New first-order methods in modern/classical settings

Daniels School of Business Quantitative Methods Seminar September 2023

Lijun Ding UW-Madison

Ben Grimmer Johns Hopkins

Kevin Shu
GA Tech

Alex L. Wang
Purdue University

Part 1

Sharp exact penalty formulations in signal recovery

Joint work with Lijun Ding

Outline

- Motivation: Sparse recovery and low-rank covariance estimation

Outline

- Motivation: Sparse recovery and low-rank covariance estimation
- \longrightarrow Abstract signal recovery problem

Outline

- Motivation: Sparse recovery and low-rank covariance estimation
- \longrightarrow Abstract signal recovery problem
- A new formulation of the abstract problem that is sharp

Outline

- Motivation: Sparse recovery and low-rank covariance estimation
- \longrightarrow Abstract signal recovery problem
- A new formulation of the abstract problem that is sharp
- Better robustness guarantees, faster algorithms

Outline

- Motivation: Sparse recovery and low-rank covariance estimation
- \longrightarrow Abstract signal recovery problem
- A new formulation of the abstract problem that is sharp
- Better robustness guarantees, faster algorithms
- Numerical results

Motivation: Sparse recovery and covariance estimation

Sparse recovery setup

- Recovery task: Recover $x^{\sharp} \in \mathbb{R}^{n}$ from $A \in \mathbb{R}^{m \times n}, b=A x^{\sharp}$

[^0]
Sparse recovery setup

- Recovery task: Recover $x^{\sharp} \in \mathbb{R}^{n}$ from $A \in \mathbb{R}^{m \times n}, b=A x^{\sharp}$
- Suppose A entrywise i.i.d. $N\left(0,1 / m^{2}\right)$

$$
\left|\operatorname{supp}\left(x^{\sharp}\right)\right| \leq k \ll n \quad m \asymp k \log (n)
$$

Related: Candes and Tao [2005], Recht et al. [2010], Candès et al. [2013]

Sparse recovery setup

- Recovery task: Recover $x^{\sharp} \in \mathbb{R}^{n}$ from $A \in \mathbb{R}^{m \times n}, b=A x^{\sharp}$
- Suppose A entrywise i.i.d. $N\left(0,1 / m^{2}\right)$

$$
\left|\operatorname{supp}\left(x^{\sharp}\right)\right| \leq k \ll n \quad m \asymp k \log (n)
$$

- Conceptual approach: $\min _{x \in \mathbb{R}^{n}}\{|\operatorname{supp}(x)|: A x=b\}$

[^1]
Sparse recovery setup

- Recovery task: Recover $x^{\sharp} \in \mathbb{R}^{n}$ from $A \in \mathbb{R}^{m \times n}, b=A x^{\sharp}$
- Suppose A entrywise i.i.d. $N\left(0,1 / m^{2}\right)$

$$
\left|\operatorname{supp}\left(x^{\sharp}\right)\right| \leq k \ll n \quad m \asymp k \log (n)
$$

- Conceptual approach: $\min _{x \in \mathbb{R}^{n}}\{|\operatorname{supp}(x)|: A x=b\}$
- Convex optimization approach: In this regime, x^{\sharp} is unique minimizer of

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|x\|_{1}: A x=b\right\}
$$

[^2]
Low-rank covariance estimation

- Recovery task: Recover $X^{\sharp} \in \mathbb{S}_{+}^{n}$ with $\operatorname{rank}\left(X^{\sharp}\right) \leq k$ from $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$, $b=\mathcal{A}\left(X^{\sharp}\right)$

Low-rank covariance estimation

- Recovery task: Recover $X^{\sharp} \in \mathbb{S}_{+}^{n}$ with $\operatorname{rank}\left(X^{\sharp}\right) \leq k$ from $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$, $b=\mathcal{A}\left(X^{\sharp}\right)$
- Suppose $\mathcal{A}^{*}\left(e_{i}\right)=a_{i} a_{i}^{\top}$ where $a_{i} \sim N\left(0, I_{n} / m\right)$ and $m \asymp n k$

[^3]
Low-rank covariance estimation

- Recovery task: Recover $X^{\sharp} \in \mathbb{S}_{+}^{n}$ with $\operatorname{rank}\left(X^{\sharp}\right) \leq k$ from $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$, $b=\mathcal{A}\left(X^{\sharp}\right)$
- Suppose $\mathcal{A}^{*}\left(e_{i}\right)=a_{i} a_{i}^{\top}$ where $a_{i} \sim N\left(0, I_{n} / m\right)$ and $m \asymp n k$
- Known as phase retrieval when $k=1$

[^4]
Low-rank covariance estimation

- Recovery task: Recover $X^{\sharp} \in \mathbb{S}_{+}^{n}$ with $\operatorname{rank}\left(X^{\sharp}\right) \leq k$ from $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$, $b=\mathcal{A}\left(X^{\sharp}\right)$
- Suppose $\mathcal{A}^{*}\left(e_{i}\right)=a_{i} a_{i}^{\top}$ where $a_{i} \sim N\left(0, I_{n} / m\right)$ and $m \asymp n k$
- Known as phase retrieval when $k=1$
- Conceptual approach: $\min _{X \in \mathbb{S}^{n}}\left\{\begin{array}{ll}\operatorname{rank}(X): & \begin{array}{l}\mathcal{A}(X)=b \\ X \succeq 0\end{array}\end{array}\right\}$

[^5]
Low-rank covariance estimation

- Recovery task: Recover $X^{\sharp} \in \mathbb{S}_{+}^{n}$ with $\operatorname{rank}\left(X^{\sharp}\right) \leq k$ from $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$, $b=\mathcal{A}\left(X^{\sharp}\right)$
- Suppose $\mathcal{A}^{*}\left(e_{i}\right)=a_{i} a_{i}^{\top}$ where $a_{i} \sim N\left(0, I_{n} / m\right)$ and $m \asymp n k$
- Known as phase retrieval when $k=1$
- Conceptual approach: $\min _{X \in \mathbb{S}^{n}}\left\{\begin{array}{ll}\operatorname{rank}(X): & \begin{array}{l}\mathcal{A}(X)=b \\ X \succeq 0\end{array}\end{array}\right\}$
- Convex optimization approach: X^{\sharp} is unique minimizer of

$$
\min _{X \in \mathbb{S}^{n}}\left\{\begin{array}{ll}
\operatorname{tr}(X): & \mathcal{A}(X)=b \\
X \succeq 0
\end{array}\right\}
$$

[^6]
Abstract signal recovery problem and questions

(Constrained) $\quad \min _{x \in V}\left\{f(x): \begin{array}{l}\mathcal{A}(x)=b \\ x \in K\end{array}\right\}$

Abstract signal recovery problem and questions

(Constrained) $\quad \min _{x \in V}\left\{f(x): \begin{array}{l}\mathcal{A}(x)=b \\ x \in K\end{array}\right\}$

- If no noise in sensing process and no error in optimization algorithm, $\tilde{x}=x^{\sharp}$

Abstract signal recovery problem and questions

- If no noise in sensing process and no error in optimization algorithm, $\tilde{x}=x^{\sharp}$
- Questions:

Abstract signal recovery problem and questions

(Constrained) $\quad \min _{x \in V}\left\{f(x): \begin{array}{l}\mathcal{A}(x)=b \\ x \in K\end{array}\right\}$

- If no noise in sensing process and no error in optimization algorithm, $\tilde{x}=x^{\sharp}$
- Questions:
- What if the algorithm receives $\tilde{b}=\mathcal{A}\left(x^{\sharp}\right)+\delta$?

Abstract signal recovery problem and questions

(Constrained) $\min _{x \in V}\left\{f(x): \begin{array}{l}\mathcal{A}(x)=b \\ x \in K\end{array}\right\}$

- If no noise in sensing process and no error in optimization algorithm, $\tilde{x}=x^{\sharp}$
- Questions:
- What if the algorithm receives $\tilde{b}=\mathcal{A}\left(x^{\sharp}\right)+\delta$?
- What if algorithm only produces a ϵ-optimal and ϵ-feasible solution?

Abstract signal recovery problem and questions

(Constrained) $\min _{x \in V}\left\{f(x): \begin{array}{l}\mathcal{A}(x)=b \\ x \in K\end{array}\right\}$

- If no noise in sensing process and no error in optimization algorithm, $\tilde{x}=x^{\sharp}$
- Questions:
- What if the algorithm receives $\tilde{b}=\mathcal{A}\left(x^{\sharp}\right)+\delta$?
- What if algorithm only produces a ϵ-optimal and ϵ-feasible solution?
- What algorithm?

Abstract signal recovery problem and questions

(Constrained) $\quad \min _{x \in V}\left\{f(x): \begin{array}{l}\mathcal{A}(x)=b \\ x \in K\end{array}\right\}$

- If no noise in sensing process and no error in optimization algorithm, $\tilde{x}=x^{\sharp}$
- Questions:
- What if the algorithm receives $\tilde{b}=\mathcal{A}\left(x^{\sharp}\right)+\delta$?
- What if algorithm only produces a ϵ-optimal and ϵ-feasible solution?
- What algorithm?
- Another convex problem?

A sharp penalty formulation

A penalty formulation

A penalty formulation

$$
\text { (Constrained) } \quad \min _{x \in V}\left\{f(x): \begin{array}{l}
\mathcal{A}(x)=b \\
x \in K
\end{array}\right\}
$$

- Penalty formulation: let $r \asymp \sqrt{k}$ be a penalty parameter

$$
F(x):=f(x)+r\|\mathcal{A}(x)-b\|_{1}+2 \operatorname{dist}_{1}(x, K)
$$

A penalty formulation

$$
\text { (Constrained) } \quad \min _{x \in V}\left\{f(x): \begin{array}{l}
\mathcal{A}(x)=b \\
x \in K
\end{array}\right\}
$$

- Penalty formulation: let $r \asymp \sqrt{k}$ be a penalty parameter

$$
F(x):=f(x)+r\|\mathcal{A}(x)-b\|_{1}+2 \operatorname{dist}_{1}(x, K)
$$

- Compare: Lasso $\|A x-b\|_{2}^{2}$ vs $\|A x-b\|_{1}$

A penalty formulation

$$
\text { (Constrained) } \quad \min _{x \in V}\left\{f(x): \begin{array}{l}
\mathcal{A}(x)=b \\
x \in K
\end{array}\right\}
$$

- Penalty formulation: let $r \asymp \sqrt{k}$ be a penalty parameter

$$
F(x):=f(x)+r\|\mathcal{A}(x)-b\|_{1}+2 \operatorname{dist}_{1}(x, K)
$$

- Compare: Lasso $\|A x-b\|_{2}^{2}$ vs $\|A x-b\|_{1}$

[^7]
Sharpness in F

Theorem (Structural)

F is μ-sharp in the ℓ_{1} norm where μ is a function of "RIP constants of \mathcal{A} "

$$
F(x)-F\left(x^{\sharp}\right) \geq \mu\left\|x-x^{\sharp}\right\|_{1}, \quad \forall x \in V
$$

and L-Lipschitz in the ℓ_{1} norm with $L \asymp \sqrt{k}$

$$
|F(x)-F(y)| \leq L\|x-y\|_{1}, \quad \forall x, y .
$$

Sharpness in F

Theorem (Structural)

F is μ-sharp in the ℓ_{1} norm where μ is a function of "RIP constants of \mathcal{A} "

$$
F(x)-F\left(x^{\sharp}\right) \geq \mu\left\|x-x^{\sharp}\right\|_{1}, \quad \forall x \in V
$$

and L-Lipschitz in the ℓ_{1} norm with $L \asymp \sqrt{k}$

$$
|F(x)-F(y)| \leq L\|x-y\|_{1}, \quad \forall x, y .
$$

- μ increasing with "RIP constants of \mathcal{A} ", in turn depends on sample size

Sharpness in F

Theorem (Structural)

F is μ-sharp in the ℓ_{1} norm where μ is a function of "RIP constants of \mathcal{A} "

$$
F(x)-F\left(x^{\sharp}\right) \geq \mu\left\|x-x^{\sharp}\right\|_{1}, \quad \forall x \in V
$$

and L-Lipschitz in the ℓ_{1} norm with $L \asymp \sqrt{k}$

$$
|F(x)-F(y)| \leq L\|x-y\|_{1}, \quad \forall x, y .
$$

- μ increasing with "RIP constants of \mathcal{A} ", in turn depends on sample size
- Sparse recovery: $\mu \asymp 1$ for $m \asymp k \log (n)$

Sharpness in F

Theorem (Structural)

F is μ-sharp in the ℓ_{1} norm where μ is a function of "RIP constants of \mathcal{A} "

$$
F(x)-F\left(x^{\sharp}\right) \geq \mu\left\|x-x^{\sharp}\right\|_{1}, \quad \forall x \in V
$$

and L-Lipschitz in the ℓ_{1} norm with $L \asymp \sqrt{k}$

$$
|F(x)-F(y)| \leq L\|x-y\|_{1}, \quad \forall x, y .
$$

- μ increasing with "RIP constants of \mathcal{A} ", in turn depends on sample size
- Sparse recovery: $\mu \asymp 1$ for $m \asymp k \log (n)$
- Covariance estimation: $\mu \asymp 1$ for $m \asymp n k$

Robustness of recovery procedure

Corollary (Robustness)

Let \tilde{x} be an ϵ minimizer of \tilde{F}.

- (to small noise) \tilde{x} satisfies $\left\|\tilde{x}-x^{\sharp}\right\|_{1} \lesssim \frac{\sqrt{k}}{\mu}\|\delta\|_{1}+\frac{\epsilon}{\mu}$
- (to sparse noise) If $\frac{|\operatorname{supp}(\delta)|}{m} \lesssim 1 / \sqrt{k}$, then $\left\|\tilde{x}-x^{\sharp}\right\|_{1} \lesssim \frac{\epsilon}{\mu}$

Algorithms for minimizing F

Corollary (Algorithms)

Restarted mirror descent (RMD) algorithm produces an ϵ-optimal solution to F in

$$
O\left(\frac{k}{\mu^{2}} \log (n) \log \left(\epsilon^{-1}\right)\right)
$$

iterations of the mirror descent update.

Algorithms for minimizing F

Corollary (Algorithms)

Restarted mirror descent (RMD) algorithm produces an ϵ-optimal solution to F in

$$
O\left(\frac{k}{\mu^{2}} \log (n) \log \left(\epsilon^{-1}\right)\right)
$$

iterations of the mirror descent update.

- Requires μ

Algorithms for minimizing F

Corollary (Algorithms)

Restarted mirror descent (RMD) algorithm produces an ϵ-optimal solution to F in

$$
O\left(\frac{k}{\mu^{2}} \log (n) \log \left(\epsilon^{-1}\right)\right)
$$

iterations of the mirror descent update.

- Requires μ
- If μ is not known, extra $\log \left(\epsilon^{-1}\right)$ factor

Algorithms for minimizing F

- Suppose we run MD from x_{0} for t iterations with step size η and mirror map

$$
h(x) \approx \frac{1}{2}\left\|x-x_{0}\right\|_{1}^{2}
$$

Algorithms for minimizing F

- Suppose we run MD from x_{0} for t iterations with step size η and mirror map

$$
h(x) \approx \frac{1}{2}\left\|x-x_{0}\right\|_{1}^{2}
$$

- MD: output y

$$
F(y)-F\left(x^{\sharp}\right) \leq \frac{L^{2} \eta \ln n}{2}+\frac{D_{h}\left(x^{\sharp} \| x_{0}\right)}{2 \eta t}
$$

Algorithms for minimizing F

- Suppose we run MD from x_{0} for t iterations with step size η and mirror map

$$
h(x) \approx \frac{1}{2}\left\|x-x_{0}\right\|_{1}^{2}
$$

- MD: output y

$$
F(y)-F\left(x^{\sharp}\right) \leq \frac{L^{2} \eta \ln n}{2}+\frac{D_{h}\left(x^{\sharp} \| x_{0}\right)}{2 \eta t} \approx \frac{L^{2} \eta \ln n}{2}+\frac{\left\|x^{\sharp}-x_{0}\right\|_{1}^{2}}{4 \eta t}
$$

Algorithms for minimizing F

- Suppose we run MD from x_{0} for t iterations with step size η and mirror map

$$
h(x) \approx \frac{1}{2}\left\|x-x_{0}\right\|_{1}^{2}
$$

- MD: output y

$$
\begin{aligned}
F(y)-F\left(x^{\sharp}\right) \leq \frac{L^{2} \eta \ln n}{2}+\frac{D_{h}\left(x^{\sharp} \| x_{0}\right)}{2 \eta t} & \approx \frac{L^{2} \eta \ln n}{2}+\frac{\left\|x^{\sharp}-x_{0}\right\|_{1}^{2}}{4 \eta t} \\
& =L\left\|x^{\sharp}-x_{0}\right\|_{1} \sqrt{\frac{\ln n}{2 t}}
\end{aligned}
$$

Related: Polyak [1969], Roulet and d'Aspremont [2017], Yang and Lin [2018], Renegar and Grimmer [2022]

Algorithms for minimizing F

- Suppose we run MD from x_{0} for t iterations with step size η and mirror map

$$
h(x) \approx \frac{1}{2}\left\|x-x_{0}\right\|_{1}^{2}
$$

- MD: output y

$$
\begin{aligned}
F(y)-F\left(x^{\sharp}\right) \leq \frac{L^{2} \eta \ln n}{2}+\frac{D_{h}\left(x^{\sharp} \| x_{0}\right)}{2 \eta t} & \approx \frac{L^{2} \eta \ln n}{2}+\frac{\left\|x^{\sharp}-x_{0}\right\|_{1}^{2}}{4 \eta t} \\
& =L\left\|x^{\sharp}-x_{0}\right\|_{1} \sqrt{\frac{\ln n}{2 t}}
\end{aligned}
$$

- Applying sharpness \longrightarrow

$$
F(y)-F\left(x^{\sharp}\right) \leq \frac{1}{2}\left(F\left(x_{0}\right)-F\left(x^{\sharp}\right)\right)
$$

after $\asymp \frac{L^{2}}{\mu^{2}} \ln n$ iterations

Numerical experiments

Restarted mirror descent

- Let T be statistical threshold for sparse recovery, low-rank matrix sensing (covariance estimation without PSD constraint), and phase retrieval (covariance estimation with $k=1$)

sparse recovery

$$
(n, k)=\left(10^{4}, 5\right)
$$

matrix sensing
$(n, k)=(100,5)$

phase retrieval $n=100$

Restarted mirror descent vs. Polyak subgradient

- Polyak subgradient converges linearly on sharp Lipschitz functions in ℓ_{2} norm

—Polyak-RMD $T —$ Polyak-RMD $2 T —$ Polyak-RMD $3 T —$ Polyak-RMD $4 T$ - Polyak-GD $T \ldots$ Polyak-GD $2 T \ldots$ Polyak-GD $3 T \ldots$ Polyak-GD $4 T$

sparse recovery
$(n, k)=\left(10^{4}, 5\right)$

sparse recovery
$(n, k)=\left(10^{5}, 5\right)$
sparse recovery $(n, k)=\left(10^{6}, 5\right)$

Conclusion

- Abstract statistical signal recovery problem: sparse recovery, covariance estimation, matrix sensing, phase retrieval

Conclusion

- Abstract statistical signal recovery problem: sparse recovery, covariance estimation, matrix sensing, phase retrieval
- Contributions

Conclusion

- Abstract statistical signal recovery problem: sparse recovery, covariance estimation, matrix sensing, phase retrieval
- Contributions
- Structural: ℓ_{1} sharp and Lipschitz penalty formulation

Conclusion

- Abstract statistical signal recovery problem: sparse recovery, covariance estimation, matrix sensing, phase retrieval
- Contributions
- Structural: ℓ_{1} sharp and Lipschitz penalty formulation
- Robustness: to observation error and optimization error

Conclusion

- Abstract statistical signal recovery problem: sparse recovery, covariance estimation, matrix sensing, phase retrieval
- Contributions
- Structural: ℓ_{1} sharp and Lipschitz penalty formulation
- Robustness: to observation error and optimization error
- Algorithms: Restarted Mirror Descent converges linearly

Conclusion

- Abstract statistical signal recovery problem: sparse recovery, covariance estimation, matrix sensing, phase retrieval
- Contributions
- Structural: ℓ_{1} sharp and Lipschitz penalty formulation
- Robustness: to observation error and optimization error
- Algorithms: Restarted Mirror Descent converges linearly

Questions?

Part 2
$O\left(1 / T^{1.02449}\right)$ Convergence of long-step gradient descent

Joint work with Benjamin Grimmer, Kevin Shu

Outline

- Preview of results (better guarantees for smooth convex minimization)

Outline

- Preview of results (better guarantees for smooth convex minimization)
- Why to expect this (history of prior works)

Outline

- Preview of results (better guarantees for smooth convex minimization)
- Why to expect this (history of prior works)
- Conceptual contributions

Outline

- Preview of results (better guarantees for smooth convex minimization)
- Why to expect this (history of prior works)
- Conceptual contributions
- Computer assisted design/proofs

Preview of results

Smooth convex optimization and gradient descent

- Want gradient descent-style algorithms for general convex functions f with

Smooth convex optimization and gradient descent

- Want gradient descent-style algorithms for general convex functions f with
- f is 1 -smooth

Smooth convex optimization and gradient descent

- Want gradient descent-style algorithms for general convex functions f with
- f is 1 -smooth
- f has minimizer x^{\star}

Smooth convex optimization and gradient descent

- Want gradient descent-style algorithms for general convex functions f with
- f is 1 -smooth
- f has minimizer x^{\star}
- $\sup _{x \in \mathbb{R}^{n}}\left\{\left\|x-x^{\star}\right\|: f(x) \leq f\left(x_{0}\right)\right\} \leq 1$

Smooth convex optimization and gradient descent

- Want gradient descent-style algorithms for general convex functions f with
- f is 1-smooth
- f has minimizer x^{\star}
- $\sup _{x \in \mathbb{R}^{n}}\left\{\left\|x-x^{\star}\right\|: f(x) \leq f\left(x_{0}\right)\right\} \leq 1$
- Gradient descent with steplength sequence $h=\left(h_{0}, h_{1}, \ldots\right)$

$$
\begin{gathered}
x_{1}=x_{0}-h_{0} \nabla f\left(x_{0}\right) \quad x_{2}=x_{1}-h_{1} \nabla f\left(x_{1}\right) \quad \ldots \\
x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{gathered}
$$

Smooth convex optimization and gradient descent

- Want gradient descent-style algorithms for general convex functions f with
- f is 1 -smooth
- f has minimizer x^{\star}
- $\sup _{x \in \mathbb{R}^{n}}\left\{\left\|x-x^{\star}\right\|: f(x) \leq f\left(x_{0}\right)\right\} \leq 1$
- Gradient descent with steplength sequence $h=\left(h_{0}, h_{1}, \ldots\right)$

$$
\begin{gathered}
x_{1}=x_{0}-h_{0} \nabla f\left(x_{0}\right) \quad x_{2}=x_{1}-h_{1} \nabla f\left(x_{1}\right) \quad \ldots \\
x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{gathered}
$$

- Goal: pick steplength sequence $\left(h_{0}, h_{1}, \ldots\right)$ to maximize convergence rate

What we knew prior to 2021

- $f\left(x_{i+1}\right)<f\left(x_{i}\right)$ is guaranteed if and only if $h_{i} \in(0,2)$

What we knew prior to 2021

- $f\left(x_{i+1}\right)<f\left(x_{i}\right)$ is guaranteed if and only if $h_{i} \in(0,2)$
- Per-iteration guaranteed worst-case descent maximized by $h_{i}=1$

What we knew prior to 2021

- $f\left(x_{i+1}\right)<f\left(x_{i}\right)$ is guaranteed if and only if $h_{i} \in(0,2)$
- Per-iteration guaranteed worst-case descent maximized by $h_{i}=1$
- For $h=(1,1,1, \ldots)$,

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 T}
$$

What we knew prior to 2021

- $f\left(x_{i+1}\right)<f\left(x_{i}\right)$ is guaranteed if and only if $h_{i} \in(0,2)$
- Per-iteration guaranteed worst-case descent maximized by $h_{i}=1$
- For $h=(1,1,1, \ldots)$,

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 T}
$$

Today: a per-iteration analysis is too short-sighted

What we knew prior to 2021

- $f\left(x_{i+1}\right)<f\left(x_{i}\right)$ is guaranteed if and only if $h_{i} \in(0,2)$
- Per-iteration guaranteed worst-case descent maximized by $h_{i}=1$
- For $h=(1,1,1, \ldots)$,

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 T}
$$

Today: a per-iteration analysis is too short-sighted

- Optimal rates for first-order methods: Accelerated gradient descent

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{2}{T^{2}}
$$

Note: this is not a gradient descent-style algorithm

Taking larger steps: breaking some intuitions

- Consider $h=0.99 \times\left(\frac{3}{2}, 5, \frac{3}{2}, \sqrt{\frac{3}{2}}, 5, \frac{3}{2}, \ldots\right)$

Taking larger steps: breaking some intuitions

- Consider $h=0.99 \times\left(\frac{3}{2}, 5, \frac{3}{2}, \frac{3}{2}, 5, \frac{3}{2}, \ldots\right)$
- We can guarantee

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2.66 \cdot T}+O\left(\frac{1}{T^{2}}\right) \quad \text { for all } T \equiv 0 \bmod 3
$$

Taking larger steps: breaking some intuitions

- Consider $h=0.99 \times\left(\frac{3}{2}, 5, \frac{3}{2}, \frac{3}{2}, 5, \frac{3}{2}, \ldots\right)$
- We can guarantee

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2.66 \cdot T}+O\left(\frac{1}{T^{2}}\right) \quad \text { for all } T \equiv 0 \bmod 3
$$

- This is faster even though we cannot guarantee per-iteration descent!

Taking larger steps: breaking some intuitions

- Consider $h=0.99 \times\left(\frac{3}{2}, 5, \frac{3}{2}, \frac{3}{2}, 5, \frac{3}{2}, \ldots\right)$
- We can guarantee

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2.66 \cdot T}+O\left(\frac{1}{T^{2}}\right) \quad \text { for all } T \equiv 0 \bmod 3
$$

- This is faster even though we cannot guarantee per-iteration descent!

Taking larger steps: breaking some intuitions

- Consider $h=0.99 \times\left(\frac{3}{2}, 5, \frac{3}{2},, \frac{3}{2}, 5, \frac{3}{2}, \ldots\right)$
- We can guarantee

$$
f\left(x_{T}\right)-f\left(x^{\star}\right) \leq \frac{1}{2.66 \cdot T}+O\left(\frac{1}{T^{2}}\right) \quad \text { for all } T \equiv 0 \bmod 3
$$

- This is faster even though we cannot guarantee per-iteration descent!

The full sequence

- We construct steplength blocks $h^{(k)} \in \mathbb{R}^{2^{k+1}-1}$ that can be scaled down to guarantee descent

The full sequence

- We construct steplength blocks $h^{(k)} \in \mathbb{R}^{2^{k+1}-1}$ that can be scaled down to guarantee descent
- $h^{(0)}=(1), \quad h^{(1)}=\left(\frac{3}{2}, 5, \frac{3}{2}\right), \quad h^{(2)}=\left(\frac{3}{2}, 1+\sqrt{2}, \sqrt{2}, 7+4 \sqrt{2}, \sqrt{2}, 1+\sqrt{2}, \frac{3}{2}\right)$

The full sequence

- We construct steplength blocks $h^{(k)} \in \mathbb{R}^{2^{k+1}-1}$ that can be scaled down to guarantee descent
- $h^{(0)}=(1), \quad h^{(1)}=\left(\frac{3}{2}, 5, \frac{3}{2}\right), \quad h^{(2)}=\left(\frac{3}{2}, 1+\sqrt{2}, \sqrt{2}, 7+4 \sqrt{2}, \sqrt{2}, 1+\sqrt{2}, \frac{3}{2}\right)$

The full sequence

- We construct steplength blocks $h^{(k)} \in \mathbb{R}^{2^{k+1}-1}$ that can be scaled down to guarantee descent
- $h^{(0)}=(1), \quad h^{(1)}=\left(\frac{3}{2}, 5, \frac{3}{2}\right), \quad h^{(2)}=\left(\frac{3}{2}, 1+\sqrt{2}, \sqrt{2}, 7+4 \sqrt{2}, \sqrt{2}, 1+\sqrt{2}, \frac{3}{2}\right)$

- Longer patterns have increasingly fast convergence rates

The full sequence

- We construct steplength blocks $h^{(k)} \in \mathbb{R}^{2^{k+1}-1}$ that can be scaled down to guarantee descent
- $h^{(0)}=(1), \quad h^{(1)}=\left(\frac{3}{2}, 5, \frac{3}{2}\right), \quad h^{(2)}=\left(\frac{3}{2}, 1+\sqrt{2}, \sqrt{2}, 7+4 \sqrt{2}, \sqrt{2}, 1+\sqrt{2}, \frac{3}{2}\right)$

- Longer patterns have increasingly fast convergence rates
- $\operatorname{avg}\left(h^{(k)}\right)$ is exponential in k

A closer look at $h^{(k)}$

- $\beta_{i}=1+(1+\sqrt{2})^{i-1} \longrightarrow(1+\sqrt{2})$ is the silver ratio and dictates our rate

A closer look at $h^{(k)}$

- $\beta_{i}=1+(1+\sqrt{2})^{i-1} \longrightarrow(1+\sqrt{2})$ is the silver ratio and dictates our rate
- μ is sum of all other stepsizes plus two

A closer look at $h^{(k)}$

- $\beta_{i}=1+(1+\sqrt{2})^{i-1} \longrightarrow(1+\sqrt{2})$ is the silver ratio and dictates our rate
- μ is sum of all other stepsizes plus two
- α_{i} picked so that $\prod_{\text {stepsizes }}($ stepsize -1$)=1$

Numerical comparison of $h^{(k)}$

- $h^{(12)}$ has length 8191

Accelerated convergence for gradient descent-style algorithms

Theorem

Suppose

$$
h=\frac{1}{2}\left(h^{(0)}, \ldots, h^{(0)}, h^{(1)}, \ldots, h^{(1)}, \ldots, h^{(k)}, \ldots, h^{(k)}, \ldots\right)
$$

where each $h^{(k)}$ is repeated $\approx c^{k}$ times. Then

$$
\left(\min _{t \leq T} f\left(x_{t}\right)\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

Why should we expect this?

AKA some recent work in the area

The Performance Estimation Problem (PEP) $\quad 1 / 2$

- Question: Suppose we have a candidate $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$. What is the worst case function? (Smoothness 1 , initial distance 1, initial suboptimality δ)

The Performance Estimation Problem (PEP) 1/2

- Question: Suppose we have a candidate $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$. What is the worst case function? (Smoothness 1 , initial distance 1, initial suboptimality δ)

$$
p_{h}(\delta):=\max _{x_{0}, x^{\star}, f}\left\{\begin{array}{ll}
& f \text { is convex, 1-smooth } \\
& \left\|x_{0}-x^{\star}\right\|^{2} \leq 1 \\
f\left(x_{T}\right)-f\left(x^{\star}\right): & f\left(x_{0}\right)-f\left(x^{\star}\right) \leq \delta \\
& \nabla f\left(x^{\star}\right)=0 \\
& x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{array}\right\}
$$

The Performance Estimation Problem (PEP) 1/2

- Question: Suppose we have a candidate $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$. What is the worst case function? (Smoothness 1 , initial distance 1 , initial suboptimality δ)

$$
p_{h}(\delta):=\max _{x_{0}, x^{\star}, f}\left\{\begin{array}{ll}
& f \text { is convex, 1-smooth } \\
& \left\|x_{0}-x^{\star}\right\|^{2} \leq 1 \\
f\left(x_{T}\right)-f\left(x^{\star}\right): & f\left(x_{0}\right)-f\left(x^{\star}\right) \leq \delta \\
& \nabla f\left(x^{\star}\right)=0 \\
& x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{array}\right\}
$$

- Iterates x_{i} only depend on gradients

The Performance Estimation Problem (PEP) 1/2

- Question: Suppose we have a candidate $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$. What is the worst case function? (Smoothness 1 , initial distance 1 , initial suboptimality δ)

$$
p_{h}(\delta):=\max _{x_{0}, x^{\star}, f}\left\{\begin{array}{ll}
& f \text { is convex, 1-smooth } \\
& \left\|x_{0}-x^{\star}\right\|^{2} \leq 1 \\
f\left(x_{T}\right)-f\left(x^{\star}\right): & f\left(x_{0}\right)-f\left(x^{\star}\right) \leq \delta \\
& \nabla f\left(x^{\star}\right)=0 \\
& x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{array}\right\}
$$

- Iterates x_{i} only depend on gradients \longrightarrow Optimize over gradients g_{i} and function values f_{i} for which there exists an 1-smooth, convex interpolating f

The Performance Estimation Problem (PEP) 1/2

- Question: Suppose we have a candidate $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$. What is the worst case function? (Smoothness 1 , initial distance 1, initial suboptimality δ)

$$
p_{h}(\delta):=\max _{x_{0}, x^{\star}, f}\left\{\begin{array}{ll}
& f \text { is convex, 1-smooth } \\
& \left\|x_{0}-x^{\star}\right\|^{2} \leq 1 \\
f\left(x_{T}\right)-f\left(x^{\star}\right): & f\left(x_{0}\right)-f\left(x^{\star}\right) \leq \delta \\
& \nabla f\left(x^{\star}\right)=0 \\
& x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{array}\right\}
$$

- Iterates x_{i} only depend on gradients \longrightarrow Optimize over gradients g_{i} and function values f_{i} for which there exists an 1 -smooth, convex interpolating f
- Drori and Teboulle [2012], Taylor et al. [2017] give necessary and sufficient conditions for such a function to exist ... nonconvex quadratic program

The Performance Estimation Problem (PEP) 1/2

- Question: Suppose we have a candidate $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$. What is the worst case function? (Smoothness 1 , initial distance 1 , initial suboptimality δ)

$$
p_{h}(\delta):=\max _{x_{0}, x^{\star}, f}\left\{\begin{array}{ll}
& f \text { is convex, 1-smooth } \\
& \left\|x_{0}-x^{\star}\right\|^{2} \leq 1 \\
f\left(x_{T}\right)-f\left(x^{\star}\right): & f\left(x_{0}\right)-f\left(x^{\star}\right) \leq \delta \\
& \nabla f\left(x^{\star}\right)=0 \\
& x_{i+1}=x_{i}-h_{i} \nabla f\left(x_{i}\right)
\end{array}\right\}
$$

- Iterates x_{i} only depend on gradients \longrightarrow Optimize over gradients g_{i} and function values f_{i} for which there exists an 1 -smooth, convex interpolating f
- Drori and Teboulle [2012], Taylor et al. [2017] give necessary and sufficient conditions for such a function to exist ... nonconvex quadratic program
- The SDP relaxation of this nonconvex quadratic program is exact!

The Performance Estimation Problem (PEP) 2/2

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program
$=$ maximum value of an SDP

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program
= maximum value of an SDP
$=$ minimum value of the dual SDP

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program
= maximum value of an SDP
$=$ minimum value of the dual SDP
- Take-aways:

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program
= maximum value of an SDP
$=$ minimum value of the dual SDP
- Take-aways:
- $p_{h}(\delta)$ can be computed "efficiently" (for T small)

The Performance Estimation Problem (PEP) 2/2

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program
= maximum value of an SDP
$=$ minimum value of the dual SDP
- Take-aways:
- $p_{h}(\delta)$ can be computed "efficiently" (for T small)
- Any feasible solution to the dual SDP gives an upper bound on worst-case performance!

The Performance Estimation Problem (PEP)

- $\quad p_{h}(\delta)=$ maximum value of nonconvex infinite dimensional problem
$=$ maximum value of a nonconvex quadratic program
= maximum value of an SDP
$=$ minimum value of the dual SDP
- Take-aways:
- $p_{h}(\delta)$ can be computed "efficiently" (for T small)
- Any feasible solution to the dual SDP gives an upper bound on worst-case performance!
- Now, how to design h ?

$$
\min _{h=\left(h_{0}, \ldots, h_{T-1}\right)} p_{h}(\delta)
$$

Gradient descent with long steps

- Das Gupta et al. [2023]: Complex branch-and-bound scheme for $T \in[1, \ldots, 50]$

$$
\min _{h=\left(h_{0}, \ldots, h_{T-1}\right)} p_{h}(1 / 2)
$$

Gradient descent with long steps

- Das Gupta et al. [2023]: Complex branch-and-bound scheme for $T \in[1, \ldots, 50]$

$$
\min _{h=\left(h_{0}, \ldots, h_{T-1}\right)} p_{h}(1 / 2)
$$

(a) $N=5$

(b) $N=10$

(c) $N=25$

(d) $N=50$

Gradient descent with long steps

- Das Gupta et al. [2023]: Complex branch-and-bound scheme for $T \in[1, \ldots, 50]$

$$
\min _{h=\left(h_{0}, \ldots, h_{T-1}\right)} p_{h}(1 / 2)
$$

(a) $N=5$

(b) $N=10$

(c) $N=25$

(d) $N=50$

- Strongest guarantee

$$
f\left(x_{50}\right) \leq 0.002 \approx \text { factor of } 5 \text { faster than } \frac{1}{2 T}
$$

Gradient descent with long steps

- Das Gupta et al. [2023]: Complex branch-and-bound scheme for $T \in[1, \ldots, 50]$

$$
\min _{h=\left(h_{0}, \ldots, h_{T-1}\right)} p_{h}(1 / 2)
$$

(a) $N=5$

(b) $N=10$

(c) $N=25$

(d) $N=50$

- Strongest guarantee

$$
f\left(x_{50}\right) \leq 0.002 \approx \text { factor of } 5 \text { faster than } \frac{1}{2 T}
$$

- To get actual convergence rates, need a suitable induction

Gradient descent with long steps

- Das Gupta et al. [2023]: Complex branch-and-bound scheme for $T \in[1, \ldots, 50]$

$$
\min _{h=\left(h_{0}, \ldots, h_{T-1}\right)} p_{h}(1 / 2)
$$

(a) $N=5$

(b) $N=10$

(c) $N=25$

(d) $N=50$

- Strongest guarantee

$$
f\left(x_{50}\right) \leq 0.002 \approx \text { factor of } 5 \text { faster than } \frac{1}{2 T}
$$

- To get actual convergence rates, need a suitable induction
- Our work: analytically construct solution for all δ, with $p_{h}(\delta)$ small

Long-step gradient descent in other contexts

- Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step gradient descent for smooth strongly convex quadratic functions

Long-step gradient descent in other contexts

- Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step gradient descent for smooth strongly convex quadratic functions
- Can achieve full acceleration $O\left(\sqrt{\kappa} \log \left(\epsilon^{-1}\right)\right)$

Long-step gradient descent in other contexts

- Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step gradient descent for smooth strongly convex quadratic functions
- Can achieve full acceleration $O\left(\sqrt{\kappa} \log \left(\epsilon^{-1}\right)\right)$
- Oymak [2021]: Smooth strongly convex minimization with bimodal Hessians

Long-step gradient descent in other contexts

- Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step gradient descent for smooth strongly convex quadratic functions
- Can achieve full acceleration $O\left(\sqrt{\kappa} \log \left(\epsilon^{-1}\right)\right)$
- Oymak [2021]: Smooth strongly convex minimization with bimodal Hessians
- Altschuler [2018]: Smooth strongly convex minimization (solved PEP for $T=1,2,3$)

Long-step gradient descent in other contexts

- Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step gradient descent for smooth strongly convex quadratic functions
- Can achieve full acceleration $O\left(\sqrt{\kappa} \log \left(\epsilon^{-1}\right)\right)$
- Oymak [2021]: Smooth strongly convex minimization with bimodal Hessians
- Altschuler [2018]: Smooth strongly convex minimization (solved PEP for $T=1,2,3)$
\longrightarrow Altschuler, Parillo [yesterday] $O\left(1 / T^{1.27}\right)$ for smooth convex minimization

Long-step gradient descent in other contexts

- Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step gradient descent for smooth strongly convex quadratic functions
- Can achieve full acceleration $O\left(\sqrt{\kappa} \log \left(\epsilon^{-1}\right)\right)$
- Oymak [2021]: Smooth strongly convex minimization with bimodal Hessians
- Altschuler [2018]: Smooth strongly convex minimization (solved PEP for $T=1,2,3)$
\longrightarrow Altschuler, Parillo [yesterday] $O\left(1 / T^{1.27}\right)$ for smooth convex minimization
- Loshchilov and Hutter [2016], Smith [2015], Smith and Topin [2017]: Nonconvex, smooth minimization in neural networks

Conceptual contributions

A suitable induction

- Intuition: Long flat regions of small slope is the worst case

A suitable induction

- Intuition: Long flat regions of small slope is the worst case
- Suppose $\delta>0$ small and consider

$$
\begin{aligned}
f(x) & = \begin{cases}-\delta x-\delta^{2} / 2 & \text { if } x \leq-\delta \\
\frac{1}{2} x^{2} & \text { if } x \geq-\delta\end{cases} \\
x_{0} & =-(1+\delta / 2)
\end{aligned}
$$

A suitable induction

- Intuition: Long flat regions of small slope is the worst case
- Suppose $\delta>0$ small and consider

$$
\begin{aligned}
f(x) & = \begin{cases}-\delta x-\delta^{2} / 2 & \text { if } x \leq-\delta \\
\frac{1}{2} x^{2} & \text { if } x \geq-\delta\end{cases} \\
x_{0} & =-(1+\delta / 2)
\end{aligned}
$$

- Then,

$$
f\left(x_{0}\right)=\delta \quad \text { and } \quad f\left(x_{T}\right)=\delta-\delta^{2} \sum h_{i}
$$

A suitable induction

- Intuition: Long flat regions of small slope is the worst case
- Suppose $\delta>0$ small and consider

$$
\begin{aligned}
f(x) & = \begin{cases}-\delta x-\delta^{2} / 2 & \text { if } x \leq-\delta \\
\frac{1}{2} x^{2} & \text { if } x \geq-\delta\end{cases} \\
x_{0} & =-(1+\delta / 2)
\end{aligned}
$$

- Then,

$$
f\left(x_{0}\right)=\delta \quad \text { and } \quad f\left(x_{T}\right)=\delta-\delta^{2} \sum h_{i}
$$

- Thus, for $\delta>0$ small,

$$
p_{h}(\delta) \geq \delta-\delta^{2} \sum h_{i}
$$

Straightforward blocks

- We say a steplength block $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$ is Δ-straightforward if

$$
p_{h}(\delta) \leq \delta-\delta^{2} \sum h_{i} \quad \forall \delta \in[0, \Delta]
$$

Straightforward blocks

- We say a steplength block $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$ is Δ-straightforward if

$$
p_{h}(\delta) \leq \delta-\delta^{2} \sum h_{i} \quad \forall \delta \in[0, \Delta]
$$

- Solving a recurrence gives

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right) \leq \frac{1}{\operatorname{avg}(h) T}+O\left(\frac{1}{T^{2}}\right)
$$

Straightforward blocks

- We say a steplength block $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$ is Δ-straightforward if

$$
p_{h}(\delta) \leq \delta-\delta^{2} \sum h_{i} \quad \forall \delta \in[0, \Delta]
$$

- Solving a recurrence gives

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right) \leq \frac{1}{\operatorname{avg}(h) T}+O\left(\frac{1}{T^{2}}\right)
$$

- New goal: maximize $\operatorname{avg}(h)$ over >0-straightforward steplength blocks

Straightforward blocks

- We say a steplength block $h=\left(h_{0}, h_{1}, \ldots, h_{T-1}\right)$ is Δ-straightforward if

$$
p_{h}(\delta) \leq \delta-\delta^{2} \sum h_{i} \quad \forall \delta \in[0, \Delta]
$$

- Solving a recurrence gives

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right) \leq \frac{1}{\operatorname{avg}(h) T}+O\left(\frac{1}{T^{2}}\right)
$$

- New goal: maximize $\operatorname{avg}(h)$ over >0-straightforward steplength blocks
- We show that $\operatorname{avg}\left(h^{(k)}\right)$ is exponentially large in $k, \Delta^{(k)}$ is \geq exponentially small \longrightarrow accelerated convergence rates

Certifying straightforwardness

- Recall PEP:
$p_{h}(\delta)=$ minimum value of SDP

Certifying straightforwardness

- Recall PEP: $\quad p_{h}(\delta)=$ minimum value of SDP
- Then, h is Δ-straightforward if the following set is nonempty for all $\delta \in[0, \Delta]$

$$
\mathcal{R}_{h, \delta}:=\left\{\begin{array}{ll}
& \sum_{i \neq j} \lambda_{i, j} a_{i, j}=a_{\star, t}-\left(1-2 \delta \sum_{i} h_{i}\right) a_{\star, 0} \\
\lambda \in \mathbb{R}^{(t+2) \times(t+2)}: & \lambda \geq 0 \\
& Z_{h, \delta}(\lambda) \succeq 0
\end{array}\right\}
$$

Certifying straightforwardness

- Recall PEP: $\quad p_{h}(\delta)=$ minimum value of SDP
- Then, h is Δ-straightforward if the following set is nonempty for all $\delta \in[0, \Delta]$

$$
\mathcal{R}_{h, \delta}:=\left\{\begin{array}{ll}
& \sum_{i \neq j} \lambda_{i, j} a_{i, j}=a_{\star, t}-\left(1-2 \delta \sum_{i} h_{i}\right) a_{\star, 0} \\
\lambda \in \mathbb{R}^{(t+2) \times(t+2)}: & \lambda \geq 0 \\
& Z_{h, \delta}(\lambda) \succeq 0
\end{array}\right\}
$$

- To get around solving one SDP for each $\delta \in[0, \Delta]$, we parameterize

$$
\lambda(\delta)=\lambda_{0}+\delta \gamma
$$

Certifying straightforwardness

- Recall PEP: $\quad p_{h}(\delta)=$ minimum value of SDP
- Then, h is Δ-straightforward if the following set is nonempty for all $\delta \in[0, \Delta]$

$$
\mathcal{R}_{h, \delta}:=\left\{\begin{array}{ll}
& \sum_{i \neq j} \lambda_{i, j} a_{i, j}=a_{\star, t}-\left(1-2 \delta \sum_{i} h_{i}\right) a_{\star, 0} \\
\lambda \in \mathbb{R}^{(t+2) \times(t+2)}: & \lambda \geq 0 \\
& Z_{h, \delta}(\lambda) \succeq 0
\end{array}\right\}
$$

- To get around solving one SDP for each $\delta \in[0, \Delta]$, we parameterize

$$
\lambda(\delta)=\lambda_{0}+\delta \gamma
$$

- This becomes a nonlinear SDP but can be "reformulated" into a regular SDP if we consider "limiting behavior as $\Delta \rightarrow 0$ ", at which point we can attempt to certify Δ-straightforwardness computationally

Computer assisted design/proofs

A few words on how we designed our stepsizes

- Mostly a guessing game:

A few words on how we designed our stepsizes

- Mostly a guessing game:
numerically solve some instances \longrightarrow conjecture patterns \longrightarrow solve larger instances \longrightarrow repeat

A few words on how we designed our stepsizes

- Mostly a guessing game: numerically solve some instances \longrightarrow conjecture patterns \longrightarrow solve larger instances \longrightarrow repeat
- Exhaustive search for $T=2,3,4,5$ (three computers running for about a week)

A few words on how we designed our stepsizes

- Mostly a guessing game: numerically solve some instances \longrightarrow conjecture patterns \longrightarrow solve larger instances \longrightarrow repeat
- Exhaustive search for $T=2,3,4,5$ (three computers running for about a week)
- Spot semidefinite term always rank-one and nonnegative at optimal solution $\longrightarrow T=7,15$

A few words on how we designed our stepsizes

- Mostly a guessing game: numerically solve some instances \longrightarrow conjecture patterns \longrightarrow solve larger instances \longrightarrow repeat
- Exhaustive search for $T=2,3,4,5$ (three computers running for about a week)
- Spot semidefinite term always rank-one and nonnegative at optimal solution $\longrightarrow T=7,15$
- Spot optimal sparsity pattern for λ_{0} and dependence of γ on $\lambda_{0} \longrightarrow T=31,63$

A few words on how we designed our stepsizes

- Mostly a guessing game: numerically solve some instances \longrightarrow conjecture patterns \longrightarrow solve larger instances \longrightarrow repeat
- Exhaustive search for $T=2,3,4,5$ (three computers running for about a week)
- Spot semidefinite term always rank-one and nonnegative at optimal solution $\longrightarrow T=7,15$
- Spot optimal sparsity pattern for λ_{0} and dependence of γ on $\lambda_{0} \longrightarrow T=31,63$
- Spot recurrence relation in step lengths in optimal $h \longrightarrow T=127,255$

A few words on how we designed our stepsizes

- Mostly a guessing game: numerically solve some instances \longrightarrow conjecture patterns \longrightarrow solve larger instances \longrightarrow repeat
- Exhaustive search for $T=2,3,4,5$ (three computers running for about a week)
- Spot semidefinite term always rank-one and nonnegative at optimal solution $\longrightarrow T=7,15$
- Spot optimal sparsity pattern for λ_{0} and dependence of γ on $\lambda_{0} \longrightarrow T=31,63$
- Spot recurrence relation in step lengths in optimal $h \longrightarrow T=127,255$
- Spot patterns in $\lambda_{0} \longrightarrow T=511$

Pictures of process

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs
- Alternating between pattern spotting and solving larger and larger SDPs \longrightarrow Conjecture for analytic form of solutions

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs
- Alternating between pattern spotting and solving larger and larger SDPs \longrightarrow Conjecture for analytic form of solutions
-Where to go from here?

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs
- Alternating between pattern spotting and solving larger and larger SDPs \longrightarrow Conjecture for analytic form of solutions
-Where to go from here?
- Strongly convex setting $\longrightarrow O\left(\kappa^{0.976} \log \left(\epsilon^{-1}\right)\right)$

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs
- Alternating between pattern spotting and solving larger and larger SDPs \longrightarrow Conjecture for analytic form of solutions
-Where to go from here?
- Strongly convex setting $\longrightarrow O\left(\kappa^{0.976} \log \left(\epsilon^{-1}\right)\right)$
- Nonconvex setting

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs
- Alternating between pattern spotting and solving larger and larger SDPs \longrightarrow Conjecture for analytic form of solutions
- Where to go from here?
- Strongly convex setting $\longrightarrow O\left(\kappa^{0.976} \log \left(\epsilon^{-1}\right)\right)$
- Nonconvex setting
- Understanding/remedying robustness

Conclusion

- First accelerated convergence guarantee for gradient descent using long steps

$$
\min _{s \leq T} f\left(x_{s}\right)-f\left(x^{\star}\right)=O\left(\frac{1}{T^{1.02449}}\right)
$$

- How did we do this?
- Straightforward patterns: where flat regions are worst case
- Can certify straightforwardness by (analytically) solving SDPs
- Alternating between pattern spotting and solving larger and larger SDPs \longrightarrow Conjecture for analytic form of solutions
-Where to go from here?
- Strongly convex setting $\longrightarrow O\left(\kappa^{0.976} \log \left(\epsilon^{-1}\right)\right)$
- Nonconvex setting
- Understanding/remedying robustness

Questions?

References I

Agarwal, N., Goel, S., and Zhang, C. (2021). Acceleration via fractal learning rate schedules. In Proceedings of the 38th International Conference on Machine Learning, volume 139, pages 87-99.
Altschuler, J. (2018). Greed, hedging, and acceleration in convex optimization. Master's thesis, Massachusetts Institute of Technology.
Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202.
Candès, E. J., Strohmer, T., and Voroninski, V. (2013). Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 66(8):1241-1274.
Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE transactions on information theory, 51(12):4203-4215.
Chen, Y., Chi, Y., and Goldsmith, A. J. (2015). Exact and stable covariance estimation from quadratic sampling via convex programming. IEEE Transactions on Information Theory, 61(7):4034-4059.
Das Gupta, S., Parys, B. P. V., and Ryu, E. (2023). Branch-and-bound performance estimation programming: A unified methodology for constructing optimal optimization methods. Mathematical Programming.

References II

Drori, Y. and Teboulle, M. (2012). Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical Programming, 145:451-482.
Lebedev, V. and Finogenov, S. (1971). Ordering of the iterative parameters in the cyclical chebyshev iterative method. USSR Computational Mathematics and Mathematical Physics, 11(2):155-170.
Loshchilov, I. and Hutter, F. (2016). Sgdr: Stochastic gradient descent with restarts. ArXiv, abs/1608.03983.
Oymak, S. (2021). Provable super-convergence with a large cyclical learning rate. IEEE Signal Process. Lett., 28:1645-1649.
Polyak, B. T. (1969). Minimization of unsmooth functionals. USSR Computational Mathematics and Mathematical Physics, 9(3):14-29.
Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471-501.
Renegar, J. and Grimmer, B. (2022). A simple nearly optimal restart scheme for speeding up first-order methods. Foundations of Computational Mathematics, 22(1):211-256.
Roulet, V. and d'Aspremont, A. (2017). Sharpness, restart and acceleration. Advances in Neural Information Processing Systems, 30.

References III

Smith, L. N. (2015). Cyclical learning rates for training neural networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 464-472.
Smith, L. N. and Topin, N. (2017). Super-convergence: very fast training of neural networks using large learning rates. In Defense + Commercial Sensing.
Taylor, A., Hendrickx, J., and Glineur, F. (2017). Smooth strongly convex interpolation and exact worst-case performance of first-order methods. Mathematical Programming, 161:307-345.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1):267-288.
Yang, T. and Lin, Q. (2018). Rsg: Beating subgradient method without smoothness and strong convexity. The Journal of Machine Learning Research, 19(1):236-268.
Young, D. (1953). On richardson's method for solving linear systems with positive definite matrices. Journal of Mathematics and Physics, 32(1-4):243-255.

[^0]: Related: Candes and Tao [2005], Recht et al. [2010], Candès et al. [2013]

[^1]: Related: Candes and Tao [2005], Recht et al. [2010], Candès et al. [2013]

[^2]: Related: Candes and Tao [2005], Recht et al. [2010], Candès et al. [2013]

[^3]: Related: Recht et al. [2010], Chen et al. [2015]

[^4]: Related: Recht et al. [2010], Chen et al. [2015]

[^5]: Related: Recht et al. [2010], Chen et al. [2015]

[^6]: Related: Recht et al. [2010], Chen et al. [2015]

[^7]: Related: Beck and Teboulle [2009], Tibshirani [1996]

