
New first-order methods in modern/classical settings

Daniels School of Business Quantitative Methods Seminar
September 2023

Lijun Ding
UW-Madison

Ben Grimmer
Johns Hopkins

Kevin Shu
GA Tech

Alex L. Wang
Purdue University

Ding, Grimmer, Shu, Wang New first-order methods in modern and classical settings 1 / 40



Part 1

Sharp exact penalty formulations in signal recovery

Joint work with Lijun Ding
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Outline

• Motivation: Sparse recovery and low-rank covariance estimation

• −→ Abstract signal recovery problem
• A new formulation of the abstract problem that is sharp

• Better robustness guarantees, faster algorithms

• Numerical results
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Motivation: Sparse recovery and covariance estimation
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Sparse recovery setup

• Recovery task: Recover x♯ ∈ Rn from A ∈ Rm×n, b = Ax♯

• Suppose A entrywise i.i.d. N(0, 1/m2)∣∣∣supp(x♯)∣∣∣ ≤ k ≪ n m ≍ k log(n)

• Conceptual approach: min
x∈Rn

{
|supp(x)| : Ax = b

}
• Convex optimization approach: In this regime, x♯ is unique minimizer of

min
x∈Rn

{
∥x∥1 : Ax = b

}

Related: Candes and Tao [2005], Recht et al. [2010], Candès et al. [2013]
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Low-rank covariance estimation

• Recovery task: Recover X♯ ∈ Sn+ with rank(X♯) ≤ k from A : Sn → Rm,
b = A(X♯)

• Suppose A∗(ei) = aia
⊺
i where ai ∼ N(0, In/m) and m ≍ nk

• Known as phase retrieval when k = 1

• Conceptual approach:min
X∈Sn

{
rank(X) :

A(X) = b

X ⪰ 0

}
• Convex optimization approach: X♯ is unique minimizer of

min
X∈Sn

{
tr(X) :

A(X) = b

X ⪰ 0

}

Related: Recht et al. [2010], Chen et al. [2015]
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Abstract signal recovery problem and questions

A : V → Rm

b = A(x♯)
Opt. alg. for (Constrained)

Observation Optimization
x♯ ∈ V (A, b) x̃ ∈ V

(Constrained) min
x∈V

{
f(x) :

A(x) = b

x ∈ K

}

• If no noise in sensing process and no error in optimization algorithm, x̃ = x♯

• Questions:

• What if the algorithm receives b̃ = A(x♯) + δ?
• What if algorithm only produces a ϵ-optimal and ϵ-feasible solution?
• What algorithm?
• Another convex problem?
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A sharp penalty formulation
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A penalty formulation

• (Constrained) min
x∈V

{
f(x) :

A(x) = b

x ∈ K

}

• Penalty formulation: let r ≍
√
k be a penalty parameter

F (x) := f(x) + r ∥A(x)− b∥1 + 2dist1(x,K)

• Compare: Lasso ∥Ax− b∥22 vs ∥Ax− b∥1

A : V → Rm

b = A(x♯)
Opt. alg. for F

x♯ ∈ V (A, b) x̃ ∈ V

Observation Optimization

Related: Beck and Teboulle [2009], Tibshirani [1996]
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Sharpness in F

Theorem (Structural)

F is µ-sharp in the ℓ1 norm where µ is a function of “RIP constants of A”

F (x)− F (x♯) ≥ µ
∥∥x− x♯

∥∥
1
, ∀x ∈ V

and L-Lipschitz in the ℓ1 norm with L ≍
√
k

|F (x)− F (y)| ≤ L ∥x− y∥1 , ∀x, y.

• µ increasing with “RIP constants of A”, in turn depends on sample size
• Sparse recovery: µ ≍ 1 for m ≍ k log(n)

• Covariance estimation: µ ≍ 1 for m ≍ nk

Related: Candes and Tao [2005], Recht et al. [2010]
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Robustness of recovery procedure

A : V → Rm

b̃ = A(x♯) + δ
Opt. alg. for F̃

x♯ ∈ V (A, b̃) x̃ ∈ V

Observation Optimization

Corollary (Robustness)

Let x̃ be an ϵ minimizer of F̃ .
• (to small noise) x̃ satisfies

∥∥x̃− x♯
∥∥
1
≲

√
k
µ ∥δ∥1 +

ϵ
µ

• (to sparse noise) If |supp(δ)|
m ≲ 1/

√
k, then

∥∥x̃− x♯
∥∥
1
≲ ϵ

µ
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Algorithms for minimizing F

A : V → Rm

b = A(x♯)
RMD for F

x♯ ∈ V (A, b) x̃ ∈ V

Observation Optimization

Corollary (Algorithms)

Restarted mirror descent (RMD) algorithm produces an ϵ-optimal solution to F in

O
(

k
µ2 log(n) log(ϵ

−1)
)

iterations of the mirror descent update.

• Requires µ
• If µ is not known, extra log(ϵ−1) factor

Related: Polyak [1969], Roulet and d’Aspremont [2017], Yang and Lin [2018], Renegar and Grimmer [2022]
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Algorithms for minimizing F

• Suppose we run MD from x0 for t iterations with step size η and mirror map

h(x) ≈ 1

2
∥x− x0∥21

• MD: output y

F (y)− F (x♯) ≤ L2η lnn

2
+

Dh(x
♯||x0)

2ηt

≈ L2η lnn

2
+

∥∥x♯ − x0

∥∥2
1

4ηt

= L
∥∥x♯ − x0

∥∥
1

√
lnn

2t

• Applying sharpness −→

F (y)− F (x♯) ≤ 1

2

(
F (x0)− F (x♯)

)
after ≍ L2

µ2 lnn iterations

Related: Polyak [1969], Roulet and d’Aspremont [2017], Yang and Lin [2018], Renegar and Grimmer [2022]
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Numerical experiments
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Restarted mirror descent

• Let T be statistical threshold for sparse recovery, low-rank matrix sensing
(covariance estimation without PSD constraint), and phase retrieval (covariance
estimation with k = 1)
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Restarted mirror descent vs. Polyak subgradient

• Polyak subgradient converges linearly on sharp Lipschitz functions in ℓ2 norm

Polyak-RMD T Polyak-RMD 2T Polyak-RMD 3T Polyak-RMD 4T
Polyak-GD T Polyak-GD 2T Polyak-GD 3T Polyak-GD 4T
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Conclusion

• Abstract statistical signal recovery problem: sparse recovery, covariance
estimation, matrix sensing, phase retrieval

• Contributions

• Structural: ℓ1 sharp and Lipschitz penalty formulation
• Robustness: to observation error and optimization error
• Algorithms: Restarted Mirror Descent converges linearly

Questions?
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Part 2

O(1/T 1.02449) Convergence of long-step gradient descent

Joint work with Benjamin Grimmer, Kevin Shu
Grimmer, Shu, Wang Accelerated convergence rates for gradient descent 18 / 40



Outline

• Preview of results (better guarantees for smooth convex minimization)

• Why to expect this (history of prior works)
• Conceptual contributions
• Computer assisted design/proofs
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Preview of results

Grimmer, Shu, Wang Accelerated convergence rates for gradient descent 20 / 40



Smooth convex optimization and gradient descent

• Want gradient descent-style algorithms for general convex functions f with

• f is 1-smooth
• f has minimizer x⋆

• supx∈Rn {∥x− x⋆∥ : f(x) ≤ f(x0)} ≤ 1

• Gradient descent with steplength sequence h = (h0, h1, . . . )

x1 = x0 − h0∇f(x0) x2 = x1 − h1∇f(x1) . . .

xi+1 = xi − hi∇f(xi)

• Goal: pick steplength sequence (h0, h1, . . . ) to maximize convergence rate
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What we knew prior to 2021

• f(xi+1) < f(xi) is guaranteed if and only if hi ∈ (0, 2)

• Per-iteration guaranteed worst-case descent maximized by hi = 1

• For h = (1, 1, 1, . . . ),

f(xT )− f(x⋆) ≤ 1

2T

Today: a per-iteration analysis is too short-sighted

• Optimal rates for first-order methods: Accelerated gradient descent

f(xT )− f(x⋆) ≤ 2

T 2

Note: this is not a gradient descent-style algorithm
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Taking larger steps: breaking some intuitions

• Consider h = 0.99×
(

3
2 , 5,

3
2 , 3

2 , 5,
3
2 , ...

)

• We can guarantee

f(xT )− f(x⋆) ≤ 1

2.66 · T
+O

(
1

T 2

)
for all T ≡ 0mod 3

• This is faster even though we cannot guarantee per-iteration descent!

x0

x1

x2

x3 x0
x1

x2

x3

x0
x1

x2
x3
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The full sequence

• We construct steplength blocks h(k) ∈ R2k+1−1 that can be scaled down to
guarantee descent

• h(0) = (1), h(1) =
(
3
2 , 5,

3
2

)
, h(2) =

(
3
2 , 1 +

√
2,
√
2, 7 + 4

√
2,
√
2, 1 +

√
2, 32

)
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h(4)

• Longer patterns have increasingly fast convergence rates
• avg(h(k)) is exponential in k
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A closer look at h(k)
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• βi = 1 + (1 +
√
2)i−1 −→ (1 +

√
2) is the silver ratio and dictates our rate

• µ is sum of all other stepsizes plus two
• αi picked so that

∏
stepsizes(stepsize − 1) = 1
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Numerical comparison of h(k)
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• h(12) has length 8191
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Accelerated convergence for gradient descent-style algorithms

Theorem
Suppose

h = 1
2

(
h(0), . . . , h(0) , h(1), . . . , h(1) , . . . , h(k), . . . , h(k) , . . .

)
where each h(k) is repeated ≈ ck times. Then(

min
t≤T

f(xt)

)
− f(x⋆) = O

(
1

T 1.02449

)
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Why should we expect this?
AKA some recent work in the area
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The Performance Estimation Problem (PEP) 1/2

• Question: Suppose we have a candidate h = (h0, h1, . . . , hT−1). What is the
worst case function? (Smoothness 1, initial distance 1, initial suboptimality δ)

ph(δ) := max
x0,x⋆,f


f(xT )− f(x⋆) :

f is convex, 1-smooth
∥x0 − x⋆∥2 ≤ 1

f(x0)− f(x⋆) ≤ δ

∇f(x⋆) = 0

xi+1 = xi − hi∇f(xi)


• Iterates xi only depend on gradients

−→ Optimize over gradients gi and
function values fi for which there exists an 1-smooth, convex interpolating f

• Drori and Teboulle [2012], Taylor et al. [2017] give necessary and sufficient
conditions for such a function to exist . . . nonconvex quadratic program

• The SDP relaxation of this nonconvex quadratic program is exact!
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The Performance Estimation Problem (PEP) 2/2

• ph(δ)

= maximum value of nonconvex infinite dimensional problem
= maximum value of a nonconvex quadratic program
= maximum value of an SDP
= minimum value of the dual SDP

• Take-aways:

• ph(δ) can be computed “efficiently” (for T small)
• Any feasible solution to the dual SDP gives an upper bound on worst-case

performance!

• Now, how to design h? min
h=(h0,...,hT−1)

ph(δ)
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Gradient descent with long steps

• Das Gupta et al. [2023]: Complex branch-and-bound scheme for T ∈ [1, . . . , 50]

min
h=(h0,...,hT−1)

ph(1/2)

• Strongest guarantee

f(x50) ≤ 0.002 ≈ factor of 5 faster than
1

2T

• To get actual convergence rates, need a suitable induction
• Our work: analytically construct solution for all δ, with ph(δ) small
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Long-step gradient descent in other contexts

• Young [1953], Lebedev and Finogenov [1971], Agarwal et al. [2021]: Long-step
gradient descent for smooth strongly convex quadratic functions

• Can achieve full acceleration O(
√
κ log(ϵ−1))

• Oymak [2021]: Smooth strongly convex minimization with bimodal Hessians
• Altschuler [2018]: Smooth strongly convex minimization (solved PEP for

T = 1, 2, 3)

−→ Altschuler, Parillo [yesterday] O(1/T 1.27) for smooth convex minimization

• Loshchilov and Hutter [2016], Smith [2015], Smith and Topin [2017]:
Nonconvex, smooth minimization in neural networks
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Conceptual contributions
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A suitable induction

• Intuition: Long flat regions of small slope is the worst case

• Suppose δ > 0 small and consider

f(x) =

{
−δx− δ2/2 if x ≤ −δ
1
2x

2 if x ≥ −δ

x0 = −(1 + δ/2)

x0
x1

x2
x3

• Then, f(x0) = δ and f(xT ) = δ − δ2
∑

hi

• Thus, for δ > 0 small, ph(δ) ≥ δ − δ2
∑

hi
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Straightforward blocks

• We say a steplength block h = (h0, h1, . . . , hT−1) is ∆-straightforward if

ph(δ) ≤ δ − δ2
∑

hi ∀δ ∈ [0,∆]

• Solving a recurrence gives

min
s≤T

f(xs)− f(x⋆) ≤ 1

avg(h)T
+O

(
1

T 2

)
• New goal: maximize avg(h) over > 0-straightforward steplength blocks
• We show that avg(h(k)) is exponentially large in k, ∆(k) is ≥ exponentially small
−→ accelerated convergence rates
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Certifying straightforwardness

• Recall PEP: ph(δ) = minimum value of SDP

• Then, h is ∆-straightforward if the following set is nonempty for all δ ∈ [0,∆]

Rh,δ :=

λ ∈ R(t+2)×(t+2) :

∑
i ̸=j λi,jai,j = a⋆,t − (1− 2δ

∑
i hi)a⋆,0

λ ≥ 0

Zh,δ(λ) ⪰ 0


• To get around solving one SDP for each δ ∈ [0,∆], we parameterize

λ(δ) = λ0 + δγ

• This becomes a nonlinear SDP but can be “reformulated” into a regular SDP if
we consider “limiting behavior as ∆ → 0”, at which point we can attempt to
certify ∆-straightforwardness computationally
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Computer assisted design/proofs
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A few words on how we designed our stepsizes

• Mostly a guessing game:

numerically solve some instances −→ conjecture patterns −→ solve larger
instances −→ repeat

• Exhaustive search for T = 2, 3, 4, 5 (three computers running for about a week)
• Spot semidefinite term always rank-one and nonnegative at optimal solution

−→ T = 7, 15

• Spot optimal sparsity pattern for λ0 and dependence of γ on λ0 −→ T = 31, 63

• Spot recurrence relation in step lengths in optimal h −→ T = 127, 255

• Spot patterns in λ0 −→ T = 511
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Pictures of process
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Conclusion

• First accelerated convergence guarantee for gradient descent using long steps

min
s≤T

f(xs)− f(x⋆) = O

(
1

T 1.02449

)

• How did we do this?

• Straightforward patterns: where flat regions are worst case
• Can certify straightforwardness by (analytically) solving SDPs
• Alternating between pattern spotting and solving larger and larger SDPs −→

Conjecture for analytic form of solutions

• Where to go from here?

• Strongly convex setting −→ O(κ0.976 log(ϵ−1))
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