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Quadratically constrained quadratic programs
(QCQPs)

• Family of highly expressive optimization problems
• Computer science

MAX-CUT, MAX-CLIQUE

• Operations research
Facility location, production planning

• Engineering
Pooling problem, truss design problem

• More generally
Binary programming, polynomial programming
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From linear programs to quadratic programs
• Linear programs (LPs)
• `0, `1, . . . , `m : Rn → R linear functions

`i(x) = b>i x+ ci

• Want to find

Opt := min
x∈Rn

`0(x) :

`1(x) ≤ 0
...

`m(x) ≤ 0
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From linear programs to quadratic programs
• Quadratically constrained quadratic programs (QCQPs)
• q0, q1, . . . , qm : Rn → R quadratic functions

qi(x) = x>Aix + 2b>i x+ ci

• Want to find

Opt := min
x∈Rn

q0(x) :

q1(x) ≤ 0
...

qm(x) ≤ 0
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The QCQP Epigraph

Opt = min
x∈Rn

{q0(x) : qi(x) ≤ 0, ∀i ∈ [m]}

= min
x,t

{
t :

q0(x) ≤ t
qi(x) ≤ 0, ∀i ∈ [m]

}
=: min

x,t

{
t : (x, t) ∈ E

}
= min

x,t
{t : (x, t) ∈ conv(E)}

E conv(E)
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Convex relaxations

• QCQPs are NP-hard in general /
• One issue with QCQPs is nonconvexity!
• Will look for a convex relaxation

QCQP

x∗
SDP

QCQP

x̂

• SDP relaxation can be solved efficiently
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Convex relaxations

• Properties you might want for a convex relaxation
• Types of “exactness”

QCQP

SDP

QCQP SDP

Objective value Convex hull

• Q: When do these properties hold?
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The standard SDP relaxation of QCQP

Standard semidefinite program (SDP) relaxation

Opt = min
x

{
q0(x) : qi(x) ≤ 0, ∀i

}
= min

x

{
x>A0x+ 2b>0 x+ c0 : x>Aix+ 2b>i x+ ci ≤ 0, ∀i

}
= min

x

{
〈A0, Y 〉+ 2b>0 x+ c0 :

Y = xx>

〈Ai, Y 〉+ 2b>i x+ ci ≤ 0, ∀i

}

≥ min
x

{
〈A0, Y 〉+ 2b>0 x+ c0 :

∃Y � xx>

〈Ai, Y 〉+ 2b>i x+ ci ≤ 0, ∀i

}
=: OptSDP

A. L. Wang Exactness in SDP relaxations of QCQPs 9 / 26



SDP epigraph

OptSDP = min
x

{
〈A0, Y 〉+ 2b>0 x+ c0 :

∃Y � xx>

〈Ai, Y 〉+ 2b>i x+ ci ≤ 0, ∀i

}

= min
x, t

t :

∃Y � xx>

〈A0, Y 〉+ 2b>0 x+ c0 ≤ t
〈Ai, Y 〉+ 2b>i x+ ci ≤ 0, ∀i


• Let ESDP denote the SDP epigraph
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Recap

• QCQPs are highly expressive but NP-hard in general
• Solve SDP relaxation instead
• Q: What are sufficient conditions for

• Convex hull exactness: conv(E) = ESDP?

= ?

• Objective value exactness: Opt = OptSDP?

A. L. Wang Exactness in SDP relaxations of QCQPs 11 / 26



Outline

• Main result for today:

If the quadratic forms “interact nicely” and each have “large
amounts of symmetry”, then convex hull exactness holds

• The set of convex Lagrange multipliers
• The quadratic eigenvalue multiplicity

• Example application: robust least squares
• Additional work in this area
• Future directions

[W and Kılınç-Karzan 19]
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Aggregation

• For γ ∈ Rm+ , define

qγ(x) := q0(x) +

m∑
i=1

γiqi(x)

• For all γ ∈ Rm+ , (x, t) ∈ E =⇒ qγ(x) ≤ t

γ

γ′
γ1

γ2

qγ(x) qγ′(x)
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Aggregation
• For γ ∈ Rm+ , define

qγ(x) := q0(x) +

m∑
i=1

γiqi(x)

• Define
Γ :=

{
γ ∈ Rm+ : qγ(x) is convex

}
• For all γ ∈ Γ, (x, t) ∈ conv(E) =⇒ qγ(x) ≤ t

γ1

γ2

γ
γ′

qγ(x) qγ′(x)
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Rewriting the SDP in terms of Γ

Lemma
Suppose primal feasibility and dual strict feasibility, then

ESDP =

{
(x, t) : max

γ∈Γ
qγ(x) ≤ t

}

γ1

γ2

= ∩ ∩ ∩

Related: [Fujie and Kojima 97]
A. L. Wang Exactness in SDP relaxations of QCQPs 15 / 26



What does Γ look like?

• Recall

Γ =

{
γ ∈ Rm+ : A0 +

m∑
i=1

γiAi � 0

}

A0

A2

A1A0

A1

A2

A0

A1

A2

• When Ais diagonal =⇒ Γ is polyhedral
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Quadratic eigenvalue multiplicity

Definition
Let 1 ≤ k ≤ n be the largest integer such that for each
i = 0, . . . ,m, the matrix Ai ∈ Sn has the following block form

Ai = Âi ⊗ Ik =


Âi

Âi
. . .

Âi


where Âi ∈ Sn/k
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Quadratic eigenvalue multiplicity

• Ai = Âi ⊗ Ik
• Suppose n = 4, i.e. x ∈ R4

x2
1 + x2

2 + x2
3 + x2

4


1

1

1

1

 k = 4

(x1 − x2)2 + (x3 − x4)2


1 −1

−1 1

1 −1

−1 1

 k = 2
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Some results

Corollary

Suppose primal feasibility and dual strict feasibility. If Γ is
polyhedral and

k ≥ min (m, |{bi 6= 0}mi=1|+ 1) ,

then conv(E) = ESDP and Opt = OptSDP .

• m = 1

• Ais diagonal and b1 = b2 = · · · = bm = 0

• Ai = αiIn for all i and n ≥ m

Related: [Yakubovich 79], [Burer and Ye 19]
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Example: Swiss cheese

• Minimizing distance to a piece of Swiss cheese

min
x∈Rn

‖x‖2 :

inside ball constraints
outside ball constraints
linear constraints



• inside ball 7→ I, outside ball 7→ −I, linear constraints 7→ 0

• If nonempty and n ≥ m, then the standard SDP relaxation
is tight for this QCQP
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Some results

Corollary

Suppose primal feasibility and dual strict feasibility.
• If k ≥ m+ 2, then conv(E) = ESDP

• If k ≥ m+ 1, then Opt = OptSDP

Related: [Beck 07]
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Least squares

• Input, output pairs

Y ∗ =


(y∗1)>

...
(y∗n)>

 ∈ Rn×k, z =


z1

...
zn

 ∈ Rn

• Want Y ∗` ≈ z

min
`∈Rk
‖Y ∗`− z‖22
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Robust least squares

• Empirical measurement Ŷ and uncertainty U , i.e.,
Y ∗ ∈ Ŷ + U

• Want to minimize

min
`∈Rk

max
X∈U

∥∥∥(Ŷ +X)`− z
∥∥∥2

2

• When U is defined by quadratics, can apply our theory!
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Robust Least Squares

• Suppose

U =
{
X ∈ Rn×k : ‖LiX‖2F ≤ ci, ∀i ∈ [m]

}
• Consider

max
X∈Rn×k

{∥∥∥(Ŷ +X)`− z
∥∥∥2

2
: X ∈ U

}
• Write as a QCQP in the variable x ∈ Rnk

• Quadratic forms
L>i Li ⊗ Ik

• k ≥ m+ 2 implies convex hull exactness
• k ≥ m+ 1 implies objective value exactness
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Recap, additional work, future work
• QCQPs are NP-hard
• Analyzed SDP relaxation

• Convex Lagrange multipliers,
• “Amount of symmetry” k

• Q: When is the SDP relaxation exact?

Polyhedral Γ General Γ

Cvx. hull k ≥ min
(
m,

∣∣{bi 6= 0}mi=1

∣∣ + 1
)

k ≥ m + 2

Obj. val. k ≥ min
(
m,

∣∣{bi 6= 0}mi=1

∣∣ + 1
)

k ≥ m + 1

• Current and future work:
• Is the polyhedral case fundamentally different from the

general case?
• Conditions that only depend on the constraints?
• Can approximation results be explained in this framework?

Related: [Argue, Kılınç-Karzan, and W 20]
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Thank you. Questions?

Slides
cs.cmu.edu/~alw1

Full version
A. L. Wang and F. Kılınç-Karzan. “On the tightness of SDP
relaxations of QCQPs”. In: arXiv preprint arXiv:1911.09195
(2019)
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