New notions of simultaneous diagonalizability of quadratic forms with applications to QCQPs

Alex L. Wang, MOPTA, Aug. 21

Joint work with Rujun Jiang, Fudan University

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
$$

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}
$$

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
\begin{array}{ll}
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \\
\inf _{x} & q_{1}(x) \\
\text { s.t. } & q_{i}(x)=0, \forall i=2, \ldots, m
\end{array}
$$

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
\begin{array}{ll}
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \\
\inf _{x} & q_{1}(x) \\
\text { s.t. } & q_{i}(x)=0, \forall i=2, \ldots, m
\end{array}
$$

- Max-Cut

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
\begin{array}{ll}
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \\
\inf _{x} & q_{1}(x) \\
\text { s.t. } & q_{i}(x)=0, \forall i=2, \ldots, m
\end{array}
$$

- Max-Cut, Max-Clique

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
\begin{array}{ll}
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \\
\inf _{x} & q_{1}(x) \\
\text { s.t. } & q_{i}(x)=0, \forall i=2, \ldots, m
\end{array}
$$

- Max-Cut, Max-Clique, binary programming

Quadratically constrained quadratic programs (QCQPs)

- $q_{1}, \ldots, q_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quadratic functions

$$
\begin{array}{ll}
q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i} \\
\inf _{x} & q_{1}(x) \\
\text { s.t. } & q_{i}(x)=0, \forall i=2, \ldots, m
\end{array}
$$

- Max-Cut, Max-Clique, binary programming, polynomial optimization

Diagonal QCQPs

- QCQPs where $\left\{A_{i}\right\}$ are diagonal matrices

Diagonal QCQPs

- QCQPs where $\left\{A_{i}\right\}$ are diagonal matrices
- Nicer?

Diagonal QCQPs

- QCQPs where $\left\{A_{i}\right\}$ are diagonal matrices
- Nicer?
- SDP relaxations more tractable ${ }^{1}$
${ }^{1}$ [Ben-Tal, den Hertog 14], [Jiang, Li 16], [Le, Nguyen 20]

Diagonal QCQPs

- QCQPs where $\left\{A_{i}\right\}$ are diagonal matrices
- Nicer?
- SDP relaxations more tractable ${ }^{1}$
- Better understanding of exactness of relaxations ${ }^{2}$
${ }^{1}$ [Ben-Tal, den Hertog 14], [Jiang, Li 16], [Le, Nguyen 20]
${ }^{2}$ [Burer, Ye 19], [W and Kilınç-Karzan 21]

Diagonal QCQPs

- QCQPs where $\left\{A_{i}\right\}$ are diagonal matrices
- Nicer?
- SDP relaxations more tractable ${ }^{1}$
- Better understanding of exactness of relaxations ${ }^{2}$
- Black-box global solvers seem to perform better
${ }^{1}$ [Ben-Tal, den Hertog 14], [Jiang, Li 16], [Le, Nguyen 20]
${ }^{2}$ [Burer, Ye 19], [W and Kilınç-Karzan 21]

From a general QCQP to a diagonal QCQP

- Given a QCQP, can we rewrite it as a diagonal QCQP?

From a general QCQP to a diagonal QCQP

- Given a QCQP, can we rewrite it as a diagonal QCQP?

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is simultaneously diagonalizable via congruence (SDC) if there exist invertible $P \in \mathbb{R}^{n \times n}$:

$$
P^{\top} A_{i} P=D_{i}, \quad \forall i
$$

From a general QCQP to a diagonal QCQP

- Given a QCQP, can we rewrite it as a diagonal QCQP?

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is simultaneously diagonalizable via congruence (SDC) if there exist invertible $P \in \mathbb{R}^{n \times n}$:

$$
P^{\top} A_{i} P=D_{i}, \quad \forall i
$$

- $\quad x=P y$

From a general QCQP to a diagonal QCQP

- Given a QCQP, can we rewrite it as a diagonal QCQP?

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is simultaneously diagonalizable via congruence (SDC) if there exist invertible $P \in \mathbb{R}^{n \times n}$:

$$
P^{\top} A_{i} P=D_{i}, \quad \forall i
$$

- $\quad x=P y \quad \Longrightarrow \quad q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}$

From a general QCQP to a diagonal QCQP

- Given a QCQP, can we rewrite it as a diagonal QCQP?

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is simultaneously diagonalizable via congruence (SDC) if there exist invertible $P \in \mathbb{R}^{n \times n}$:

$$
P^{\top} A_{i} P=D_{i}, \quad \forall i
$$

- $\quad x=P y \quad \Longrightarrow \quad q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}$

$$
=y^{\top}\left(P^{\top} A_{i} P\right) y+2 b_{i}^{\top} P y+c_{i}
$$

From a general QCQP to a diagonal QCQP

- Given a QCQP, can we rewrite it as a diagonal QCQP?

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is simultaneously diagonalizable via congruence (SDC) if there exist invertible $P \in \mathbb{R}^{n \times n}$:

$$
P^{\top} A_{i} P=D_{i}, \quad \forall i
$$

- $\quad x=P y \quad \Longrightarrow \quad q_{i}(x)=x^{\top} A_{i} x+2 b_{i}^{\top} x+c_{i}$

$$
=y^{\top}\left(P^{\top} A_{i} P\right) y+2 b_{i}^{\top} P y+c_{i}
$$

$\left\{A_{i}\right\}$ is SDC $\Longleftrightarrow \exists\left\{\ell_{1}, \ldots, \ell_{n}\right\} \subseteq \mathbb{R}^{n}:$
basis

$$
A_{i}=\sum_{j} \mu_{j}^{(i)} \ell_{j} \ell_{j}^{\top}, \quad \forall i
$$

Outline

(1) Introduction: QCQPs, diagonalization, SDC

Outline

(1) Introduction: QCQPs, diagonalization, SDC
(2) New notions of simultaneous diagonalizability

Outline

(1) Introduction: QCQPs, diagonalization, SDC
(2) New notions of simultaneous diagonalizability

- d-Restricted SDC

Outline

(1) Introduction: QCQPs, diagonalization, SDC
(2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\}$ 1-RSDC?

Outline

(1) Introduction: QCQPs, diagonalization, SDC
(2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\}$ 1-RSDC? Almost everywhere!

Outline

(1) Introduction: QCQPs, diagonalization, SDC
(2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\}$ 1-RSDC? Almost everywhere!
(3) Experiments

Outline

(1) Introduction: QCQPs, diagonalization, SDC
(2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\}$ 1-RSDC? Almost everywhere!
(3) Experiments
(4) Conclusion: additional work, future directions

Outline

(1) Introduction: QCQPs, diagonalization, SDC

(2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\}$ 1-RSDC? Almost everywhere!
(3) Experiments
(4) Conclusion: additional work, future directions

d-RSDC

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-Restricted SDC if there exists $\left\{\bar{A}_{i}\right\} \subseteq \mathbb{S}^{n+d}$ SDC

$$
\bar{A}_{i}=\left(\begin{array}{cc}
A_{i} & * \\
* & *
\end{array}\right)
$$

d-RSDC

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-Restricted SDC if there exists $\left\{\bar{A}_{i}\right\} \subseteq \mathbb{S}^{n+d}$ SDC

$$
\begin{aligned}
\bar{A}_{i} & =\left(\begin{array}{cc}
A_{i} & * \\
* & *
\end{array}\right) \\
x^{\top} A_{i} x & =\binom{x}{0}^{\top}\left(\begin{array}{cc}
A_{i} & * \\
* & *
\end{array}\right)\binom{x}{0}
\end{aligned}
$$

d-RSDC

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-Restricted SDC if there exists $\left\{\bar{A}_{i}\right\} \subseteq \mathbb{S}^{n+d}$ SDC

$$
\begin{gathered}
\bar{A}_{i}=\left(\begin{array}{cc}
A_{i} & * \\
* & *
\end{array}\right) \\
x^{\top} A_{i} x=\binom{x}{0}^{\top}\left(\begin{array}{cc}
A_{i} & * \\
* & *
\end{array}\right)\binom{x}{0} \\
\inf _{x} \quad\binom{x}{0}^{\top} \bar{A}_{1}\binom{x}{0}+\ldots \\
\text { s.t. }\binom{x}{0}^{\top} \bar{A}_{i}\binom{x}{0}+\cdots=0, \forall i=2, \ldots, m
\end{gathered}
$$

d-RSDC

Definition

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-Restricted SDC if there exists $\left\{\bar{A}_{i}\right\} \subseteq \mathbb{S}^{n+d}$ SDC

$$
\begin{gathered}
\bar{A}_{i}=\left(\begin{array}{cc}
A_{i} & * \\
* & *
\end{array}\right) \\
x^{\top} A_{i} x=\binom{x}{0}^{\top}\left(\begin{array}{ll}
A_{i} & * \\
* & *
\end{array}\right)\binom{x}{0} \\
\inf _{x, w} \quad\binom{x}{w}^{\top} \bar{A}_{1}\binom{x}{w}+\ldots \\
\text { s.t. }\binom{x}{w}^{\top} \bar{A}_{i}\binom{x}{w}+\cdots=0, \forall i=2, \ldots, m \\
w=0
\end{gathered}
$$

d-RSDC

$\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-RSDC $\Longleftrightarrow \exists\left\{\ell_{1}, \ldots, \ell_{n+d}\right\} \subseteq \mathbb{R}^{n}:$
 spanning \mathbb{R}^{n}

$$
A_{i}=\sum_{j} \mu_{j}^{(i)} \ell_{j} \ell_{j}^{\top}, \quad \forall i
$$

d-RSDC

- $\quad\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-RSDC $\Longleftrightarrow \exists\left\{\ell_{1}, \ldots, \ell_{n+d}\right\} \subseteq \mathbb{R}^{n}:$
spanning \mathbb{R}^{n}

$$
A_{i}=\sum_{j} \mu_{j}^{(i)} \ell_{j} \ell_{j}^{\top}, \quad \forall i
$$

- $\{A, B\} \subseteq \mathbb{S}^{n}$ is naively n-RSDC

d-RSDC

- $\quad\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-RSDC $\Longleftrightarrow \exists\left\{\ell_{1}, \ldots, \ell_{n+d}\right\} \subseteq \mathbb{R}^{n}:$ spanning \mathbb{R}^{n}

$$
A_{i}=\sum_{j} \mu_{j}^{(i)} \ell_{j} \ell_{j}^{\top}, \quad \forall i
$$

- $\{A, B\} \subseteq \mathbb{S}^{n}$ is naively n-RSDC

Theorem ([W and Jiang 21])

Let $\{A, B\} \subseteq \mathbb{S}^{n}$. Suppose $A^{-1} B$ has only simple eigenvalues. Then $\{A, B\}$ is $1-\mathrm{RSDC}$.

d-RSDC

- $\quad\left\{A_{i}\right\} \subseteq \mathbb{S}^{n}$ is d-RSDC $\Longleftrightarrow \exists\left\{\ell_{1}, \ldots, \ell_{n+d}\right\} \subseteq \mathbb{R}^{n}:$ spanning \mathbb{R}^{n}

$$
A_{i}=\sum_{j} \mu_{j}^{(i)} \ell_{j} \ell_{j}^{\top}, \quad \forall i
$$

- $\{A, B\} \subseteq \mathbb{S}^{n}$ is naively n-RSDC

Theorem ([W and Jiang 21])

Let $\{A, B\} \subseteq \mathbb{S}^{n}$. Suppose $A^{-1} B$ has only simple eigenvalues. Then $\{A, B\}$ is $1-\mathrm{RSDC}$.

- Tools: canonical form for pairs of symmetric matrices ${ }^{3}$
${ }^{3}$ [Uhlig 76], [Lancaster, Rodman 05]

Outline

(1) Introduction: QCQPs, diagonalization, SDC
2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\} 1-R S D C$? Almost everywhere!
(3) Experiments
(4) Conclusion: additional work, future directions

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

Note: Slightly different setup than in paper

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

- A_{1}, A_{2} generated randomly in canonical form

Note: Slightly different setup than in paper

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

- A_{1}, A_{2} generated randomly in canonical form
- k is number of pairs of complex eigenvalues of $A_{1}^{-1} A_{2}$ "How far $\left\{A_{1}, A_{2}\right\}$ is from being SDC"

Note: Slightly different setup than in paper

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

- A_{1}, A_{2} generated randomly in canonical form
- k is number of pairs of complex eigenvalues of $A_{1}^{-1} A_{2}$ "How far $\left\{A_{1}, A_{2}\right\}$ is from being SDC"
- Tested: As-is

Note: Slightly different setup than in paper

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

- A_{1}, A_{2} generated randomly in canonical form
- k is number of pairs of complex eigenvalues of $A_{1}^{-1} A_{2}$ "How far $\left\{A_{1}, A_{2}\right\}$ is from being SDC"
- Tested: As-is, 1-RSDC

Note: Slightly different setup than in paper

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

- A_{1}, A_{2} generated randomly in canonical form
- k is number of pairs of complex eigenvalues of $A_{1}^{-1} A_{2}$ "How far $\left\{A_{1}, A_{2}\right\}$ is from being SDC"
- Tested: As-is, 1-RSDC, 2-RSDC

Note: Slightly different setup than in paper

Setup

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{n}} & x^{\top} A_{1} x \\
\text { s.t. } & x^{\top} A_{2} x \leq 0 \\
& L x \leq 1
\end{aligned}
$$

- A_{1}, A_{2} generated randomly in canonical form
- k is number of pairs of complex eigenvalues of $A_{1}^{-1} A_{2}$ "How far $\left\{A_{1}, A_{2}\right\}$ is from being SDC"
- Tested: As-is, 1 -RSDC, 2 -RSDC, n-RSDC

Note: Slightly different setup than in paper

Results for $n=15$

Results for $n=15$

- *-RSDC outperforms As-is on every instance

Results for $n=15$

- *-RSDC outperforms As-is on every instance
- Condition number blows up with k

Results for $n=15$

- *-RSDC outperforms As-is on every instance
- Condition number blows up with k
- $k=3$: 1-RSDC ($\sim 10^{3}$), 2-RSDC ($\sim 10^{2}$), n-RSDC (1)

Outline

(1) Introduction: QCQPs, diagonalization, SDC
2) New notions of simultaneous diagonalizability

- d-Restricted SDC
- When is $\{A, B\}$ 1-RSDC? Almost everywhere!
(3) Experiments
(4) Conclusion: additional work, future directions

Summary, future directions

- New notions: d-RSDC

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs
- Necessary and/or sufficient conditions for ASDC and d-RSDC for small numbers of matrices

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs
- Necessary and/or sufficient conditions for ASDC and d-RSDC for small numbers of matrices
- Future directions:

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs
- Necessary and/or sufficient conditions for ASDC and d-RSDC for small numbers of matrices
- Future directions: Need better definitions of SDC

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs
- Necessary and/or sufficient conditions for ASDC and d-RSDC for small numbers of matrices
- Future directions: Need better definitions of SDC
- What if cond (P) must be bounded?

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs
- Necessary and/or sufficient conditions for ASDC and d-RSDC for small numbers of matrices
- Future directions: Need better definitions of SDC
- What if cond (P) must be bounded?
- Parameterized constructions of d-RSDC?

Summary, future directions

- New notions: d-RSDC
- 1-RSDC holds a.e. for pairs
- Additional results:
- Almost SDC (ASDC)
- Complete characterization of ASDC for pairs
- Necessary and/or sufficient conditions for ASDC and d-RSDC for small numbers of matrices
- Future directions: Need better definitions of SDC
- What if cond (P) must be bounded?
- Parameterized constructions of d-RSDC?
- Thank you. Questions?

References I

E A. Ben-Tal and D. den Hertog. "Hidden conic quadratic representation of some nonconvex quadratic optimization problems". In: Math. Program. 143 (2014), pp. 1-29.
(S. Burer and Y. Ye. "Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs". In: Math. Program. 181 (2019), pp. 1-17.
R R. Jiang and D. Li. "Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming". In: SIAM J. Optim. 26.3 (2016), pp. 1649-1668.
圊 P. Lancaster and L. Rodman. "Canonical forms for Hermitian matrix pairs under strict equivalence and congruence". In: SIAM Review 47.3 (2005), pp. 407-443.

References II

围 T. H. Le and T. N. Nguyen. "Simultaneous diagonalization via congruence of Hermitian matrices: some equivalent conditions and a numerical solution". In: arXiv preprint arXiv:2007.14034 (2020).
ET. Nguyen et al. "On simultaneous diagonalization via congruence of real symmetric matrices". In: arXiv preprint arXiv:2004.06360 (2020).
(F. Uhlig. "A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil". In: Linear Algebra Appl. 14.3 (1976), pp. 189-209.
囯 A. L. Wang and R. Jiang. "New notions of simultaneous diagonalizability of quadratic forms with applications to QCQPs". In: arXiv preprint 2101.12141 (2021).

References III

A. L. Wang and F. Kılınç-Karzan. "On the tightness of SDP relaxations of QCQPs". In: Math. Program. (2021). Forthcoming. DOI: 10.1007/s10107-020-01589-9.

