## Exactness in SDP relaxations of QCQPs now with $50 \%$ more pictures!

Alex L. Wang , PSE Seminar, Oct. 20


Supported in part by NSF grant CMMI 1454548 and ONR grant N00014-19-1-2321

## (1) Introduction: QCQPs and SDPs

(2) SDP relaxations and convex Lagrange multipliers
(3) Symmetries in quadratic forms
(4) Some results

5 Application: robust least squares

6 Conclusion

## (1) Introduction: QCQPs and SDPs

2) SDP relaxations and convex Lagrange multipliers
(3) Symmetries in quadratic forms
(4) Some results
(5) Application: robust least squares
(6) Conclusion

## Quadratically constrained quadratic programs (QCQPs)

- Family of highly expressive optimization problems
- Computer science
max-Cut, MAX-CLIQUE
- Operations research

Facility location, production planning

- Engineering

Pooling problem, truss design problem

- More generally

Binary programming, polynomial programming

## From linear programs to quadratic programs

- Linear programs (LPs)
- $\ell_{0}, \ell_{1}, \ldots, \ell_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ linear functions

$$
\ell_{i}(x)=b_{i}^{\top} x+c_{i}
$$

- Want to find

$$
\text { Opt }:=\min _{x \in \mathbb{R}^{n}}\left\{\begin{array}{cc} 
& \ell_{1}(x) \leq 0 \\
\ell_{0}(x): & \vdots \\
& \ell_{m}(x) \leq 0
\end{array}\right\}
$$

## From linear programs to quadratic programs

- Quadratically constrained quadratic programs (QCQPs)
- $q_{0}, q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
$$

- Want to find

$$
\text { Opt }:=\min _{x \in \mathbb{R}^{n}}\left\{\begin{array}{cc}
q_{1}(x) & \leq 0 \\
q_{0}(x): & \vdots \\
& q_{m}(x) \leq 0
\end{array}\right\}
$$

## The QCQP Epigraph

$$
\begin{aligned}
\text { Opt } & =\min _{x \in \mathbb{R}^{n}}\left\{q_{0}(x): q_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\min _{x, t}\left\{t: \begin{array}{l}
q_{0}(x) \leq t \\
q_{i}(x) \leq 0, \forall i \in[m]
\end{array}\right\}=: \min _{x, t}\{t:(x, t) \in \mathcal{E}\} \\
& =\min _{x, t}\{t:(x, t) \in \operatorname{conv}(\mathcal{E})\}
\end{aligned}
$$

## Convex relaxations

- QCQPs are NP-hard in general $;$
- One issue with QCQPs is nonconvexity!
- Will look for a convex relaxation

- SDP relaxation can be solved efficiently


## Convex relaxations

- Properties you might want for a convex relaxation
- Types of "exactness"


Objective value
Convex hull

- Q: When do these properties hold?


## The standard SDP relaxation of QCQP

Standard semidefinite program (SDP) relaxation

$$
\begin{aligned}
\text { Opt } & =\min _{x}\left\{\begin{array}{ll}
q_{0}(x): \quad q_{i}(x) \leq 0, \forall i
\end{array}\right\} \\
& =\min _{x}\left\{\begin{array}{ll}
x^{\top} A_{0} x+2 b_{0}^{\top} x+c_{0}: & x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i
\end{array}\right\} \\
& =\min _{x}\left\{\begin{array}{ll}
\left.\left\langle A_{0}, Y\right\rangle+2 b_{0}^{\top} x+c_{0}: \begin{array}{l}
Y=x x^{\top} \\
\\
\left\langle A_{i}, Y\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i
\end{array}\right\} \\
& \geq \min _{x} \begin{cases}\left.\left\langle A_{0}, Y\right\rangle+2 b_{0}^{\top} x+c_{0}: \begin{array}{l}
\exists Y \succeq x x^{\top} \\
\left\langle A_{i}, Y\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i
\end{array}\right\} \\
& =: \operatorname{Opt}_{\text {SDP }}\end{cases}
\end{array} \begin{array}{l}
\end{array}\right\}
\end{aligned}
$$

## SDP epigraph

$$
\begin{aligned}
& \text { Opt }_{\text {SDP }}=\min _{x}\left\{\left\langle A_{0}, Y\right\rangle+2 b_{0}^{\top} x+c_{0}: \begin{array}{l}
\exists Y \succeq x x^{\top} \\
\\
\left\langle A_{i}, Y\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i
\end{array}\right\} \\
& =\min _{x, t}\left\{t: \begin{array}{l}
\exists Y \succeq x x^{\top} \\
\left\langle A_{0}, Y\right\rangle+2 b_{0}^{\top} x+c_{0} \leq t \\
\left\langle A_{i}, Y\right\rangle+2 b_{i}^{\top} x+c_{i} \leq 0, \forall i
\end{array}\right\}
\end{aligned}
$$

- Let $\mathcal{E}_{\text {SDP }}$ denote the SDP epigraph



## Recap

- QCQPs are highly expressive but NP-hard in general
- Solve SDP relaxation instead
- Q: What are sufficient conditions for
- Convex hull exactness: $\operatorname{conv}(\mathcal{E})=\mathcal{E}_{\text {SDP }}$ ?

- Objective value exactness: $\mathrm{Opt}=\mathrm{Opt}_{\mathrm{SDP}}$ ?


## Outline

- Main result for today:

If the quadratic forms "interact nicely" and each have "large amounts of symmetry", then convex hull exactness holds

- The set of convex Lagrange multipliers
- The quadratic eigenvalue multiplicity
- Example application: robust least squares
- Additional work in this area
- Future directions
- Sneak peek of (very) recent work
[W and Kilınç-Karzan 19]


## (1) Introduction: QCQPs and SDPs

## (2) SDP relaxations and convex Lagrange multipliers

(3) Symmetries in quadratic forms
(4) Some results
(5) Application: robust least squares
(6) Conclusion

## Aggregation

- For $\gamma \in \mathbb{R}_{+}^{m}$, define

$$
q_{\gamma}(x):=q_{0}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x)
$$

- For all $\gamma \in \mathbb{R}_{+}^{m}, \quad(x, t) \in \mathcal{E} \Longrightarrow q_{\gamma}(x) \leq t$

$q_{\gamma}(x)$


## Aggregation

- For $\gamma \in \mathbb{R}_{+}^{m}$, define

$$
q_{\gamma}(x):=q_{0}(x)+\sum_{i=1}^{m} \gamma_{i} q_{i}(x)
$$

- Define

$$
\Gamma:=\left\{\gamma \in \mathbb{R}_{+}^{m}: q_{\gamma}(x) \text { is convex }\right\}
$$

- For all $\gamma \in \Gamma, \quad(x, t) \in \operatorname{conv}(\mathcal{E}) \Longrightarrow q_{\gamma}(x) \leq t$


$$
q_{\gamma^{\prime}}(x)
$$



## Rewriting the SDP in terms of $\Gamma$

## Lemma

Suppose primal feasibility and dual strict feasibility, then

$$
\mathcal{E}_{\mathrm{SDP}}=\left\{(x, t): \max _{\gamma \in \Gamma} q_{\gamma}(x) \leq t\right\}
$$



Related: [Fujie and Kojima 97]

## What does $\Gamma$ look like?

- Recall

$$
\Gamma=\left\{\gamma \in \mathbb{R}_{+}^{m}: A_{0}+\sum_{i=1}^{m} \gamma_{i} A_{i} \succeq 0\right\}
$$



- When $A_{i}$ s diagonal $\Longrightarrow \Gamma$ is polyhedral


## (1) Introduction: QCQPs and SDPs

## 2) SDP relaxations and convex Lagrange multipliers

(3) Symmetries in quadratic forms
(4) Some results
(5) Application: robust least squares
(6) Conclusion

## Quadratic eigenvalue multiplicity

## Definition

Let $1 \leq k \leq n$ be the largest integer such that for each $i=0, \ldots, m$, the matrix $A_{i} \in \mathbb{S}^{n}$ has the following block form

$$
A_{i}=\hat{A}_{i} \otimes I_{k}=\left(\begin{array}{cccc}
\hat{A}_{i} & & & \\
& \hat{A}_{i} & & \\
& & \ddots & \\
& & & \hat{A}_{i}
\end{array}\right)
$$

where $\hat{A}_{i} \in \mathbb{S}^{n / k}$

## Quadratic eigenvalue multiplicity

- $A_{i}=\hat{A}_{i} \otimes I_{k}$
- Suppose $n=4$, i.e. $x \in \mathbb{R}^{4}$



## (1) Introduction: QCQPs and SDPs

2) SDP relaxations and convex Lagrange multipliers
(3) Symmetries in quadratic forms
(4) Some results
(5) Application: robust least squares
(6) Conclusion

## Some results

## Corollary

Suppose primal feasibility and dual strict feasibility. If $\Gamma$ is polyhedral and

$$
k \geq \min \left(m,\left|\left\{b_{i} \neq 0\right\}_{i=1}^{m}\right|+1\right)
$$

then

$$
\operatorname{conv}(\mathcal{E})=\mathcal{E}_{\text {SDP }} \quad \text { and } \quad \text { Opt }=\mathrm{Opt}_{\mathrm{SDP}}
$$

- $m=1$
- $A_{i}$ s diagonal and $b_{1}=b_{2}=\cdots=b_{m}=0$
- $A_{i}=\alpha_{i} I_{n}$ for all $i$ and $n \geq m$

Related: [Yakubovich 79], [Burer and Ye 19]

## Example: Swiss cheese

- Minimizing distance to a piece of Swiss cheese

$$
\min _{x \in \mathbb{R}^{n}}\left\{\begin{array}{ll}
\|x\|^{2}: & \text { inside ball constraints } \\
\text { outside ball constraints } \\
\text { linear constraints }
\end{array}\right\}
$$



- inside ball $\mapsto I$, outside ball $\mapsto-I$, linear constraints $\mapsto 0$
- If nonempty and $n \geq m$, then the standard SDP relaxation is tight for this QCQP


## Some results

## Corollary

Suppose primal feasibility and dual strict feasibility.

- If $k \geq m+2$, then $\operatorname{conv}(\mathcal{E})=\mathcal{E}_{\text {SDP }}$
- If $k \geq m+1$, then Opt $=$ Opt $_{\text {SDP }}$

Related: [Beck 07]

## (1) Introduction: QCQPs and SDPs

2) SDP relaxations and convex Lagrange multipliers
(3) Symmetries in quadratic forms
(4) Some results
(5) Application: robust least squares
(6) Conclusion

## Least squares



- Input, output pairs

$$
Y^{*}=\left(\begin{array}{c}
\left(y_{1}^{*}\right)^{\top} \\
\vdots \\
\left(y_{n}^{*}\right)^{\top}
\end{array}\right) \in \mathbb{R}^{n \times k}, \quad z=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

- Want $Y^{*} \ell \approx z$

$$
\min _{\ell \in \mathbb{R}^{k}}\left\|Y^{*} \ell-z\right\|_{2}^{2}
$$

## Robust least squares



- Empirical measurement $\hat{Y}$ and uncertainty $\mathcal{U}$, i.e.,

$$
Y^{*} \in \hat{Y}+\mathcal{U}
$$

- Want to minimize

$$
\min _{\ell \in \mathbb{R}^{k}} \max _{X \in \mathcal{U}}\|(\hat{Y}+X) \ell-z\|_{2}^{2}
$$

- When $\mathcal{U}$ is defined by quadratics, can apply our theory!


## Robust Least Squares

- Suppose

$$
\mathcal{U}=\left\{X \in \mathbb{R}^{n \times k}:\left\|L_{i} X\right\|_{F}^{2} \leq c_{i}, \forall i \in[m]\right\}
$$

- Consider

$$
\max _{X \in \mathbb{R}^{n \times k}}\left\{\|(\hat{Y}+X) \ell-z\|_{2}^{2}: X \in \mathcal{U}\right\}
$$

- Write as a QCQP in the variable $x \in \mathbb{R}^{n k}$
- Quadratic forms

$$
L_{i}^{\top} L_{i} \otimes I_{k}
$$

- $k \geq m+2$ implies convex hull exactness
- $k \geq m+1$ implies objective value exactness


## (1) Introduction: QCQPs and SDPs

2) SDP relaxations and convex Lagrange multipliers
(3) Symmetries in quadratic forms
(4) Some results
(5) Application: robust least squares
(6) Conclusion

## Recap, additional work, future work

- QCQPs are NP-hard
- Analyzed SDP relaxation
- Convex Lagrange multipliers,
- "Amount of symmetry" $k$
- Q: When is the SDP relaxation exact?

|  | Polyhedral $\Gamma$ | General $\Gamma$ |
| :--- | :--- | :--- |
| Cvx. hull | $k \geq \min \left(m,\left\|\left\{b_{i} \neq 0\right\}_{i=1}^{m}\right\|+1\right)$ | $k \geq m+2$ |
| Obj. val. | $k \geq \min \left(m,\left\|\left\{b_{i} \neq 0\right\}_{i=1}^{m}\right\|+1\right)$ | $k \geq m+1$ |

- Current and future work:
- Is the polyhedral case fundamentally different from the general case?
- Conditions that only depend on the constraints?
- Can approximation results be explained in this framework?

Related: [Argue, Kilınç-Karzan, and W 20]

Thank you. Questions?

Slides
cs.cmu.edu/~alw1

Full version
A. L. Wang and F. Kılınç-Karzan. "On the tightness of SDP relaxations of QCQPs". In: arXiv preprint arXiv:1911.09195 (2019)

## When $\Gamma$ is non-polyhedral

- The geometry of $\Gamma$ and $\Gamma^{\circ}$
- Rounding scheme: Given $x \in \overline{\mathcal{S}}$,
- Either output convex decomposition for $x \in \operatorname{conv}(\mathcal{S})$
- Or, claim $x^{\prime} \in \overline{\mathcal{S}} \backslash \operatorname{conv}(\mathcal{S})$.
- Correct when $\Gamma^{\circ}$ is facially exposed
- Extends framework to handle complementarity constraints $\longrightarrow$ sparse regression



## References I

E C．J．Argue，F．Kılınç－Karzan，and A．L．Wang．＂Necessary and sufficient conditions for rank－one generated cones＂．In： arXiv preprint arXiv：2007．07433（2020）．
圊 A．Beck．＂Quadratic matrix programming＂．In：SIAM J． Optim． 17.4 （2007），pp．1224－1238．
國 S．Burer and Y．Ye．＂Exact semidefinite formulations for a class of（random and non－random）nonconvex quadratic programs＂．In：Math．Program． 181 （2019），pp．1－17．
T．Fujie and M．Kojima．＂Semidefinite programming relaxation for nonconvex quadratic programs＂．In：J．Global Optim． 10.4 （1997），pp．367－380．
囯 V．A．Yakubovich．＂S－procedure in nolinear control theory＂． In：Vestnik Leningrad Univ．Math．（1971），pp．73－93．

