z \right\|_2^2$$

• When \mathcal{U} is defined by quadratics, can apply our theory!

Robust Least Squares

• Suppose

$$\mathcal{U} = \left\{ X \in \mathbb{R}^{n \times k} : \|L_i X\|_F^2 \le c_i, \, \forall i \in [m] \right\}$$

Consider

$$\max_{X \in \mathbb{R}^{n \times k}} \left\{ \left\| (\hat{Y} + X)\ell - z \right\|_{2}^{2} \colon X \in \mathcal{U} \right\}$$

- Write as a QCQP in the variable $x \in \mathbb{R}^{nk}$
- Quadratic forms

$$L_i^{\top} L_i \otimes I_k$$

- $k \ge m + 2$ implies convex hull exactness
- $k \ge m + 1$ implies objective value exactness

Introduction: QCQPs and SDPs

2 SDP relaxations and convex Lagrange multipliers

3 Symmetries in quadratic forms

4 Some results

5 Application: robust least squares

6 Conclusion

Recap, additional work, future work

- QCQPs are NP-hard
- Analyzed SDP relaxation
 - Convex Lagrange multipliers,
 - "Amount of symmetry" k
- Q: When is the SDP relaxation exact?

	Polyhedral Γ	General Γ
	$k \ge \min(m, \{b_i \ne 0\}_{i=1}^m +1)$	
Obj. val.	$k \ge \min\left(m, \left \{b_i \neq 0\}_{i=1}^m\right + 1\right)$	$k \geq m+1$

- Current and future work:
 - Is the polyhedral case fundamentally different from the general case?
 - Conditions that only depend on the constraints?
 - Can approximation results be explained in this framework?

Related: [Argue, Kılınç-Karzan, and W 20]

Thank you. Questions?

Slides cs.cmu.edu/~alw1

Full version A. L. Wang and F. Kılınç-Karzan. "On the tightness of SDP relaxations of QCQPs". In: *arXiv preprint* arXiv:1911.09195 (2019)

References I

- C.J. Argue, F. Kılınç-Karzan, and A. L. Wang. "Necessary and sufficient conditions for rank-one generated cones". In: *arXiv preprint* arXiv:2007.07433 (2020).
- A. Beck. "Quadratic matrix programming". In: *SIAM J. Optim.* 17.4 (2007), pp. 1224–1238.
- S. Burer and Y. Ye. "Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs". In: *Math. Program.* 181 (2019), pp. 1–17.
- T. Fujie and M. Kojima. "Semidefinite programming relaxation for nonconvex quadratic programs". In: *J. Global Optim.* 10.4 (1997), pp. 367–380.
- V. A. Yakubovich. "S-procedure in nolinear control theory". In: *Vestnik Leningrad Univ. Math.* (1971), pp. 73–93.