
MGMT 690—Convex Optimization
Alex L. Wang
Last updated April 26, 2024

Contents

1 Linear algebra review 5

2 Elementary convex analysis I 11

3 Elementary convex analysis II 17

4 Conic programming I 25

5 Conic programming II 31

6 SOCP representability 41

7 SDP representability 47

8 SDP applications 55

9 Subgradient descent for nonsmooth convex optimization 63

10 Gradient descent for smooth and strongly convex optimiza-
tion 71

11 Oracle lower bounds 83

12 Performance Estimation Programming 87

13 Mirror descent 95

14 Frank–Wolfe / Conditional Gradient Descent 101

1
Linear algebra review

1.1 Euclidean space

Definition 1. A Euclidean space1 is a set of elements V called vectors 1 Also known as a finite-dimensional
real inner product spaceor points endowed with

1. addition: for any u, v ∈ V , u + v ∈ V

2. real scalar multiplication: for any u ∈ V and α ∈ R, αu ∈ V

3. a finite basis: there exists finitely many u1, . . . , uk so that for any
v ∈ V , we can express v =

∑k
i=1 αiui for a unique choice of

α1, . . . , αk ∈ R

4. an inner product: there exists a symmetric bilinear function ⟨·, ·⟩ :
V × V → R satisfying ⟨v, v⟩ ≥ 0 for all v and ⟨v, v⟩ = 0 if and only if
v = 0. □

Example 1.

• Rn with the standard inner product

⟨x, y⟩ :=
n∑

i=1
xiyi

is a Euclidean space.

• Rn×m with the trace inner product

⟨X, Y ⟩ := tr(X⊺Y) =
n∑

i=1

m∑
j=1

Xi,jYi,j

is a Euclidean space.

• Let Q ∈ Sn
++ be a positive definite matrix. Then, Rn with the

Q-weighted inner product

⟨x, y⟩ := x⊺Qy

is a Euclidean space. □

6 mgmt 690—convex optimization

Definition 2. A norm on a Euclidean space V is a function ∥·∥ : V →
R so that

• Positivity: ∥v∥ ≥ 0 for all v ∈ V and ∥v∥ = 0 if and only if v = 0

• Homogeneity: ∥λv∥ = |λ| ∥v∥ for all λ ∈ R and v ∈ V

• Triangle inequality: ∥u + v∥ ≤ ∥u∥+ ∥v∥ for all u, v ∈ V □

Example 2.

• In any Euclidean space V , the induced norm

∥v∥ :=
√
⟨v, v⟩

is a norm.2 2 Exercise: Verify that this is indeed
a norm. It may be useful to first
verify that the Cauchy-Schwarz
inequality holds for the induced norm
on any Euclidean space.

• Let p ∈ [1,∞), the ℓp norm3 on Rn is defined as

3 Exercise: Verify that the same
construction is not a norm for p ∈
(0, 1) and n ≥ 2

∥x∥p :=

(
n∑

i=1
|xi|p

)1/p

.

The ℓ∞ norm is defined as limp→∞ ∥x∥p. It is equivalently,

∥x∥∞ = max
i
|xi| .

The ℓ2 norm is equal to the norm induced by the standard inner
product.

• Let p ∈ [1,∞]. The Schatten-p norm is a norm defined on Rn×m.
Given X ∈ Rn×m, let

svals(X) := (σ1, . . . , σmin(n,m))

denote the list of singular values of X. The Schatten-p norm is

∥X∥Sch-p := ∥svals(X)∥p .

For example, the Schatten-1 norm is the sum of the singular values
and the Schatten-∞ norm is the maximum singular value.

The Schatten-2 norm is also known as the Frobenius norm,
the Schatten-1 norm is also known as the trace-class norm or the
nuclear norm, and the Schatten-∞ norm is also known as the
operator norm. □

1.2 PSD matrices and the Singular Value Decomposition

Definition 3. A matrix X ∈ Rn×n is orthogonal if

X⊺X = I.

That is, if its rows (or columns) form a set of orthonormal vectors.
The set of orthogonal matrices is denoted O(n). □

linear algebra review 7

Definition 4. Given A ∈ Sn, we say that λ ∈ R is an eigenvalue of A

if

det(A− λI) = 0.

Equivalently, if there exists a nonzero vector v ∈ Rn so that Av = λv.
We call such a v, an eigenvector of A (corresponding to eigenvalue
λ). □

Theorem 1 (Spectral theorem for symmetric matrices). Given A ∈ Sn,
there exists a U ∈ O(n) and λ1, . . . , λn ∈ R so that

A = U Diag(λ1, . . . , λn)U
⊺.

The values of λ1, . . . , λn are unique up to reordering and are the eigen-
values of A. The ith column of U is an eigenvector of A corresponding
to eigenvalue λi; it is not unique in general.

Definition 5. A matrix A ∈ Sn is positive semidefinite, denoted
A ∈ Sn

+, if any of the equivalent definitions hold:

• There exists a spectral decomposition of A with λ1, . . . , λn ≥ 0

• x⊺Ax ≥ 0 for all x ∈ Rn

A matrix A ∈ Sn is positive definite, denoted A ∈ Sn
++, if any of the

equivalent definitions hold:

• There exists a spectral decomposition of A with λ1, . . . , λn > 0

• x⊺Ax > 0 for all x ∈ Rn \ {0} □

The definitions above are equivalent by the spectral theorem: Write
A = U Diag(λ1, . . . , λn)U⊺. The set of values of x⊺Ax as x range over
Rn is equal to the set of values of y⊺ Diag(λ1, . . . , λn)y as y = (U⊺x)

ranges over Rn. The latter expression is

y⊺ Diag(λ1, . . . , λn)y =
n∑

i=1
λiy

2
i .

This is nonnegative for all choices of y if and only if λi ≥ 0 for all i.
This calculation also shows that the following variational characteri-

zation of the minimum eigenvalue holds:

Theorem 2 (Courant-Fischer Theorem). Let A ∈ Sn and let λ1 ≤ λ2 ≤
· · · ≤ λn denote the eigenvalues of A in nondecreasing order. Then,

λ1 = min
x∈Rn\{0}

x⊺Ax

x⊺x
.

More generally, the kth smallest eigenvalue λk is given by

λk = min
W a subspace of dimension k

max
x∈W \{0}

x⊺Ax

x⊺x

8 mgmt 690—convex optimization

Lemma 1. Let λ1, . . . , λn denote the eigenvalues of A. It holds that
tr(A) =

∑n
i=1 λi and det(A) =

∏n
i=1 λi.

Proof. Let A = UDU⊺ denote an eigendecomposition of A. Then, the
cyclic property of the trace proves that

tr(A) = tr(UDU⊺) = tr(DUU⊺) = tr(D).

The commutative property of the determinant gives

det(A) = det(UDU⊺) = det(DUU⊺) = det(D). ■

linear algebra review 9

Problems

1. Given A ∈ Sn and B ∈ Sm, the Kronecker product A⊗B is the Smn

matrix given in block form as

A⊗B =


A1,1B . . . A1,nB

...
. . .

...

An,1B . . . An,nB


Suppose A ∈ Sn

+ and B ∈ Sm
+ . Show that A⊗B ⪰ 0.

2. Given A ∈ Sn and B ∈ Sn, the Schur product is the Sn matrix
given by

(A⊙B)i,j = Ai,jBi,j .

Suppose A ∈ Sn
+ and B ∈ Sn

+. Show that A⊙B ⪰ 0.

3. Given a symmetric matrix A ∈ Sn, let Inertia(A) := (n−, n0, n+)

denote the number of negative eigenvalues, number of zero eigen-
values, and number of positive eigenvalues of A. Prove that for any
invertible P ∈ Rn×n, that

Inertia(A) = Inertia(P ⊺AP).

4. Let A ∈ Sn
++, B ∈ Rn×m and C ∈ Sm. Prove that(

A B

B⊺ C

)
⪰ 0 ⇐⇒ C −B⊺A−1B ⪰ 0.

2
Elementary convex analysis I

2.1 Convex sets

Definition 6. A set S ⊆ Rn is

• affine if for all x, y ∈ S and θ ∈ R, we have θx + (1− θ)y ∈ S

• conic1 if for all x, y ∈ S and λ, µ ≥ 0, we have λx + µy ∈ S. 1 Some authors call this convex conic.

• convex if for all x, y ∈ S and θ ∈ [0, 1], we have θx + (1− θ)y ∈
S. □

Definition 7. Fix x1, . . . , xk ∈ Rn. Let α1, . . . , αk ∈ R. We say that∑k
i=1 αixi

• is an affine combination of x1, . . . , xk if
∑k

i=1 αi = 1

• is a conic/nonnegative combination of x1, . . . , xk if αi ≥ 0

• is a convex combination of x1, . . . , xk if
∑k

i=1 αi = 1 and αi ≥
0 □

Example 3.

• Rn and {0} are affine sets

• An affine hyperplane {x ∈ Rn : ⟨a, x⟩ = b} is an affine set

• A closed halfspace {x ∈ Rn : ⟨a, x⟩ ≤ b} is a convex set

• {x ∈ Rn : ⟨a, x⟩ ≤ 0} is a cone □

Lemma 2. Affine =⇒ convex. Similarly, conic =⇒ convex.

Lemma 3. An arbitrary intersection of affine sets is an affine set. A
finite product of affine sets is an affine set.

Both statements also hold if we replace “affine set” throughout with
“cone” or “convex set.”

12 mgmt 690—convex optimization

Proof. We prove the affine set statements. The other claims are
similar.

Suppose Sα ⊆ Rd is an affine set for every α ∈ A. Let x, y ∈⋂
α∈A Sα. Let θ ∈ R and α ∈ A. As Sα is an affine set, we have that

θx + (1− θ)y ∈ Sα. Thus, θx + (1− θ)y ∈
⋂

α∈A Sα.
Suppose Si ⊆ Rdi is an affine set for every i ∈ [k]. Let

k∏
i=1

Si := S1 × · · · × Sk :=

{
(x1, . . . , xk) ∈

k∏
i=1

Rdi : xi ∈ Si

}

denote the product of S1, . . . , Sk. Suppose (x1, . . . , xk) and (y1, . . . , yk) ∈∏k
i=1 Si and let θ ∈ R. By definition, we have that xi, yi ∈ Si. As

θ ∈ R and Si is affine, we have θxi + (1− θ)yi ∈ Si. Thus,

θ(x1, . . . , xk) + (1− θ)(y1, . . . , yk) ∈
k∏

i=1
Si. ■

Example 4.

• Any affine subspace
{

x ∈ Rd : Ax = b
}

is an affine set

• Any polyhedral set
{

x ∈ Rd : Ax ≤ b
}

is a convex set

• Any polyhedral cone
{

x ∈ Rd : Ax ≤ 0
}

is a cone □

Example 5. Let R[x]≤d denote the polynomials in x with degree at
most d. We can identify R[x]≤d with Rd+1 as

d∑
i=0

cix
i ≡ (c0, c1, . . . , cd).

• The set of nonnegative polynomials,{
p ∈ R[x]≤d : p(x) ≥ 0, ∀x ∈ R

}
,

is a convex cone.

• The set of polynomials with some prespecified evaluations {(xi, αi)}ki=1,{
p ∈ R[x]≤d : p(xi) = αi, ∀i ∈ [k]

}
,

is an affine space. □

Example 6. Some important cones

• The nonnegative orthant

Rn
+ := {x ∈ Rn : x ≥ 0}

• The second order cone

L1+n :=

{(
t

x

)
∈ R1+n : ∥x∥2 ≤ t

}

elementary convex analysis i 13

• The semidefinite cone

Sn
+ :=

{
X ∈ Sn

+ : X ⪰ 0
}

. □

Lemma 4. The affine image of a convex set is convex.

This proof is left as an Exercise.

2.2 The convex hull

Definition 8. Let S ⊆ Rn. The convex hull of S is the smallest
convex set containing S and is well-defined by Lemma 3. □

Theorem 3. Let S ⊆ Rn and let C denote the set of convex combina-
tions of points in S:

C :=
∞⋃

k=1


k∑

i=1
λisi :

λ1 + · · ·+ λk = 1
λi ≥ 0, ∀i
si ∈ S, ∀i

 .

Then, C = conv(S).

Compare these two definitions: The original definition of a convex
hull is an “outer description”. It defines the convex hull as the inter-
section of all possible convex sets containing the original set S. The
equivalent definition given by the theorem is an “inner description”.
It defines the convex hull as the union of all the points that can be
produced via convex combinations.

Proof. We begin by showing that C is convex. Supppose x, y ∈ C and
θ ∈ [0, 1]. As x ∈ C, we can write x =

∑k
i=1 λix

i where λ1, . . . , λk

is a set of convex combination weights and xi ∈ S. Similarly, we can
write y =

∑m
i=1 µiy

i where µ1, . . . , µm is a set of convex combination
weights and yi ∈ S. Then,

θx + (1− θ)y =
k∑

i=1
(θλi)x

i +
m∑

i=1
((1− θ)µi)y

i ∈ C.

We deduce that conv(S) ⊆ C.
The direction C ⊆ conv(S) is direct. ■

Theorem 4 (Carathéodory’s theorem). Let S ⊆ Rn. For any x ∈
conv(S), there exists λ1, . . . , λn+1 and s1, . . . , sn+1 ∈ S so that

x =
n+1∑
i=1

λisi.

14 mgmt 690—convex optimization

Proof. By the inner representation of the convex hull, there exists
some k ≥ 1 and λ1, . . . , λk and s1, . . . , sk ∈ S so that

x =
k∑

i=1
λisi.

If k ≤ n + 1 then we are done. Otherwise, k ≥ n + 2. Consider the set
of vectors {xi − xk}k−1

i=1 . As this set contains k − 1 > n elements, it is
linearly dependent and there exists nonzero θ1, . . . , θk−1 so that

k−1∑
i=1

θi(xi − xk) = 0.

Now consider the modified convex combination weights:

λi = λi + δθi, ∀i ∈ [k− 1]

λk = λk − δ

k−1∑
i=1

θi.

This is a valid set of convex combination weights as long as all mul-
tipliers are nonnegative. Take δ either large enough or small enough
to zero out at least one of these weights while maintaining that all
weights are nonnegative. Repeat until k ≤ n + 1. ■

2.3 Sets related to a convex set

Definition 9. Let S ⊆ Rn. The affine hull of S, denoted aff(S) is the
smallest affine set containing S. The conic hull of S, denoted cone(S)
is the smallest cone containing S.

These sets are well-defined by Lemma 3. □

Let B(x, ϵ) := {y ∈ Rn : ∥x− y∥ ≤ ϵ}.
Definition 10. Let C ⊆ Rn.

• The interior of C is the set

int(C) := {x ∈ C : ∃ϵ > 0, B(x, ϵ) ⊆ C} .

• The boundary of C is the set bd(C) := cl(C) \ int(C).

• The relative interior of C is the set

rint(C) := {x ∈ C : ∃ϵ > 0, B(x, ϵ) ∩ aff(C) ⊆ C} .

• The relative boundary of C is the set rbd(C) := cl(C) \ rint(C).

• The recessive cone of C is the set

rec(C) := {x ∈ Rn : ∀y ∈ C,∀t ≥ 0, y + tx ∈ C} . □

elementary convex analysis i 15

What is the point of the definition for relative interior and rela-
tive boundary? At times (often) we will care more about a convex
set thought of as a full-dimensional set in its affine hull instead of as
a “degenerate” object in a larger ambient space. For example, con-
sider the set S = [0, 1]× {0}. The affine hull of S is R× {0}. Then,
rint(S) = (0, 1)× {0} and rbd(S) = {(0, 0), (1, 0)}. On the other hand,
int(S) = ∅ and bd(S) = S.

Lemma 5. Suppose C ⊆ Rn is a convex set. Then, int(C) and rint(C)

are convex sets and rec(C) is a cone.

Lemma 6. Suppose C ⊆ Rn is a convex set, x ∈ rint(C) and
y ∈ cl(C). Then for all θ ∈ [0, 1), (1− θ)x + θy ∈ rint(C).

Proof sketch. Assume that y ∈ C. The case y ∈ cl(C) is similar and
requires just one extra limiting argument. 2 2 Exercise: complete the proof.

As x ∈ rint(C), there exists an ϵ > 0 so that B(x, ϵ) ∩ aff(C) ⊆ C.
That is for all δ ∈ B(0, ϵ) aff(C), x + δ ∈ C. As C is convex, we have
that

(1− θ)(x + δ) + θy ∈ C.

Thus, B((1− θ)x + θy, (1− θ)ϵ) aff(C) ⊆ C and (1− θ)x + θy ∈
rint(C). ■

Corollary 1. Let C ⊆ Rn be a convex set. Then,

• rint(C) is dense in cl(C), i.e., for any c ∈ cl(C), there exists a
sequence ci ∈ rint(C) so that ci → c.

• rint(C) = rint(cl(C)).

• cl(rint(C)) = cl(C).

3
Elementary convex analysis II

3.1 Convex functions

Definition 11. A function f : Rn → R is

• affine if f(θx + (1− θy)) = θf(x) + (1− θ)f(y) for all x, y ∈ Rn

and θ ∈ R. Equivalently, f(x) is affine if it can be written as
f(x) = ⟨a, x⟩+ b.

• convex if f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all x, y ∈ Rn

and θ ∈ [0, 1]. □

We can generalize this definition to a convex function over a convex
set Ω ⊆ Rn by restricting x, y ∈ Ω in the definition above.
Example 7.

• Any norm is a convex function.

Proof. Given x, y ∈ V and θ ∈ [0, 1], ∥θx + (1− θ)y∥ ≤ ∥θx∥+
∥(1− θ)y∥ = θ ∥x∥+ (1− θ) ∥y∥.

• Any squared-norm is a convex function.

Proof. Let x, y ∈ V and θ ∈ [0, 1]. Then, ∥(1− θ)x + θy∥2 ≤
((1− θ) ∥x∥+ θ ∥y∥)2 ≤ (1 − θ) ∥x∥2 + θ ∥y∥2. Here, the first
inequality follows from convexity of a norm and the fact that (·)2 is
an increasing function on R+. The second inequality follows from
convexity of (·)2. □

Lemma 7. The following functions are convex:

• If f is convex and α ≥ 0, then αf is convex

• If f , g are convex, then f + g is convex

• If f is convex and Ay + b is affine, then y 7→ f(Ay + b) is convex.

• Suppose fα is convex for all α ∈ A and supα∈A fα(x) <∞ for all x.
Then, g(x) := supα∈A fα(x) is convex.1 1 It is possible to get rid of the finite-

ness assumption here, but we would
need to go back and define convex
extended-valued functions. This is
easy to do if you need it.

18 mgmt 690—convex optimization

• Suppose f(x, y) is jointly convex in (x, y) and assume that for
infy f(x, y) > −∞ for all x. Then, g(x) := infy f(x, y) is convex.2 2 If infy f (x, y) = −∞ for some

x, then one can show that g(x) =
−∞ for all x so that it is vacuously
“convex.”

Proof. Most are straightforward. We prove the last two:
Let x, y ∈ V and θ ∈ [0, 1]. Let ϵ > 0 and let α ∈ A so that

g((1− θ)x + θy)− ϵ ≤ fα((1− θ)x + θy).

Then, by convexity and definition of g, we have that

g((1− θ)x + θy)− ϵ ≤ (1− θ)fα(x) + θfα(y)

≤ (1− θ)g(x) + θg(y).

Letting ϵ→ 0 completes the proof.
Suppose x, z ∈ V and θ ∈ [0, 1]. Let ϵ > 0 and let yx and yz so that

g(x) ≥ f(x, yx)− ϵ

g(z) ≥ f(z, yz)− ϵ.

Then,

g(θx + (1− θ)z) ≤ f(θx + (1− θ)z, θyx + (1− θ)yz)

≤ θf(x, yx) + (1− θ)f(z, yz)

≤ θg(x) + (1− θ)g(z) + ϵ.

Letting ϵ→ 0 completes the proof. ■

Lemma 8. Suppose f : Rn → R is convex and α ∈ R. Then the α

sublevel set of f ,

{x ∈ Rn : f(x) ≤ α} ,

is a convex set.

Example 8.

• The unit ball of any norm is convex as it is the sublevel set of a
convex function. □

3.2 Separation of convex sets

All norms ∥·∥ in this section are the ℓ2 norm (or the induced norm in
a general Euclidean space).
Definition 12. Let C ⊆ Rn be a nonempty closed convex set. Given
a point x ∈ Rn, we define its projection onto C, i.e., ΠC(x) : Rn → C,
as

ΠC(x) = arg min
y∈C
∥x− y∥2 . □

elementary convex analysis ii 19

Remark 1. ΠC(x) is well-defined (i.e., it exists and is unique): Fix
an arbitrary c ∈ C. Note that the optimum value of infy∈C ∥x− y∥2 is
achieved if and only if the optimum value of

inf
y∈C

{
∥x− y∥2 : ∥x− y∥2 ≤ ∥x− c∥2

}
is achieved. The feasible domain of this problem is compact whence
the continuous function ∥x− y∥2 achieves its minimum value.

To see that the minimizer is unique, suppose y1 ̸= y2 both achieve
the minimum. Then by convexity, we have y := (y1 + y2)/2 ∈ C.
However ∥x− y∥2 < ∥x− y1∥2, a contradiction. □

ΠC admits a variational characterization.

Theorem 5. yx = ΠC(x) if and only if yx ∈ C and

⟨x− yx, y− yx⟩ ≤ 0, ∀y ∈ C.

Proof. (⇒). By definition of ΠC(x), we have that yx ∈ C. Let y ∈ C

and α ∈ [0, 1]. As C is convex, (1− α)yx + αy ∈ C. Then

∥x− yx∥2 ≤ ∥(1− α)yx + αy− x∥2

= ∥α(y− yx)− (x− yx)∥2

= α2 ∥y− yx∥2 − 2α ⟨x− yx, y− yx⟩+ ∥x− yx∥2 .

The derivative of this expression at α = 0 must be nonnegative by
definition of the projection.

(⇐). Suppose ȳ ∈ C is such that for all y ∈ C, we have ⟨x− ȳ, y− ȳ⟩ ≤
0. Then for all y ∈ C,

∥x− y∥2 = ∥x− ȳ∥2 + 2 ⟨x− ȳ, ȳ− y⟩+ ∥ȳ− y∥2

≥ ∥x− ȳ∥2 + ∥ȳ− y∥2

Thus, ∥x− ȳ∥ < ∥x− y∥ for all y ∈ C \ {ȳ} implying ȳ = ΠC(x). ■

Definition 13. Given a nonzero vector a ∈ Rn and α ∈ R, define

• Hyperplane: Ha,α = {x ∈ Rn : ⟨a, x⟩ = α}

• (Closed) halfspace: H≥
a,α = {x ∈ Rn : ⟨a, x⟩ ≥ α}

• Open halfspace: H>
a,α = {x ∈ Rn : ⟨a, x⟩ > α}

Similarly define H≤
a,α and H<

a,α. □

Definition 14. Suppose C and D are nonempty subsets of Rn. Let
a ∈ Rn be nonzero and α, β ∈ R.

• We say Ha,α separates C and D if C ⊆ H≤
a,α and D ⊆ H≥

a,α.

• We say Ha,α strictly separates C and D if C ⊆ H<
a,α and D ⊆ H>

a,α.

20 mgmt 690—convex optimization

• We say C and D can be strongly separated if there exists nonzero
a ∈ Rn and α < β such that C ⊆ H≤

a,α and D ⊆ H≥
a,β . □

Theorem 6 (Strong separation of convex sets). Let C, D ⊆ Rn be
nonempty closed convex sets with an empty intersection. Suppose
further that C is bounded. Then C and D can be strongly separated.

Proof. Consider the function c 7→ dist(c, D). This function is continu-
ous. Thus as C is compact, the minimum value

min
c∈C

dist(c, D)

is achieved. Recalling that ΠD(c) is well-defined, we have a pair (c̄, d̄)

minimizing minc∈C, d∈D ∥c− d∥. Note that ΠD(c̄) = d̄ and ΠC(d̄) = c̄.
Let s = d̄− c̄ and note that s is nonzero. Applying the variational

characterization to
{

d̄
}

and C, we have that for all c ∈ C:

⟨s, c⟩ =
〈
d̄− c̄, c− c̄ + c̄

〉
≤
〈
d̄− c̄, c̄

〉
=: α

so that C ⊆ H≤
s,α. Applying the variational characterization to {c̄} and

D, we have that for all d ∈ D:

⟨s, d⟩ =
〈
d̄− c̄, d− d̄ + d̄

〉
≥
〈
d̄− c̄, d̄

〉
=: β

so that D ⊆ H≥
s,β . Note that β − α =

∥∥d̄− c̄
∥∥2

> 0 so that β > α. ■

Theorem 7. Suppose C, D ⊆ Rn are disjoint nonempty convex sets.
Then, C and D can be separated.

Proof. As C, D are disjoint, it holds that 0 /∈ C −D. For convenience,
write K := C −D. We have that K is a convex set not containing 0.
Note that C and D can be separated if and only if 0 and K can be
separated.

If 0 /∈ cl(K), then we can apply the previous theorem to separate 0
and K.

Else, suppose 0 ∈ cl(K). By Corollary 1 (i.e., that the relative
interior of a convex set is dense in its closure), there exists xi ∈
rint(K) so that xi → 0. As 0 /∈ K, we have that −xi /∈ cl(K). By
the previous theorem, there exists a hyperplane vi strongly separating
cl(K) with −xi. Without loss of generality ∥vi∥ = 1. We have

−⟨vi, xi⟩ ≥ inf
x∈K
⟨vi, x⟩ .

Now, as the unit sphere is compact, we may assume that vi converges
to some nonzero w (else pass to a subsequence). We claim that

inf
x∈K
⟨w, x⟩ ≥ 0.

elementary convex analysis ii 21

To see this, suppose otherwise and let x̄ ∈ K so that ⟨w, x̄⟩ = −ϵ < 0.
Now, for all i large enough,

−∥xi∥ ≤ inf
x∈K
⟨vi, x⟩ ≤ ⟨vi, x̄⟩ ≤ −ϵ/2.

This contradicts the assumption that xi → 0. ■

3.3 Basic definitions about general convex programs

Definition 15. A convex optimization problem/convex program is a
problem of the form

inf
x∈Ω

f(x)

where Ω ⊆ Rn is a convex set and f : Ω → R is convex. The
objects x, Ω, f are referred to as the decision variable, the domain, and
objective function respectively.

• An optimal solution x⋆ is a point x⋆ ∈ Ω so that f(x⋆) ≤ f(x)

for all x ∈ Ω. An optimal solution does not have to exist or be
unique. When an optimal solution exists we say that the problem is
solvable.

• The optimal value is infx∈Ω f(x). We define the value to be ∞ if
Ω is empty (in which case we say the problem is infeasible). If the
value is −∞, we say the problem is unbounded below. Else, it is
bounded below.

• Often, the domain will be defined by constraints, for example,

Ω = {x ∈ Rn : some constraints} . □

Definition 16. Given a feasible point x⋆ ∈ Ω, the descent cone at x⋆

is

cone
({

δ ∈ Rn :
f(x⋆ + δ) ≤ f(x⋆)

x⋆ + δ ∈ Ω

})
.

It is the set of infinitesimal directions so that moving in that direction
produces a feasible point with nonincreasing objective value. □

Exercise

1. Give an example of a pair of disjoint nonempty closed convex sets
that cannot be strictly separated.

22 mgmt 690—convex optimization

Problems

1. In sparse recovery, the goal is to recover a sparse vector x⋆ ∈ Rn

given linear measurements (A, b) ∈ Rm×n ×Rm where b = Ax⋆.
A convex-optimization approach to this problem is to output the
optimizer of

min
x∈Rn

{∥x∥1 : Ax = b} .

This problem gives a necessary and sufficient condition for when
this convex-optimization approach correctly recovers x⋆.
We say that a vector is k-sparse if it has at most k nonzero entries.
Given a subset S ⊆ [n] and a vector x ∈ Rn, let xS denote the
restriction of x onto the set S. Let Sc denote the complement of S.
For a vector x ∈ Rn, let sign(x) denote the {−1, 0, 1}-valued vector
giving the individual signs of the coordinates of x.

(a) The descent cone of a convex-optimization problem at a feasible
solution x̄ is defined asδ ∈ Rn :

∀ϵ > 0 small enough :
x̄ + ϵδ is feasible
obj. value at x̄ + ϵδ ≤ obj. value at x̄


Show that for this problem, the descent cone at the optimal
solution x⋆ is{

δ ∈ Rn :
δ ∈ ker(A)

⟨sign(x⋆)S⋆ , δS⋆⟩+
∥∥∥δ(S⋆)C

∥∥∥
1
≤ 0

}
where S⋆ is the support of x⋆.

(b) The matrix A is said to satisfy the nullspace property at order k

if for all sets S ⊆ [n] with |S| ≤ k and for all δ ∈ ker(A) \ {0}, we
have

∥δS∥1 < ∥δSc∥1 .

Show that the descent cone at x⋆ is trivial, i.e., equal to {0}, if A

satisfies the nullspace property at order k and x⋆ is k-sparse.
(c) Show that if A does not satisfy the nullspace property at order k,

then there exists a k-sparse x⋆ for which the convex-optimization
approach may fail to recover x⋆. That is, for which the descent
cone at x⋆ is nontrivial.

2. Given a permutation σ of [n], we can associate σ with the n× n

permutation matrix

(Xσ)i,j =

1 if σ(i) = j

0 else
.

elementary convex analysis ii 23

Prove that the convex hull of the n! permutation matrices is given
by the set of doubly stochastic matrices:

DS(n) :=

X ∈ Rn×n :
X ≥ 0
X⊺1n = 1n

X1n = 1n

 .

Hint: Use Hall’s marriage theorem to prove that the support of any
doubly stochastic matrix contains a permutation matrix.

4
Conic programming I

4.1 Dual cones

Definition 17. Let K be a cone, the dual cone K∗ is

K∗ = {y : ⟨x, y⟩ ≥ 0, ∀x ∈ K} .

In other words, it is the set of linear functions that are nonnegative on
K. □

Example 9. Examples of cones and their duals:

• The SDP cone Sn
+, the Lorentz cone Ln, and the nonnegative

orthant Rn
+ are all self-dual.

• Let p ∈ [1,∞] and let Kp =
{
(x, t) ∈ Rn ×R : ∥x∥p ≤ t

}
. Then

(Kp)∗ = Kq where q is the Hölder dual of p. □

Lemma 9. For any closed convex cone K, we have (K∗)∗ = K.

Proof. K ⊆ (K∗)∗ by definition: Indeed, suppose y ∈ K∗ and x ∈ K,
then ⟨y, x⟩ ≥ 0.

Next, suppose x̄ /∈ K. As K is a closed convex set and {x̄} is
compact convex, Theorem 6 implies there exists v so that

⟨v, x̄⟩ < inf
x∈K
⟨v, x⟩ .

As K is a cone, the RHS must equal zero so that v ∈ K∗. We deduce
that the LHS is negative so that x̄ /∈ (K∗)∗. ■

Definition 18. A cone K ⊆ Rn is pointed if K ∩ −K = {0}. Al-
ternatively, a cone K is pointed if and only if does not contain any
lines. □

26 mgmt 690—convex optimization

4.2 What is a conic program?

Recall the standard linear program with inequality constraints and
equality constraints:

min
x∈Rn

{
c⊺x :

Ax ≥ a

Bx = b

}
.

The constraint Ax ≥ a can be rewritten Ax− a ≥ 0 or Ax− a ∈ Rm
+ .

Central to the definition of a linear program is the cone Rm
+ that

gives us a partial ordering on vectors, i.e., for vectors x and y ∈ Rm,
the cone Rm

+ imposes a partial ordering where x ≥ y if and only if
x− y ∈ Rm

+ . A conic program generalizes a linear program by consider
other interesting partial orderings on vectors.
Definition 19. A conic program in standard form is an optimization
problem of the form

inf
x∈Rn

{
c⊺x :

Ax− a ∈ K

Bx− b = 0

}
,

where c, A, a, B, b are matrices/vectors of compatible dimensions and
K is a convex cone.1 □ 1 We will usually impose additional

constraints on the convex cone to get
“well-behaved” conic programs.Example 10. We will not always work with conic programs in stan-

dard form. For example, the following problem

inf
x∈Rn

{c⊺x : ∥x− µi∥2 ≤ ri, ∀i ∈ [m]} , (4.1)

is a conic program. Here, c ∈ Rn, µi ∈ Rn, and ri ∈ R. The theory
that we develop for conic programs in standard form apply to this
program if we write it in standard form as:

(4.1) = inf
x∈Rn


c⊺x :


In

0⊺
...

In

0⊺

x−


µ1
−r1

...

µm

−rm

 ∈ (Ln1+1)m

0x = 0


Putting a conic program into standard form can be tedious so it will
be useful to pay attention to how the theory we develop applies to
conic programs not in standard form. □

4.3 Weak Conic Duality

Consider a standard conic program

(Primal) inf
x∈Rn

{
c⊺x :

Ax− a ∈ K

Bx− b = 0

}
.

conic programming i 27

For concreteness, suppose a ∈ Rm and b ∈ Rk.
Duality theory begins with the question: “how do we prove lower

bounds on the optimal value of (Primal)?”
Recall the definition of the dual cone

K∗ := {y ∈ Rm : ⟨y, u⟩ ≥ 0, ∀u ∈ K} .

Then, for any y ∈ K∗ and any z ∈ Rk and any feasible x in (Primal),
we can derive the valid inequality

0 ≤ ⟨Ax− a, y⟩+ ⟨Bx− b, z⟩ = ⟨A⊺y + B⊺z, x⟩ − ⟨a, y⟩ − ⟨b, z⟩ .

Rearranging, we have that ⟨A⊺y + B⊺z, x⟩ ≥ ⟨a, y⟩+ ⟨b, z⟩. Thus, if
y ∈ K∗, z ∈ Rk satisfies A⊺y + B⊺z = c then ⟨a, y⟩+ ⟨b, z⟩ is a valid
lower bound on the optimal value of (Primal). The dual conic program
optimizes this lower bound:

(Dual) sup
y∈Rm,z∈Rk

{
⟨a, y⟩+ ⟨b, z⟩ :

A⊺y + B⊺z = c

y ∈ K∗

}

= sup
y∈Rm,z∈Rk


〈(

a

b

)
,
(

y

z

)〉
:

(
Im 0

)(y

z

)
∈ K∗(

A⊺ B⊺
)(y

z

)
− c = 0

 .

Thus, the dual of a conic program is again a conic program.

Theorem 8 (Weak conic duality). Opt(Primal) ≥ Opt(Dual).

Proof. Suppose x ∈ Rn is feasible in the primal and suppose (y, z) ∈
Rm ×Rk is feasible in the dual. Then

⟨c, x⟩ = ⟨A⊺y + B⊺z, x⟩ = ⟨y, Ax⟩+ ⟨z, Bx⟩
= ⟨a, y⟩+ ⟨b, z⟩+ ⟨Ax− a, y⟩+ ⟨Bx− b, z⟩
≥ ⟨a, y⟩+ ⟨b, z⟩ . ■

This is known as weak conic duality because of the inequality in
the theorem and is not a fully satisfactory duality theory. Specifically,
compare the case of Linear Programming where equality always holds.
In many situations, we can prove a stronger version of this result
called strong conic duality where the inequality is replaced with an
equality.
Remark 2. The definition of the dual of a conic program assumes
that the conic program comes in standard form. In practice, this is
usually not the case and we may see programs that look like

inf
x∈Rn

⟨c, x⟩ :

A1x− a1 ∈ K1
...

Arx− ar ∈ Kr

Bx− b = 0

 .

28 mgmt 690—convex optimization

Recall that the dual of the product of cones is the product of the
duals. In particular, the dual of this conic program is

sup
y1,...,yr ,z

{
r∑

i=1
⟨ai, yi⟩+ ⟨b, z⟩ :

∑r
i=1 A⊺

i yi + B⊺z = c

yi ∈ (Ki)∗, ∀i = 1, . . . , r

}
. □

4.4 Cones and inequalities

In order to prove strong duality, we will need to impose further as-
sumptions on the cone K. As we will see, this is equivalent to impos-
ing additional assumptions on the partial ordering.
Definition 20. Given a set K ⊆ Rn, define the binary relation ⪰K

where

a ⪰K b ⇐⇒ a− b ∈ K. □

Definition 21. Given a binary relation ⪰ on Rn, define the set

K⪰ := {a− b : a ⪰ b} . □

Definition 22. A “proper” binary relation on Rn satisfies:

• (Reflexive) For any x ∈ Rn, we have x ⪰ x

• (Antisymmetric) If x ⪰ y and y ⪰ x, then x = y

• (Transitive) If x ⪰ y and y ⪰ z, then x ⪰ z.

• (Additive) If a ⪰ b and c ⪰ d, then a + c ⪰ b + d

• (Positively homogeneous) If a ⪰ b and λ ∈ R+, then λa ⪰ λb

• (Stable w.r.t. limits) If ai → a and ai ⪰ 0 for all i, then a ⪰ 0

• (“Existence of a strict relation”) There exists a so that for all b

there exists λ ∈ R+ so that λa ⪰ b. □

Definition 23. A cone K ⊆ Rn is proper if it is pointed, closed, and
has nonempty interior. □

Lemma 10. If ⪰ is a proper binary relation, then K⪰ is a proper cone.
Conversely, if K is a proper cone, then ⪰K is a proper binary relation.

Proof. First, suppose ⪰ is a proper binary relation. We will check
that K⪰ is a proper cone. The proof that K⪰ is a pointed cone is
straightforward.2 We check that K⪰ is closed: Suppose ai ∈ K⪰ 2 Exercise: Verify this.

converge to a. By definition, ai ⪰ 0 for each i. By stability w.r.t.
limits, a ⪰ 0 and a ∈ K⪰. Next, we check that K⪰ has a nonempty
interior. By “existence of a strict relation”, there exists an a such that
for all b, there exists λ ∈ R+ so that λa ⪰ b. We claim that a ∈

conic programming i 29

int(K⪰). First, taking b = −a, and using additivity and homogeneity,
we have that a ⪰ 0. Thus, for all b, there exists λ ∈ R++ so that
λa ⪰ b. Once more by additivity and homogeneity, taking b = ei, there
exists δi > 0 so that a + δiei ⪰ 0. We deduce that {a + δiei}i ⊆ K⪰.
As K⪰ is convex, we deduce that a ∈ int(K⪰).

In the other direction, suppose K is a proper cone. The reflexivity,
antisymmetry, transitivity, addivitiy, positive homogeneity, and stabil-
ity w.r.t. limits are easy to check.3 We check the “existence of a strict 3 Exercise: Verify this.

relation”. Let a ∈ int(K) and let b be arbitrary. Then, for all δ > 0
small enough, a + δb ∈ K. Thus, 1

δ a + b ∈ K so that 1
δ a ⪰ b. ■

Definition 24. Given a cone K, we will denote by a ≻K 0 the fact
that a ∈ int(K). This is equivalent to saying that for all b, there exists
λ ≥ 0 so that

λa ⪰K b. □

Example 11. The cone of positive semidefinite matrices Sm
+ is a

proper cone. Let A : Rn → Sm be a linear operator and let A ∈ Sm.
Let B ∈ Rk×n and b ∈ Rk. The following conic program

inf
x∈Rn

{
c⊺x :

A(x)−A ∈ Sm
+

Bx− b = 0

}

is known as a semidefinite program. □

30 mgmt 690—convex optimization

Problems

1. Prove that the nonnegative orthant, second-order cone, and semidef-
inite cones are self-dual.

2. This problem derives a dual description of the Wasserstein distance
for discrete probability distributions.

Fix a discrete metric space X = {x1, . . . , xn}.4 Let D ∈ Rn×n 4 For concreteness, you could think of
this as n points in Rd for example.denote the matrix where Di,j is the distance between xi and xj .

Let P be a probability distribution on X defined by P =

(p1, . . . , pn). Similarly, let Q = (q1, . . . , qn) be a probability dis-
tribution on X .

The Wasserstein distance between P and Q is defined as follows:
We can think of P as placing some amount of “earth/dirt” at each
of the n points in X . We want to move this earth as efficiently as
possible to transform P into Q. That is, we require a transporta-
tion schedule, called a coupling, that tells us how much earth to
move from xi to xj . Formally, the matrix Γ ∈ Rn×n is a coupling if

n∑
j=1

Γi,j = pi, ∀i ∈ [n]

n∑
i=1

Γi,j = qj , ∀j ∈ [n]

Γi,j ≥ 0, ∀i, j.

The cost of a coupling is given by ⟨Γ, D⟩, i.e., it is the linear cost
function where moving one unit of mass from xi to xj costs Di,j .

• Write the Wasserstein distance as the optimum value of a mini-
mization LP. We will refer to this as the primal LP.

• Derive the dual of this LP.

• Explain what complementary slackness means for this primal-
dual pair.

5
Conic programming II

5.1 Strong Conic Duality

Definition 25. We say that (Primal) is strictly feasible if there exists
x̄ ∈ Rn so that

Ax̄− a ∈ int(K) and Bx̄− b = 0.

(Dual) is strictly feasible if there exists (ȳ, z̄) so that

y ∈ int(K∗) and A⊺ȳ + B⊺z̄ = c. □

We are now ready to state the strong conic duality theorem.

Theorem 9 (Strong conic duality). Consider primal (Primal) and
its dual (Dual). Suppose K is a regular cone and suppose the linear
systems in both (Primal) and (Dual) are feasible, i.e.,

∃x̄ : Bx̄− b = 0
∃(ȳ, z̄) : A⊺ȳ−B⊺z̄ − c = 0.

Then

• Symmetry: the dual problem to (Dual) is (Primal).

• Weak duality: for primal feasible x̄ and dual feasible (ȳ, z̄),

⟨c, x̄⟩ ≥ ⟨a, ȳ⟩+ ⟨b, z̄⟩ .

• Strong duality under strict feasibility: if (Primal) is strictly feasi-
ble with bounded objective, then (Dual) is solvable and Opt(Primal) =
Opt(Dual).

The same statement holds with the roles of (Primal) and (Dual)
interchanged. In particular, if both are strictly feasible, then both are
solvable.

32 mgmt 690—convex optimization

Proof. Proof of symmetry: We can write (Dual) as

sup
y∈Rm,z∈Rk


〈(

a

b

)
,
(

y

z

)〉
:

(
Im 0

)(y

z

)
∈ K∗(

A⊺ B⊺
)(y

z

)
− c = 0


Thus the dual to (Dual) is

inf
ξ∈Rm,x∈Rn


〈(

0
c

)
,
(

ξ

x

)〉
:

(
Im 0

)(ξ

x

)
∈ K(

Im A

0 B

)(
ξ

x

)
−

(
a

b

)
= 0


= inf

ξ∈Rm,x∈Rn

⟨c, x⟩ :
ξ ∈ K

ξ + Ax = a

Bx = b


= inf

x∈Rn

{
⟨c, x⟩ :

Ax− a ∈ K

Bx− b = 0

}
.

We recognize (Primal).
Proof of weak duality: this was already done.
Proof of strong duality under strict feasibility: Assume

that (Primal) is strictly feasible with bounded objective. As weak
duality holds, it suffices to construct a dual feasible solution with
value ≥ Opt(Primal).

• Define

I :=

{(
⟨c, x⟩

Ax− a

)
: Bx− b = 0

}

S :=

{(
λ

ζ

)
:

λ < Opt(Primal)
ζ ∈ K

}

Note that I is an affine subspace and S is a convex set. Further-
more, I and S are disjoint: Otherwise, there exists some x ∈ Rn for
which ⟨c, x⟩ < Opt(Primal) and Ax− a ∈ K.

• We apply the hyerplane separation theorem to I and S to get a
nonzero vector (t̄, ȳ) ∈ R1+m so that

inf
(λ,ζ)∈I

t̄λ− ⟨ȳ, ζ⟩ ≥ sup
(λ,ζ)∈S

t̄λ− ⟨ȳ, ζ⟩

Notice that t̄ ≥ 0 and ȳ ∈ K∗: Indeed, if t̄ < 0, then we may
approach (−∞, 0) ∈ S to set the RHS arbitrarily positive, a
contradiction. Similarly, if d /∈ K∗, then there exists ζ ∈ K so

conic programming ii 33

that ⟨ȳ, ζ⟩ < 0. Again, we can approach (Opt(Primal)− 1,∞ζ) ∈ S
to set the RHS arbitrarily positive, a contradiction.

We must also have that t̄ ̸= 0. Indeed, suppose t̄ = 0 and recall
that by strict feasibility,1 there exists x̄ so that Bx̄− b = 0 and 1 This is the only place we used strict

feasibilityAx̄− a ∈ int(K). As (t̄, ȳ) is nonzero, we must have that ȳ ∈ K∗ is
nonzero. Thus, there exists (λ, ζ) ∈ I achieving

t̄λ− ⟨ȳ, ζ⟩ = −⟨ȳ, Ax̄− a⟩ < 0.

On the other hand, (Opt(Primal)− 1, 0) ∈ S achieves

t̄λ− ⟨ȳ, ζ⟩ = 0,

a contradiction.
As t > 0, we can normalize t̄ = 1 in the separation statement

(i.e., replace ȳ ← ȳ/t̄).

• We now rewrite the separation statement:

inf
(λ,ζ)∈I

λ− ⟨ȳ, ζ⟩ ≥ sup
(λ,ζ)∈S

λ− ⟨ȳ, ζ⟩

The RHS is equal to Opt(Primal). Thus, for all x ∈ Rn satisfy-
ing Bx− b = 0, we have that

⟨c−A⊺ȳ, x⟩+ ⟨a, ȳ⟩ = ⟨c, x⟩ − ⟨ȳ, Ax− a⟩ ≥ Opt(Primal).

We conclude that c−A⊺ȳ ∈ ker(B)⊥ = range(B⊺) so that there
exists z̄ ∈ Rk satisfying

c−A⊺ȳ = B⊺z̄.

Let x̄ satisfy Bx̄− b = 0. We deduce that (ȳ, z̄) satisfies

⟨a, ȳ⟩+ ⟨b, z̄⟩ = ⟨a, ȳ⟩+ ⟨Bx̄, z̄⟩
= ⟨a, ȳ⟩+ ⟨x̄, B⊺z̄⟩ = ⟨a, ȳ⟩+ ⟨c−A⊺ȳ, x̄⟩
≥ Opt(Primal). ■

Remark 3. The second step in the proof of strong duality constructed
a separating hyperplane between I and S of the form

inf
(λ,ζ)∈I

〈(
1
−ȳ

)
,
(

λ

ζ

)〉
≥ sup

(λ,ζ)∈S

〈(
1
−ȳ

)
,
(

λ

ζ

)〉
.

This is the “core difficulty” in proving conic strong duality. You
can drop almost all assumptions2 in the theorem statement if you 2 The only remaining assumptions will

be feasibility of the primal and dual
linear systems and that (K∗)∗ = K

can construct this separating hyperplane using other methods (for
example, in the LP setting).

34 mgmt 690—convex optimization

It is natural that this is the “core difficulty” as it is in fact equiv-
alent to solving the dual with value Opt(Primal). Specifically, let us
define

St :=

{(
λ

ζ

)
:

λ < t

ζ ∈ K

}
.

With this notation, our previous S can be written as SOpt(Primal).
Now suppose (ȳ, z̄) is feasible in the dual with value t. Then,

inf
(λ,ζ)∈I

λ− ⟨ȳ, ζ⟩ = inf
x∈Rn

{
⟨c, x⟩ − ⟨ȳ, Ax̄− a⟩ : Bx− b = 0

}
= inf

x∈Rn

{
⟨a, ȳ⟩+ ⟨B⊺z̄, x⟩ : Bx− b = 0

}
= t.

On the other hand,

sup
(λ,ζ)∈St

λ− ⟨ȳ, ζ⟩ = t.

We conclude that if (ȳ, z̄) is feasible with value t, then

inf
(λ,ζ)∈I

λ− ⟨ȳ, ζ⟩ ≥ sup
(λ,ζ)∈St

λ− ⟨ȳ, ζ⟩ .

Now, suppose ȳ and t̄ satisfy:

inf
(λ,ζ)∈I

λ− ⟨ȳ, ζ⟩ ≥ sup
(λ,ζ)∈St

λ− ⟨ȳ, ζ⟩ .

Then, we must have that ȳ ∈ K∗ and the value of the RHS is equal to
t. Thus, we deduce that

inf
x∈Rn

{c⊺x− ⟨ȳ, Ax− a⟩ : Bx− b = 0} ≥ t.

This is a bounded affine function on an affine space. Thus, it must be
constant on the affine space Bx = b. In other words, there exists z̄ so
that

c−A⊺ȳ = B⊺z̄ and ⟨a, ȳ⟩+ ⟨b, z̄⟩ ≥ t.

From all of this, we conclude that

sup
y,z

{
⟨a, ȳ⟩+ ⟨b, z̄⟩ :

y ∈ K∗
A⊺y + B⊺z − c = 0

}

= sup
t,y

{
t : inf

(λ,ζ)∈I
λ− ⟨y, ζ⟩ ≥ sup

(λ,ζ)∈St

λ− ⟨ȳ, ζ⟩

}
and that solvability of either implies solvability of the other. In words,
constructing a dual feasible solution with a given value t is equiva-
lent to constructing a separating hyperplane between I and St of a
particular form. □

conic programming ii 35

Remark 4. What can go wrong without primal strict feasibility?
Without primal strict feasibility, we can be in one of the following

situations:

• Strong duality and dual solvability still holds (e.g, in the case of
LPs).

• Strong duality still holds, but the dual is not solvable: For example,
consider the following primal and dual conic programs

inf
(λ,t)∈R2

t :

λ = 1λ

λ

t

 ∈ L1+2


≥ sup

α∈R, (β,γ)∈R1+2

α :
α + β + γ1 = 0
γ2 = 1
(β, γ) ∈ L1+2


= sup

α, β∈R

α :

 β

−α− β

1

 ∈ L1+2


= sup

β∈R

{
2(
√

β2 − 1− β) : β ≥ 1
}

.

We see that both the primal and the dual have the optimum value 0
and the dual is not solvable.

• Strong duality fails, either the primal or dual is feasible with
bounded objective value and the other is infeasible. See Prob-
lem 1.

• Strong duality fails, both primal and dual have bounded objective
value and are feasible, but there is a positive duality gap: For
example, consider the following primal and dual conic programs

inf
x∈R2

x2 :

1− x1 0 x2
0 1 + x2 0
x2 0 0

 ⪰ 0


≥ sup

Y ∈S3

−Y1,1 − Y2,2 :
Y1,1 = 0
Y1,3 + Y2,2 + Y3,1 = 1
Y ⪰ 0

 .

The primal has value 0 and the dual has value −1.

In all of these cases, the proof of strong duality that we did breaks.
Specifically, the separating hyperplane that we would find via the
hyperplane separation theorem would fall entirely in the subspace
corresponding to the “conic directions.” □

36 mgmt 690—convex optimization

Corollary 2. Suppose (Primal) and (Dual) are strictly feasible. Let x̄

and (ȳ, z̄) be primal and dual feasible solutions. Then the following are
equivalent

• x̄ and (ȳ, z̄) are both optimal

• Zero duality gap: ⟨c, x̄⟩ = ⟨a, ȳ⟩+ ⟨b, z̄⟩

• Complementary slackness: ⟨ȳ, Ax̄− a⟩ = 0

Proof. Follows from

⟨c, x̄⟩ = ⟨A⊺ȳ + B⊺z̄, x̄⟩ = ⟨ȳ, a⟩+ ⟨ȳ, Ax̄− a⟩+ ⟨z̄, Bx̄− b⟩+ ⟨z̄, b⟩
= (⟨ȳ, a⟩+ ⟨z̄, b⟩) + ⟨ȳ, Ax̄− a⟩ . ■

We will not prove this theorem, but it is useful to know and com-
pare.

Theorem 10. In a Linear Program, if both primal and dual are
feasible, then strong duality holds and both are solvable.

Example 12. Consider the following problem: Given µ1, . . . , µk ∈ Rn,
solve

inf
x∈Rn

k∑
i=1
∥x− µi∥2 .

Our goal is to recognize this as a conic program, construct its dual,
deduce that strong duality holds, that both programs are solvable, and
to understand what complementary slackness says about the structure
of primal and dual optima.

Recall that(
t

x− µi

)
∈ L1+n ⇐⇒ ∥x− µi∥2 ≤ t.

Thus, we can write the above problem as

inf
x∈Rn,t1,...,tk∈R

{
k∑

i=1
ti :

(
ti

x

)
−

(
0
µi

)
∈ L1+n, ∀i = 1, . . . , k

}
The dual problem has k variables of the form (ξi, ζi) ∈ L1+n

∗ =

L1+n. We now derive the dual problem. First, we collect all the
inequalities and then rearrange to derive a lower bound on some linear
form evaluated at our primal variables x, t. Let (ξi, ζi) ∈ L1+n. Then,

k∑
i=1

(ξiti + ⟨ζi, x− µi⟩) ≥ 0

⇐⇒
∑

i

ξiti +

〈∑
i

ζi, x

〉
−
∑

i

⟨ζi, µi⟩ ≥ 0

⇐⇒
∑

i

ξiti +

〈∑
i

ζi, x

〉
≥
∑

i

⟨ζi, µi⟩ .

conic programming ii 37

Thus, the dual is given by

sup
(ξ1,ζ1),...,(ξk,ζk)∈R1+n


k∑

i=1
⟨µi, ζi⟩ :

ξ1, . . . , ξk = 1∑k
i=1 ζi = 0(
ξi

ζi

)
∈ L1+n, ∀i = 1, . . . , k


= sup

ζ1,...,ζk∈Rn

{
k∑

i=1
⟨µi, ζi⟩ :

∑k
i=1 ζi = 0

∥ζi∥2 ≤ 1, ∀i = 1, . . . , k

}
.

The primal and dual are both strictly feasible so that both programs
achieve their optimal solutions and the optimal values are equal.

What does complementary slackness mean? It means that the conic
inequality is tight at the optimal solution, i.e., let (t̄, x̄), (ξ̄i, ζ̄i) be
primal and dual optimal solutions. Then, by complementary slackness,
for all i = 1, . . . , k,

ξ̄it̄i +
〈
ζ̄i, x̄− µi

〉
= 0.

Note that ξ̄i = 1 in any dual feasible solution and t̄i = ∥x̄− µi∥ in any
primal optimal solution. Thus, complementary slackness tells us that

∥x− µi∥ =
〈
ζ̄i, x̄− µi

〉
.

In other words (as long as x̄ ̸= µi), we have that ζ̄i must be the unit
vector in the direction x̄− µi. □

The following lemma explains what complementary slackness means
for Rn

+, L1+n, and Sn
+.

Lemma 11. Let n ≥ 1.

• If x, y ∈ Rn
+ are such that ⟨x, y⟩ = 0, then the support of x and y

are disjoint.

• If (s, x), (t, y) ∈ L1+n are such that〈(
s

x

)
,
(

t

y

)〉
= 0,

then ⟨x, y⟩ = −st. More cogently, if both (s, x) and (t, y) are
nonzero, then s = ∥x∥, t = ∥y∥, and x and y are collinear pointed
in opposite directions.

• If X, Y ∈ Sn
+ are such that ⟨X, Y ⟩ = 0, then range(X) ⊆ ker(Y)

and range(Y) ⊆ ker(X).

Proof. First, suppose x, y ∈ Rn
+. Then, 0 = ⟨x, y⟩ =

∑
i xiyi. Thus, for

each i ∈ [n], at least one of xi or yi must be zero.
Next, suppose (s, x), (t, y) ∈ L1+n. Then,

0 = st + ⟨x, y⟩ ≥ 0.

38 mgmt 690—convex optimization

We deduce that ⟨x, y⟩ = −st. If (s, x) and (t, y) are both nonzero,
then st is nonzero and ⟨x, y⟩ ≥ −∥x∥ ∥y∥ ≥ −st where equality holds
throughout the chain only if ∥x∥ = s, ∥y∥ = t, and x, y are collinear in
opposite directions.

Next, suppose X, Y ∈ Sn
+ are such that ⟨X, Y ⟩ = 0. We will show

that range(X) ⊆ ker(Y). The second statement follows by symmetry.
By the spectral theorem, we can write X =

∑n
i=1 λiviv

⊺
i . Suppose

λi > 0 for i ∈ [k] and λi = 0 for i ∈ [k + 1, n]. Then, range(X) is given
by

range(X) = {Xu : u ∈ Rn}

=

{
n∑

i=1
λiviv

⊺
i u : u ∈ Rn

}

=

{
k∑

i=1
λiviv

⊺
i u : u ∈ Rn

}
= span {v1, . . . , vk} .

On the other hand,

0 = ⟨X, Y ⟩ =
n∑

i=1
λiv

⊺
i Y vi =

k∑
i=1

λiv
⊺
i Y vi.

Note that for all i = 1, . . . , k, we have λi > 0 and v⊺i Y vi ≥ 0. Thus,
v⊺i Y vi = 0 so that vi ∈ ker(Y). ■

Remark 5. Up to now, the conic programs we have considered write
the affine constraints Bx − b separately from the conic constraint
Ax− a ∈ K. In the future, we will combine the two and simply write

inf
x∈Rn

{c⊺x : Ax− a ∈ K} .

In this form, we can still apply the results in the conic programming
lectures. Obviously, we could treat this as a conic program in the
previous form without the Bx− b = 0 term and apply the previous
results verbatim. Alternatively, we can get a more powerful duality
result by first “pulling out” the affine constraints implied by Ax− a ∈
K before applying the duality results. The effect of this is that the
strict feasibility conditions will become weaker conditions. □

conic programming ii 39

Problems

1. We show that strong duality may fail in general for conic programs
without further assumptions. Consider the following SDP.

inf
X∈S2

{
2X1,2 :

X1,1 = 0
X ⪰ 0

}

Write its dual and compute the optimal value for both the primal
and dual.

2. Consider an optimization problem of the form

inf
x∈Rn

{f(x) : gi(x) ≤ 0, ∀i ∈ [m]} .

We make no assumptions on whether f or g1, . . . , gm is convex.
Define

I :=




f(x)

g1(x)
...

gm(x)

 : x ∈ Rn

+ R1+m
+ .

• Show that if f and g1, . . . , gm are convex functions, then I is a
convex set.

• We now will only assume that I is a convex set (while f , g1, . . . , gm

may not necessarily be convex).
Adapt the proof of strong conic duality to show that if I is
convex and there exists x̄ so that gi(x̄) < 0 for all i ∈ [m], then

inf
x∈Rn

{f(x) : gi(x) ≤ 0, ∀i ∈ [m]}

= sup
u∈R, λ∈Rm

{
u :

λ ≥ 0
f(x) +

∑m
i=1 λigi(x) ≥ u, ∀x ∈ Rn

}

where the dual problem is solvable (i.e., the supremum is
achieved).

This statement is known as hidden convexity and allows us to
extend convex optimization theory to some very special nonconvex
optimization problems where I is convex despite f , gi being possibly
nonconvex.

3. Suppose K is a proper cone and consider the primal and dual conic
problems:

inf
x∈Rn

{
c⊺x :

Ax− a ∈ K

Bx− b = 0

}
≥ sup

y∈Rm, z∈Rk

{
⟨a, y⟩+ ⟨b, z⟩ :

A⊺y + B⊺z = c

y ∈ K∗

}
.

40 mgmt 690—convex optimization

Furthermore, assume that the primal problem is feasible and that:

ker


c⊺

A

B


 = {0} .

Prove that the primal problem has bounded sublevel sets, i.e.,

∀t ∈ R, the set

x ∈ Rn :
c⊺x ≤ t

Ax− a ∈ K

Bx− b = 0

 is bounded

if and only if the dual problem is strictly feasible.

Hint: in the only if direction, consider the setx ∈ Rn :
c⊺x ≤ 0
Ax ∈ K

Bx = 0

 = {0} .

You must justify why this set needs to be {0}. Now, take the dual
cone of either side of this equation. You may use the fact that the
relative interior of an affine image of a convex set is the affine image
of the relative interior of the convex set.

6
SOCP representability

The following two lectures will investigate in detail two classes of conic
optimization problems: second-order cone programs (SOCPs) and
semidefinite programs (SDPs).

Any LP is an SOCP and any SOCP is an SDP. Thus, SDPs give
the most modeling power of these three classes of conic programs. On
the other hand, algorithms for solving LPs generally run faster than
algorithms for solving SOCPs, than algorithms for solving SDPs.

This motivates the need to understand what can be modeled in the
class of SOCPs and what can be modeled in the class of SDPs.

6.1 Second-order cone programming/conic quadratic program

Definition 26. A second-order cone program (SOCP), also known as
a Conic quadratic program (CQP), is a conic program where the cone
K is a direct product of finitely many second-order cones:

inf
x∈Rn

{
c⊺x :

Ax− a ∈ K

Bx− b = 0

}
, K = L1+n1 × · · · × L1+nk . □

Example 13 (Any LP is an SOCP). Consider a linear constraint in x:

a⊺x ≥ α ⇐⇒

(
a⊺x− α

0

)
∈ L2. □

Definition 27. We say that X ⊆ Rn is a second-order cone repre-
sentable (SOCR) set if there exists a set

S =
{
(x, u) ∈ Rn ×Rn′

: A(x, u)− b ∈ K
}

such that X = ΠxS where Πx(x, u) := x and K is a product of
second-order cones.

We say that a function f : Rn → R is SOCR if

epi(f) :=
{
(x, t) ∈ Rn+1 : f(x) ≤ t

}
is a SOCR set. □

42 mgmt 690—convex optimization

We care about SOCR sets and functions because they can be used
as building blocks for SOCPs. Suppose f0, . . . , fk : Rn → R are SOCR
functions and X1, . . . ,Xm ⊆ Rn are SOCR set. Then,

inf
x∈Rn

{
f0(x) :

fi(x) ≤ 0, ∀i ∈ [k]

x ∈ Xi, ∀i ∈ [m]

}

can be converted into an SOCP.1 We will slightly abuse terminology 1 Exercise: Verify this.

and even refer to this problem as an SOCP (albeit one that is not in
standard form).
Example 14. • f(x) = ∥x∥ is SOCR:

∥x∥ ≤ t ⇐⇒

(
t

x

)
∈ L1+n

• f(x) = ∥x∥2 is SOCR:

∥x∥2 ≤ t ⇐⇒ ∥x∥2 +
(

t− 1
4

)2
≤
(

t + 1
4

)2

⇐⇒ t + 1 ≥ 0 and

(t + 1)/4
(t− 1)/4

x

 ∈ L1+(1+n).

The “trick” here2 is that we can get a linear form as a difference of 2 Hint: this may be useful in the
exercises.quadratic functions (t + 1)2 − (t− 1)2 = 4t. □

Lemma 12. Suppose X1, . . . Xk are SOCR sets where Xi ⊆ Rni .
Then,

• (Direct product) ΠiXi is SOCR

• (Affine image) {Ax + b : x ∈ X1} is SOCR.

• (Inverse affine image) {y : Ay + b ∈ X1} is SOCR.

If additionally, n1 = · · · = nk then,

• (Intersection)
⋂

i Xi is SOCR.

• (Minkowski sum)
∑

i Xi is SOCR.

Proof. The first four are left as an exercise.3 3 Exercise: Verify.

We prove only the last statement: Suppose n1 = · · · = nk so that∑
i Xi is defined. By assumption, each Xi is SOCR so that

Xi = Πxi

{
(xi, ui) : Ai,j(xi, ui)− bi,j ∈ L1+ni,j , ∀i ∈ [mi]

}
.

Then,

∑
i

Xi = Πξ

{
(ξ, xi, ui) :

ξ =
∑

i xi

Ai,j(xi, ui)− bi,j ∈ L1+ni,j , ∀i, j

}
. ■

socp representability 43

Example 15. Consider a quadratic function

f(x) = x⊺Ax + b⊺x + c.

We will assume that f is convex, i.e., that A ⪰ 0. Let D so that
D⊺D = A, for example, we could take D = A1/2 which exists because
A is PSD. Then,

f(x) ≤ t ⇐⇒ x⊺D⊺Dx ≤ t− c− b⊺x

⇐⇒ ∥Dx∥2 ≤ t− c− b⊺x

Using Lemma 12 (Inverse affine image) and the fact that
{
(x, t) : ∥x∥2 ≤ t

}
is SOCR, we see that f(x) is SOCR. □

6.2 Rational convex powers and ℓp norms are SOCR

In this section, we will prove that the following two commonly occur-
ring functions are SOCR:

Lemma 13. The hypograph of the geometric mean of two nonnegative
variables: 

x

y

t

 ∈ R3 :
x, y ≥ 0
t ≤ √xy


is SOCR.

Proof. We will give a SOC representation of this set. Suppose x, y ≥ 0.
We would like to square both sides of the inequality t ≤ √xy to
remove the square-root. However, we may not be allowed to do this if
t is negative. Thus, we will introduce a variable u ≥ 0 and say

t ≤ √xy ⇐⇒ ∃u ≥ 0, t ≤ u ≤ √xy

⇐⇒ ∃u, t ≤ u, 0 ≤ u, u2 ≤ xy

⇐⇒ ∃u, t ≤ u, 0 ≤ u, (2u)2 + (x− y)2 ≤ (x + y)2

⇐⇒ ∃u, t ≤ u, 0 ≤ ux + y

x− y

2u

 ∈ L1+2.

44 mgmt 690—convex optimization

Thus, we may write
x

y

t

 ∈ R3 :
x, y ≥ 0
t ≤ √xy



= Πx,y,t


(x, y, t, u) :

x, y, u ≥ 0
t ≤ ux + y

x− y

2u

 ∈ L1+2


. ■

Lemma 14. The hypograph of the geometric mean of 2ℓ nonnegative
variables, {

(x, t) ∈ R2ℓ ×R :
x ≥ 0
t ≤ (

∏
i xi)

1/2ℓ

}
,

is SOCR.

Proof. We show this inductively. The case ℓ = 1 is the previous
example. Now let ℓ ≥ 1 and suppose the claim holds inductively up to
ℓ. Now, suppose x ∈ R2ℓ+1 and x ≥ 0. Then,

t ≤

(∏
i

xi

)1/2ℓ+1

⇐⇒ t ≤

√√√√√ 2ℓ∏
i=1

xi

1/2ℓ  2ℓ+1∏
i=2ℓ+1

xi

1/2ℓ

⇐⇒



∃uleft, uright ≥ 0 :

uleft ≤
(∏2ℓ

i=1 xi

)1/2ℓ

uright ≤
(∏2ℓ+1

i=2ℓ+1 xi

)1/2ℓ

t ≤ √ulefturight

.

We deduce that{
(x, t) ∈ R2ℓ+1×R :

x ≥ 0, ∀i
t ≤ (

∏
i xi)

1/2ℓ+1

}

=


(x1, . . . , x2ℓ , t) :

∃uleft, uright : xi ≥ 0, ∀i

0 ≤ uleft ≤
(∏2ℓ−1

i=1 xi

)1/2ℓ−1

0 ≤ uright ≤
(∏2ℓ

i=2ℓ−1+1 xi

)1/2ℓ−1

t ≤ √ulefturight


.■

Proposition 1. The epigraph of a convex power of a nonnegative
variable, i.e., {

(x, t) ∈ R2 :
x ≥ 0
xp/q ≤ t

}
,

where p, q ∈N and p/q ≥ 1, is SOCR.

socp representability 45

Proof. Suppose x ≥ 0 and t ≥ 0 and let ℓ ∈N so that 2ℓ ≥ p, q. Then
we will write the condition that xp/q ≤ t as

xp/q ≤ t ⇐⇒ xp ≤ tq

⇐⇒ x2ℓ ≤ x2ℓ−ptq

⇐⇒ x ≤ (x2ℓ−ptq)1/2ℓ .

This happens if and only if the vector x, . . . , x︸ ︷︷ ︸
2ℓ−p times

, t, . . . , t︸ ︷︷ ︸
q times

, 1, . . . , 1︸ ︷︷ ︸
p−q times

, x


is in the hypograph of the geometric mean of 2ℓ nonnegative variables.
Thus, by the preceding lemma and the fact that the affine preimage of
an SOCR set is SOCR, we deduce that the epigraph of a convex power
of a nonnegative variable is SOCR. ■

Proposition 2. Let p, q ∈N so that p/q ≥ 1. Then the set{
(x, t) ∈ Rn+1 : ∥x∥p/q ≤ t

}
is SOCR.

Proof. Our first step in constructing the SOC representation is to “get
the absolute values” of each xi. It is clear that if t ≥ 0, then:

∥x∥p/q ≤ t ⇐⇒


∃u1, . . . , un ≥ 0 :

xi ≤ ui, −xi ≤ ui, ∀i ∈ [n]∑
i up/q

i ≤ tp/q

Our next step is to “linearize” both sides of the nonlinear equation.
We will do this by multiplying both sides by t1−p/q and introducing
new variables v1, . . . , vn for the resulting expressions in the summation

· · · ⇐⇒


∃u1, . . . , un, v1, . . . , vn ≥ 0 :

xi ≤ ui, −xi ≤ ui, ∀i ∈ [n]

up/q
i ≤ vit

p/q−1, ∀i ∈ [n]∑
i vi ≤ t

We should be careful here to write up/q
i ≤ vit

p/q−1 instead of
up/q

i t1−p/q ≤ vi to handle the case t = 0 correctly. Finally, let ℓ

so that 2ℓ ≥ p and rewrite the remaining nonlinearities as geometric
mean constraints:

· · · ⇐⇒



∃u1, . . . , un, v1, . . . , vn ≥ 0 :

xi ≤ ui, −xi ≤ ui, ∀i ∈ [n]

ui ≤
(

u2ℓ−p
i vq

i tp−q
)1/2ℓ

, ∀i ∈ [n]∑
i vi ≤ t

. ■

46 mgmt 690—convex optimization

Exercises

• Show that the following branch of the hyperbola is a SOCR set.{
(x, y) ∈ R2 :

xy ≥ 1
x, y ≥ 0

}

7
SDP representability

Definition 28. A semidefinite program (SDP) is a conic program
where the cone K is the PSD cone. □

The primal and dual SDPs in standard form look like

inf
x

{
⟨c, x⟩ :

A(x)−A ⪰ 0
Bx− b = 0

}

≥ sup
Y ,z

{
⟨A, Y ⟩+ ⟨b, z⟩ :

A∗(Y) + B⊺z − c = 0
Y ⪰ 0

}
.

Here A : Rn → Sm is a linear map. Explicitly, one can write A(x) =∑n
i=1 xiA

(i) for some A(i) ∈ Sm. The adjoint A∗ : Sm → Rn is also a
linear map. Explicitly, it is given by A∗(Y) =

(〈
A(i), Y

〉)
i
.

Lemma 15. Any SOCP can be written as an SDP.

Proof. Consider an SOCP:

inf
x∈Rn

{
⟨c, x⟩ :

Ax− a ∈ L1+n1 × · · · × L1+nk

Bx− b = 0

}
.

Define M : R(1+n1)+···+(1+nk) → S(1+n1)+···+(1+nk) to be the linear
map 

t1
x1
...

tk

xk

 7→


t1 x⊺
1

x1 t1In1
. . .

tk x⊺
k

xk tkInk

 .

Note that M(t1, x1, . . .) ⪰ 0 if and only if for all i ∈ [k](
ti x⊺

i

xi tiIni

)
⪰ 0

⇐⇒ (ti = 0 and xi = 0) or (ti > 0 and ti ≥ ∥xi∥2 /ti)

⇐⇒ (ti, xi) ∈ L1+ni .

48 mgmt 690—convex optimization

Thus, the SOCP can be rewritten as

inf
x∈Rn

{
c⊺x :

(M◦A)(x)−M(a) ⪰ 0
Bx− b = 0

}
. ■

Definition 29. A set X ⊆ Rn is semidefinite representable (SDr) if
there exists a representation

X = Πx

{
(x, u) ∈ Rn ×Rn′

: A(x, u)−A ⪰ 0
}

.

for some A and A.
A function f : Rn → R is semidefinite representable (SDr) if

epi(f) :=
{
(x, t) ∈ Rn+1 : f(x) ≤ t

}
is SDr. □

Remark 6. The set Rn that shows up in the definition of SDr is
not inherently important. We can replace it with any other Eu-
clidean space. For example, we can replace Rn with Sn by identifying
Sn ≃ R(n+1

2). Alternatively, we can replace Rn with Rn1×n2 by identi-
fying Rn1×n2 ≃ Rn1n2 . Thus, we can also define a SDr sets and SDr
functions on these spaces. □

The operations in Lemma 12 that preserve SOCr also preserve SDr.

Lemma 16. Suppose X1, . . .Xk are SDR sets where Xi ⊆ Rni . Then,

• (Direct product) ΠiXi is SDr

• (Affine image) {Ax + b : x ∈ X1} is SDr.

• (Inverse affine image) {y : Ay + b ∈ X1} is SDr.

If additionally, n1 = · · · = nk then,

• (Intersection)
⋂

i Xi is SDr.

• (Minkowski sum)
∑

i Xi is SDr.

Example 16. Consider the following functions on Sn:

• The maximum eigenvalue function, f(X) := λmax(X) is SDr

epi(f) = {(X, t) : λmax(X) ≤ t}
= {(X, t) : tI −X ⪰ 0} .

• The Schatten ∞-norm (the operator norm) is SDr:

epi(∥·∥op) = {(X, t) : −tI ⪯ X ⪯ tI} .

sdp representability 49

• The sum of the k-largest eigenvalues is SDr, i.e., Sk(X) :=∑k
i=1 λi(X) where the eigenvalues are arranged in nonincreasing

order. One can verify that

epi(Sk) =
{
(X, t) :

∑k
i=1 λi(X) ≤ t

}
= Π(X,t)

(X, t, Z, s) :
Z ⪰ 0
Z + sI ⪰ X

tr(Z) + sk ≤ t

 .

First, the ⊆ direction: WLOG, we may assume that X = Diag(λ1, . . . , λn)

by the spectral theorem. Let s = λk and set Z = Diag(λ1 −
s, . . . , λk − s, 0, . . . , 0). Then, Z ⪰ 0, Z + sI ⪰ X, and

tr(Z) + sk =
k∑

i=1
λi − sk + sk ≤ t.

Next, the ⊇ direction: WLOG we may assume that X = Diag(λ1, . . . , λn)

is diagonal, and in turn that Z = Diag(z1, . . . , zn) is diagonal. Now,

k∑
i=1

λi ≤
k∑

i=1
(zi + s) ≤ tr(Z) + sk ≤ t.

This completes the proof. We also see from this that Sk(X) is a
convex function in X.1 □ 1 Exercise: Prove that

Sk(X) = max
Y ∈Sn

{
⟨X, Y ⟩ :

0 ⪯ Y ⪯ I

tr(Y) = k

}
and use this fact to give an alternate
proof of convexity of Sk. What do
you get when you take the dual to
this SDP?

Example 17. The set of positive definite matrices is SDr:

{X ∈ Sn : X ≻ 0} =

X ∈ Sn :
∃t ∈ R(

X In

In tIn

)
⪰ 0

 .

To see this, note that by the Schur-Complement Lemma, the lifted
matrix is PSD if and only if t > 0 and X ⪰ 1

t In. □

Example 18. The maximum singular value f(X) = ∥X∥op =

σmax(X) defined for X ∈ Rn1×n2 is SDr

epi(f) = {(X, t) : σmax(X) ≤ t}

=

{
(X, t) :

(
tIn1 X

X⊺ tIn2

)
⪰ 0
}

. □

7.1 Schatten-norms

The remainder of this lecture will prove that the Schatten-p norms are
also SDr. This is very useful result.

Recall that the Schatten-p norm is defined as

∥X∥p = ∥(λ1, . . . , λn)∥p .

50 mgmt 690—convex optimization

We will use the Birkhoff-von Neumann Theorem (which was proved
in Homework 1 Problem 5). Recall P ∈ Rn×n is a permutation matrix
if it is a {0, 1} matrix where every row and column has exactly one
1, and D ∈ Rn×n is a doubly stochastic matrix if it is a nonnegative
matrix where every row and column sums to 1.

Theorem 11 (Birkhoff-von Neumann). The convex hull of the permu-
tation matrices in Rn×n is the set of doubly stochastic matrices.

Corollary 3. Suppose f : Rn → R is convex and permutation
invariant, i.e., f(Px) = f(x) for any permutation matrix P and any
x ∈ Rn. Then, for any doubly stochastic matrix D and any x ∈ Rn,
we have f(Dx) ≤ f(x).

Proof. By the lemma, we can write D =
∑k

i=1 λiPi where λi are
convex combination weights. Then,

f(Dx) = f(
k∑

i=1
λi(Pix))

≤
K∑

i=1
λif(Pix)

= f(x). ■

We will also need the following characterization of doubly stochastic
matrices:

Lemma 17. Let y, x ∈ Rn. There exists a doubly stochastic matrix
P so that y = Px if and only if x and y satisfy the majorization
inequalities: 

∑n
i=1 xi = yi

Sk(x) ≥ Sk(y), ∀k = 1, . . . , n− 1

Proof. The forward direction follows from the previous corollary with
the convex permutation-invariant function Sk.

Now, suppose the majorization inequalities hold. Our goal is to
show that y = Px for some doubly stochastic matrix P . We will
induct on the dimension n.

If n = 1, then x = y and there is nothing to prove.
Now, suppose n ≥ 1. Without loss of generality, we will assume that

x and y are in nonincreasing order.
If there is any i ∈ [n] for which xi = yi, then we can form x̂ and ŷ

indexed by [n] \ i by deleting the ith coordinate. The resulting vectors
x̂ and ŷ still satisfy the majorization inequalities so that by induction,
we can write x̂ = Dŷ. Break up D into blocks(

y1:i−1
yi+1:n

)
=

(
D11 D12
D21 D22

)(
x1:i−1
xi+1:n

)

sdp representability 51

of the appropriate dimensions. Then,y1:i−1
yi

yi+1:n

 =

D11 D12
1

D21 D22


x1:i−1

xi

xi+1:n

 .

Now, we may assume that xi ̸= yi for any i ∈ [n]. Then, x1 > y1.
Let k be the first index so that yk > xk. This must exist as the sums
are equal. Thus,

x1 > y1 ≥ yk > xk.

Now let D be the doubly stochastic matrix that acts as

Dx =


(1− µ)x1 + µxk

x2:k−1
µx1 + (1− µ)xk

xk+1:n

 .

We will increase µ from 0 → 1 until either (1− µ)x1 + µxk = y1 or
µx1 + (1− µ)xk = yk, whichever occurs first.

The rest of the proof has two cases depending on which stopping
condition was hit. The proofs are analogous so we will assume that

(Dx)1 = (1− µ)x1 + µxk = y1

(Dx)k = µx1 + (1− µ)xk ≤ yk.

Now, let x̂ and ŷ denote the vectors achieved by dropping the first
coordinates of Dx and y respectively. We will index x̂ and ŷ by [2, n].

We verify that the majorization inequalities hold between x̂ and
ŷ. Note that ŷ is still in sorted order, whereas x̂ may no longer be in
sorted order. For t ∈ [2, k− 1], we have that

St−1(x̂) ≥
t∑

i=2
x̂i =

t∑
i=2

xi ≥
t∑

i=2
ŷi.

The inequality here holds because by assumption xi > yi for all
i ∈ [2, k− 1]. For t ≥ k, we have

St−1(x̂) ≥
t∑

i=2
x̂i =

t∑
i=1

xi − (Dx)1 ≥
t∑

i=1
yi − y1 =

k∑
i=2

ŷi.

Finally,
n∑

i=2
x̂i =

n∑
i=1

xi − (Dx)1 =
n∑

i=2
yi.

Thus, by induction there exists a doubly stochastic D̂ acting on
R[2,n] so that D̂x̂ = ŷ. Then,(

1
D′

)
Dx =

(
1

D′

)(
y1
x̂

)
=

(
y1
ŷ

)
= y.

52 mgmt 690—convex optimization

It remains to note that the product of doubly stochastic matrices is
doubly stochastic. ■

Theorem 12. Suppose f is any convex permutation-invariant function
that is SDr. Then, F (X) := f(λ(X)) is SDr.

Proof. Assume that

epi(f) = Πx,t {(x, t, u) : A(x, t, u)−A ⪰ 0} .

We claim that

epi(F) = ΠX,t

(X, t, x, u) :

x1 ≥ x2 ≥ · · · ≥ xn

Sk(X) ≤
∑k

i=1 xi, ∀k = 1, . . . , n− 1
tr(X) =

∑
i xi

A(x, t, u)−A ⪰ 0

 .

First, for the ⊆ direction. Suppose X, t are such that F (X) ≤ t.
Then

f(λ(X)) ≤ t.

Let λ1, . . . , λn denote the eigenvalues of X arranged in nonincreasing
order. By assumption, there exists u so that A(λ, t, u)−A ⪰ 0. Set
xi = λi. Then, it is clear that (X, t, x, u) satisfies the inequalities of
the right hand set.

Now, suppose (X, t, x, u) satisfy the inequalities in the right hand
set. By assumption λ is majorized by x. Thus, there exists a doubly
stochastic matrix P so that

λ = Px.

Thus,

F (X) = f(λ) ≤ f(x) ≤ t. ■

Corollary 4. If p ∈ [1,∞] and p is rational, then the Schatten-p norm
is SDr.

7.2 Some comments on lifting

The ability to project in the definition of SOCR and SDR is very
natural from the point of optimization: Additional lifting variables
simply mean additional decision variables in our optimization problem.
However, there are also important benefits to allowing lifting in the
definition of representability.

First, lifting and projection can dramatically reduce the problem
“complexity”. Specifically, consider the following LP-representable set2 2 LP representability is the same

as SOC representability and SDP
representability where the cone K is
the nonnegative orthant.

sdp representability 53

X := {x ∈ Rn : ∥x∥1 ≤ 1} .

A naive LP representation of this set uses 2n constraints:

X :=

x ∈ Rn :


σ⊺

1
σ⊺

2
...

σ⊺
2n

x + 12n ∈ R2n

+


where σ1, . . . , σ2n are the 2n sign vectors in {±1}n. On the other
hand, we can also write it as

X := Πx

(x, u) ∈ Rn ×Rn :

 u− x

u + x

1− 1⊺u

 ∈ R2n+1
+

 .

Thus, if we were to use these descriptions within an LP, the num-
ber of decision variables would go from n to 2n, but the number of
constraints would decrease from 2n to 2n + 1.

Next, sets with a lifted description may not have a “non-lifted”
descriptions. A well-known example is the following set:

Π(x,z)

{
(x, y, z) ∈ R3 :

0 ≤ z ≤ 1√
(x− z)2 + y2 ≤ z/2

}
.

This set is SOCR, however there does not exist even an SDP represen-
tation of this set that does not use lifting variables.

8
SDP applications

8.1 Stability analysis and synthesis

For A ∈ Rn×n let ρ(A) be the spectral radius of A:

ρ(A) := max
i∈[n]
|λi(A)| .

Note that for a general matrix A ∈ Rn×n, the eigenvalues of A need
not be real so |λi(A)| is the modulus of the possibly complex eigen-
value λi(A).

8.1.1 Analysis

Consider the following discrete-time dynamical system

xt+1 = Axt.

Stability analysis asks whether this system is stable, i.e., whether
limt→∞ xt = 0 for all starting conditions x0 ∈ Rn.

Lemma 18. The following are equivalent

(i) limt→∞ xt = 0 for any initial x0 ∈ Rn

(ii) limt→∞ xt = 0 for any initial x0 ∈ Cn

(iii) ρ(A) < 1

(iv) There exists P ∈ Sn with P ≻ 0 so that A⊺PA− P ≺ 0.

Proof. (i) =⇒ (ii) Let x0 ∈ Cn and write x0 = a0 + ib0 where
a0, b0 ∈ Rn. Then,

xt = Atx0 = (Ata0) + i(Atb0).

By assumption, this converges to zero.

56 mgmt 690—convex optimization

(ii) =⇒ (iii) Consider an arbitrary eigenvalue λ of A and let
v ∈ Cn be a corresponding eigenvector with ∥v∥ = 1. Set x0 = v. By
assumption

0 = lim
t→∞

xt = lim
t→∞

Atv = lim
t→∞

λtv.

We deduce that |λ| < 1.
(iii) =⇒ (iv) Define P =

∑∞
t=0(A

t)⊺(At). This is well-defined as
ρ(A) < 1.1 Now, P ⪰ (A0)⊺(A0) = I ≻ 0. Furthermore, 1 Careful: ρ(A) < 1 does not imply

that ∥A∥op < 1. Even so, ρ(A) < 1
ensures that this “geometric series”
converges. If you haven’t seen this
before, it can be proved by checking
the case of a single Jordan canonical
block. This is done in the Notes
section at the end of this chapter.

A⊺PA− P = −I ≺ 0.

(iv) =⇒ (i) Finally, let x0 ∈ Rn. We track the evolution of x⊺
t Pxt.

Let ϵ > 0 so that A⊺PA ⪯ (1− ϵ)P .

x⊺
t Pxt = x⊺

t−1A⊺PAxt−1 ≤ (1− ϵ)x⊺
t−1Pxt−1.

We deduce that x⊺
t Pxt → 0. As P ≻ 0, we must have that limt→∞ xt =

0. ■

The function f(x) = x⊺Px is called a quadratic Lyapunov function.
You can think of it as some generalization or formalization of the
notion of “energy.” The function f(x) assigns some nonnegative
“energy” to every state x, and f(x) is shown to be decreasing on
every trajectory of our system x 7→ Ax.

Thus, checking whether a system x 7→ Ax is stable is equivalent to
checking whether

inf
P ∈Sn

{
λmax(A

⊺PA− P) :
P ≻ 0
tr(P) ≤ 1

}

is negative. This problem is SDP representable for any fixed A.

8.1.2 Analysis

Now, suppose the system is given by

xt+1 = Axt + But,

where B ∈ Rn×m and u ∈ Rm is a control that we get to design to
attempt to stabilize our system. We will consider the case of a linear
control ut = Kxt, i.e. K ∈ Rm×n is our controller. Thus, our goal is
to find K so that

ρ(A + BK) < 1.

We cannot simply plug A+BK into the previous stability analysis SDP
as then (A + BK)⊺P (A + BK) would be nonlinear in our variables

sdp applications 57

P and K. We make the nonlinear change of variables Q = P −1 and
Y = KQ to rewrite the stability condition as follows:

P ≻ 0, P − (A + BK)⊺P (A + BK) ≻ 0
⇐⇒ Q ≻ 0, Q− (AQ + BY)⊺Q−1(AQ + BY)

⇐⇒

(
Q (AQ + BY)⊺

AQ + BY Q

)
≻ 0.

We can now solve the synthesis problem by solving the SDP

inf
Q∈Sn, Y ∈Rm×n

{
∥Y ∥op :

(
Q (AQ + BY)⊺

AQ + BY Q

)
≻ 0

}

8.2 SDP Relaxation of Max-Cut

Let G = ([n], E) be a graph on the vertex set [n]. Suppose each edge
(i, j) has weight wi,j . In the Max-Cut problem, we are asked to find a
partition of [n] into S ⊆ [n] and Sc, in order to maximize∑

i∈S

∑
j∈Sc

wi,j .

This is an NP-hard problem but we will see an approximation
algorithm for this problem based on semidefinite programming. This is
called the Goemans–Williamson MaxCut SDP relaxation.

First, we rewrite the problem as minimizing a quadratic form over
{±1}n: Define the following matrix2 2 This matrix is called the Laplacian

matrix and acts as a discrete second-
order derivative.

L :=
1
4
∑

(i,j)∈E

wi,j(ei − ej)(ei − ej)
⊺.

Now, suppose x ∈ {±1}n. It holds that

x⊺Lx =
∑

(i,j)∈E

wi,j1Jxi ̸= xjK,

i.e., if we identify x with the set of coordinates where it is equal to
one, then x⊺Lx is the weight of the edges cut by the partition S, Sc.

Thus, the MaxCut problem can be relaxed as

max
x∈Rn

{
x⊺Lx : x2

i = 1, ∀i ∈ [n]
}

= max
X∈Sn

⟨L, X⟩ :
Xi,i = 1, ∀i ∈ [n]

rank(X) = 1
X ⪰ 0


≤ max

X∈Sn

{
⟨L, X⟩ :

Xi,i = 1, ∀i ∈ [n]

X ⪰ 0

}
.

58 mgmt 690—convex optimization

Note, the problem on the first two lines is nonconvex and the problem
on the last line is an SDP. Note also that the feasible domain of the
SDP is compact so that the SDP optimizer exists.

Now consider the following procedure3 for taking the SDP opti- 3 Exercise: Verify that the following
procedure is equivalent (i.e., generates
the same distribution on x): Sample
y ∼ N(0, G) and output x = sign(y).

mizer G and generating a vector x ∈ {±1}n.

• Let U such that G = U⊺U (for example, U = G1/2 is one such
option). Let ui denote the columns of U .

• Sample z ∼ N(0, I)

• Let x = sign(⟨z, ui⟩)

Theorem 13 (Goemans–Williamson). It holds that

Opt(Max-Cut) ≥ E
x
[x⊺Lx] ≥ (0.868 . . .)Opt(SDP).

Proof. Define β to be the largest value so that

arccos(x) ≥ β(1− x)

for all x ∈ [−1, 1].
Consider any edge (i, j). This edge is cut if and only if ⟨ui, z⟩ ≤ 0 ≤〈

uj , z
〉

or ⟨ui, z⟩ ≥ 0 ≥ −
〈
uj , z

〉
(up to a probability zero event). This

happens with probability θi,j
π where θi,j = arccos(Gi,j) is the angle

between ui and uj .
Now, the expected value of x⊺Lx is

E
x
[x⊺Lx] =

∑
(i,j)∈E

wi,j arccos(Gi,j)

π

≥ β

π

∑
(i,j)∈E

wi,j(1−Gi,j)

=
2β

π
⟨L, G⟩ . ■

8.3 SDP relaxations of polynomial optimization problems

Let R[x]d denote the polynomials in x with real coefficients and with
degree at most d.

Let f ∈ R[x]2d and consider the problem of minimizing

inf
x∈R

f(x),

We will introduce one additional variable t and then think of the
problem above as:

sup
t
{t : f(x)− t ≥ 0, ∀x} .

sdp applications 59

The optimum values are the same.
The Sum-of-Squares (SOS) hierarchy is a sequence of increasingly

large and increasingly accurate SDP relaxations of this problem. It is
parameterized by a degree d ∈ 2N.

We will say that a polynomial p ∈ R[x] is a sum-of-squares if it can
be written in the form

p =
k∑

i=1
qi(x)

2

where each qi(x) ∈ R[x] is itself a polynomial in x.
The following lemma states that in the univaraite case, the cone

of nonnegative polynomials of degree 2d and the sum-of-squares
polynomials of degree 2d are equal.

Lemma 19. Let p ∈ R[x]2d. The following are equivalent

1. p is nonnegative

2. There exists q1, . . . , qk ∈ R[x]d so that

p =
k∑

i=1
(qi)

2.

Proof. The backwards direction is trivial.
For the forward direction, without loss of generality, we may as-

sume that the coefficient on x2d is 1. By the fundamental theorem of
algebra, we can write

p(x) =
2d∏

i=1
(x− λi)

where λi ∈ C are the (possibly complex) roots of p (without repeti-
tion). As p is nonnegative and real, every real root must have an even
multiplicity, and every complex root must also come with its conjugate
(with multiplicity). Thus, we can write

p(x) =
d∏

i=1
(x− λi)(x− λ̄i) = |q(x)|2

where q(x) :=
∏d

i=1(x− λi). Let q1(x) and q2(x) be the polynomi-
als attained by taking the real parts of the coefficients of q and the
imaginary parts of the coefficient of q respectively. Then,

q1(x)
2 + q2(x)

2 = |q(x)|2 = p(x). ■

Let x̂ denote the following symbolic vector (1, x, . . . , xd). We can
map symmetric matrices of size S1+d to polynomials in R[x]2d in the

60 mgmt 690—convex optimization

following way

A 7→ pA := x̂⊺Ax̂ =

〈
A,



1 x x2 . . . xd

x x2 . .
.

. .
.

xd+1

x2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

x2d−1

xd xd+1 . . . x2d−1 x2d


〉

We will index the columns and rows of A by [0, n] to correspond to the
degrees of the vector (1, x, . . . , xn).

Lemma 20. p ∈ R[x]2d is a sum-of-squares if and only if we can write
p = pA with a positive semidefinite matrix A.

Proof. First, suppose p ∈ R[x]2d is a sum-of-squares. Then, there exist
q1, . . . , qk ∈ R[x]d such that

p(x) =
k∑

i=1
(qi(x))

2.

Each qi(x) is of the form

qi(x) =
〈

α(i), x̂
〉

.

Thus,

p(x) = x̂⊺

(
k∑

i=1
(αiα

⊺
i)

)
x̂.

On the other hand, suppose

p(x) = x̂⊺Ax̂

for some PSD matrix A. By the spectral decomposition, we can write
A =

∑k
i=1(αi)(αi)⊺. Then,

p(x) =
k∑

i=1
(α⊺

i x̂)2.

Each α⊺
i x̂ is a real polynomial in x of degree at most d. ■

We deduce that

inf
x∈R

f(x) = sup
t∈R

{t : p− t is a sum-of-squares}

= sup
t∈R, A∈S1+d

{
t :

A ⪰ 0
pA = p− t

}
.

The linear constraint here imposes linear constraints on the matrix A.
Specifically, it specifies the sum on each antidiagonal of A.

sdp applications 61

Notes

Lemma 21. Let J be an n× n Jordan canonical block corresponding to
the eigenvalue λ ∈ C with |λ| < 1. Then,∥∥∥Jk

∥∥∥
op

is exponentially small in k.

Proof. For all k ≥ n− 1 we have

Jk =



λk (k
1)λ

k−1 (k
2)λ

k−2 . . . (k
n−1)λ

k−n+1

0 λk (k
1)λ

k−1 . . .
. . .

...
...

. . . (k
1)λ

k−1 (k
2)λ

k−2

0 0 . . . λk (k
1)λ

k−1

0 0 . . . 0 λk


.

The binomial coefficients are at most polynomially large in k whereas
|λk−n+1| is exponentially small in k. ■

Lemma 22. Let J be an n× n Jordan canonical block corresponding to
the eigenvalue λ ∈ C with |λ| < 1. Then,

∞∑
k=0

(Jk)∗Jk

is well-defined, i.e., the partial sums converge.

Proof. It suffices to show that
∞∑

k=0

∥∥∥(Jk)∗Jk
∥∥∥

op

is bounded. This is bounded as
∥∥(Jk)∗(Jk)

∥∥
op =

∥∥Jk
∥∥

op is exponen-
tially small in k. ■

9
Subgradient descent for nonsmooth convex optimiza-
tion

This chapter will begin our study of first-order methods. These are
iterative algorithms that rely only on first-order information, i.e.,
function value, gradient, or subgradient information (notably omitting
Hessian information).
Remark 7. In this chapter, all norms are the ℓ2 norm. □

We consider the problem of solving

inf
x∈Ω

f(x)

where Ω ⊆ Rn is closed and convex and f : Rn → R is convex and
L-Lipschitz continuous:
Definition 30. f : Rn → R is L-Lipschitz continuous if

|f(x)− f(y)| ≤ L ∥x− y∥ ∀x, y ∈ Rn. □

9.1 Subgradients of convex functions

Definition 31. Let f : Rn → R be a convex function. Then g ∈ Rn is
a subgradient of f at x if

f(x) + ⟨g, y− x⟩ ≤ f(y) ∀y ∈ Rn.

The set of subgradients of f at x ∈ Rn is denoted ∂f(x). □

Proposition 3. Suppose f : Rn → R is convex. Then, ∂f(x) is
nonempty for all x ∈ Rn.

Proof. Consider the strict epigraph

S =
{
(y, t) ∈ Rn+1 : f(y) < t

}

64 mgmt 690—convex optimization

and the point (x, f(x)). By construction, this is a pair of disjoint
nonempty convex sets. Thus, the hyperplane separation theorem gives
(g, α) ∈ Rn+1 nonzero so that

⟨−g, x⟩+ αf(x) ≤ inf
(y,t)∈S

⟨−g, y⟩+ αt.

By taking t → ∞, we see that α ≥ 0. We claim that α ̸= 0. Indeed,
suppose α = 0 and consider y = x + ϵg. Then,

⟨−g, x⟩ ≤ ⟨−g, x⟩ − ϵ ∥g∥2 < ⟨−g, x⟩ ,

a contradiction. We deduce that a > 0.
We may thus WLOG assume that a = 1. Then, for all y ∈ Rn,

f(x) + ⟨g, y− x⟩ ≤ f(y).

We deduce that g ∈ ∂f(x). ■

Lemma 23. Let f : Rn → R be convex. Then, f is L-Lipschitz if and
only if ∥g∥ ≤ L for all x ∈ Rn and all g ∈ ∂f(x).

Proof. First, suppose x, y ∈ Rn. Let g ∈ ∂f(x). Then,

f(x)− f(y) ≤ ⟨g, x− y⟩ ≤ L ∥x− y∥ .

Reversing the roles with g ∈ ∂f(y), we also have that

f(y)− f(x) ≤ L ∥x− y∥ .

We deduce that |f(x)− f(y)| ≤ L ∥x− y∥ and f is L-Lipschitz.
Now, suppose f is L-Lipschitz and assume for the sake of contradic-

tion that there exists x and g ∈ ∂f(x) with ∥g∥ > L. Let y = x + g.
Then,

f(y)− f(x) ≥ ⟨g, y− x⟩ = ∥g∥2 > L ∥y− x∥ ,

a contradiction. ■

The following lemma relates subgradients to gradients.1 1 Exercise: Prove this.

Lemma 24. Suppose f : Rn → R is convex and differentiable. Then,
∂f(x) = {∇f(x)}. Thus, for all x, y ∈ Rn,

f(x) + ⟨∇f(x), y− x⟩ ≤ f(y).

9.2 The projected subgradient algorithm

Recall the problem that we are trying to solve is

inf
x∈Ω

f(x)

subgradient descent for nonsmooth convex optimization 65

where f : Rn → R is convex and L-Lipschitz and Ω ⊆ Rn is closed
and convex.

The following algorithm is the projected subgradient method.

Algorithm 1 Projected subgradient method
Given: Initial iterate x0 ∈ Ω, step lengths η0, . . . , ηT > 0, time horizon
T

• For t = 0, . . . , T − 1, set

yt+1 = xt − ηtgt, for some gt ∈ ∂f(xt)

xt+1 = ΠΩ(yt).

• Let µ =
∑T

t=0 ηt and define x̄ :=
∑T

t=0
ηt
µ xt

Theorem 14. Suppose infx∈Ω f(x) has a minimizer x⋆ with opti-
mal value f⋆ and ∥x0 − x⋆∥ ≤ R. The projected subgradient method
guarantees

f (x̄)− f⋆ ≤ R2

2µ
+

∑T
t=0 η2

t ∥gt∥2

2µ

≤ R2

2µ
+

L2∑T
t=0 η2

t

2µ
.

Proof. For the sake of the proof, we will imagine simulating one
additional step of the method so that xT+1 and yT+1 are also defined.

Let t ∈ [0, T]. We compute

f(xt)− f⋆ ≤ ⟨gt, xt − x⋆⟩ (definition of subgradient)

=
1
ηt
⟨xt − yt+1, xt − x⋆⟩ (definition of yt+1)

=
1

2ηt

(
∥xt − x⋆∥2 + ∥xt − yt+1∥2 − ∥yt+1 − x⋆∥2

)
(Parallelogram law)

=
1

2ηt

(
∥xt − x⋆∥2 − ∥yt+1 − x∗∥2

)
+

ηt

2 ∥gt∥2 .

Next, we will use the fact that ∥yt+1 − x⋆∥ ≥ ∥xt+1 − x⋆∥. Thus,

f(xt)− f⋆ ≤ 1
2ηt

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
+

ηt ∥gt∥2

2 .

Let µ =
∑T

t=0 ηt. We will take an (ηt/µ)-weighted sum of these

66 mgmt 690—convex optimization

inequalities to get

T∑
t=0

ηt

µ
(f(xt)− f⋆) ≤ ∥x0 − x⋆∥2 − ∥xT+1 − x⋆∥2

2µ
+

∑T
t=0 η2

t ∥gt∥2

2µ

≤ R2

2µ
+

∑T
t=0 η2

t ∥gt∥2

2µ

≤ R2

2µ
+

L2∑T
t=0 η2

t

2µ
.

The fact that f(x̄)− f⋆ is at most the LHS follows from convexity. ■

Corollary 5. Suppose ηt > 0 satisfies
∑∞

t=0 ηt =∞ and
∑∞

t=0 ηt <∞.
Then, f(x̄T)− f⋆ → 0.

Corollary 6. Taking ηt =
R

∥gt∥
√

t+1 gives

f(x̄)− f⋆ ≤ LR(2 + ln(T + 1))
2(
√

T + 2− 1)

Proof. For any T we have that

f(x̄)− f∗ ≤ R2

2µ
+

R2∑T
t=0

1
t+1

2µ

≤ R2(2 + ln(T + 1))
2µ

.

On the other hand,

µ =
T∑

t=0

R

∥gt∥
√

t + 1

≥ R

L

T∑
t=0

1√
t + 1

≥ 2R(
√

T + 2− 1)
L

. ■

Suppose we fix the time horizon T and want to pick the set of step
sizes (η0, . . . , ηT) ∈ RT+1 to minimize the upper bound

R2

2µ
+

L2∑T
t=0 η2

t

2µ
.

First, note that for any fixed total µ, the optimal η to pick is the one
that is constant with step sizes ηt = µ

T+1 (think: minimize ℓ2 norm
subject to constant ℓ1 norm). Then, restricting ourselves to constant
stepsizes ηt = η, the upper bound simplifies to

R2

2(T + 1)η +
L2η

2 .

subgradient descent for nonsmooth convex optimization 67

This is the arithmetic mean of R2

(T+1)η and L2η. Note that the geo-
metric mean is unchanged upon varying η. Thus, the upper bound is
always at least LR/

√
T + 1. On the other hand, we can set the two

to be equal by setting η = R
L

√
T+1 (so that the AM-GM inequality is

tight).

Corollary 7. Suppose infx∈Ω f(x) has a minimizer x⋆ with optimal
value f⋆ and ∥x0 − x⋆∥ ≤ R. The projected subgradient method with
η = R

L
√

T+1 guarantees

f (x̄)− f⋆ ≤ LR√
T + 1

.

In particular, it achieves an ϵ suboptimal solution in O
((

LR
ϵ

)2)
iterations.

68 mgmt 690—convex optimization

Exercises

• Consider f : R2 → R by

f(x) = |x1|+ 2 |x2| .

Show that ∂f(1, 0) = {(1, y) : |y| ≤ 2}. Thus, (1, 2) ∈ ∂f(1, 0).
Next, show that f((1, 0) − t(1, 2)) > f(1, 0) for all t > 0. Thus,
−(1, 2) is not a descent direction.

• Let fi : Rd → R be convex and differentiable for i = 1, . . . , n. Let
F (x) := maxi fi(x). Show that

∂F (x) = conv({∇fi(x) : fi(x) = F (x)}).

Problems

1. Let γ > 1 and consider the following function f : R2 → R

f(x) =


√

x2
1 + γx2

2 if |x2| ≤ x1
x1+γ|x2|√

1+γ
else

This function is convex and √γ-Lipschitz (you do not need to prove
this).
Consider the subgradient method with exact line-search initialized
at x(0) = (γ, 1), i.e., for t ≥ 1, let g ∈ ∂f(x(t−1)) and set

x(t) = arg min
x∈x(t−1)−R+g

f(x)

(a) Prove that for a general convex function f : Rn → R, if f

is differentiable at x, then ∂f(x) = {∇f(x)}. Recall, if f is
differentiable at x, then ∇f(x) is defined to be the unique vector
in Rn so that for all u ∈ Rn,

d

dt
f(x + tu) = ⟨∇f(x), u⟩ .

(b) Prove by induction that x(t) =

(
γ
(

γ−1
γ+1

)t
,
(

1−γ
γ+1

)t
)

for all
t ≥ 0.

This shows that the subgradient method with exact line-search
converges to the origin where f(0) = 0. On the other hand, f can
be made arbitrarily negative by sending x1 → −∞.

2. Let f : Rn → R be a L-Lipschitz convex function with minimizer
x⋆ and minimum value f∗. Suppose that f satisfies the following
growth condition parameterized by δ > 0, α > 0:

f(x)− f⋆ ≤ δ =⇒ f(x)− f∗ ≥ α ∥x− x⋆∥2 .

subgradient descent for nonsmooth convex optimization 69

Suppose we are given x0 ∈ Rn with ∥x0 − x⋆∥ ≤ R.

Fill in the missing details (i.e., replace the ?s) in the following
restarted subgradient method. Consider the following algorithm:

Algorithm 2 Restarted subgradient method
Given: L, R, α, δ, x0

• For each k = 0, . . .

– Run the subgradient method with constant stepsizes (see Corol-
lary 11) with initial iterate xk for

Tk =?

iterations. Let xk+1 to be the output of the subgradient method.

By setting T0 =?, we can ensure the following property:

Lemma 25. It holds that f(x1)− f⋆ ≤ δ.

Proof. ? ■

For k ≥ 1, define δk = 2
2k δ ≤ δ. By setting Tk =? for k ≥ 1, we can

ensure the following property:

Lemma 26. It holds that f(xk)− f⋆ ≤ δk.

Proof. ? ■

We conclude that:

Proposition 4. The restarted subgradient method with constant
stepsizes and horizons T0 =? and Tk =? for all k ≥ 1 achieves a gap
f(x)− f⋆ ≤ ϵ after at most

O

(
L2R2

δ2 +
L2

αϵ

)
total (inner) iterations. Thus for ϵ ≪ δ2

αR2 , this convergence rate is
O
(

L2
αϵ

)
.

Compare this rate with Corollary 11.

10
Gradient descent for smooth and strongly convex opti-
mization

Remark 8. All norms in this lecture are Euclidean norms. □

10.1 Smoothness and strong convexity

Definition 32. Let L ≥ 0. A function f : Rn → R is L-smooth if f is
differentiable and for all x, y ∈ Rn

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ . □

Definition 33. Let µ ≥ 0. We say that f : Rn → R is µ-strongly
convex if for all x, y ∈ Rn and all t ∈ [0, 1],

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y)− µ

2 (1− t)(t) ∥x− y∥2 . □

10.1.1 Properties of smooth and strongly convex functions

Lemma 27. Let L ≥ 0 and suppose f : Rn → R is convex. If f is
L-smooth, then for all x, y ∈ Rn

f(y) ≤ f(x) + ⟨∇f(x), y− x⟩+ L

2 ∥y− x∥2

Proof. Define

g(t) := f(x + t(y− x))− [f(x) + t ⟨∇f(x), y− x⟩] .

72 mgmt 690—convex optimization

Then, g(t) is differentiable and

f(y)− f(x)− ⟨∇f(x), y− x⟩ = g(1)

= g(0) +
∫ 1

0
g′(t) dt

=

∫ 1

0
⟨∇f(x + t(y− x))−∇f(x), y− x⟩ dt

≤
∫ 1

0
Lt ∥y− x∥2 dt

=
L ∥y− x∥2

2 .

■

Lemma 28. Suppose f : Rd → R satisfies for all x, y ∈ Rn

f(y) ≤ f(x) + ⟨∇f(x), y− x⟩+ L

2 ∥y− x∥2

Then, y = x− 1
L∇f(x) satisfies

f(y) ≤ f(x)− 1
2L
∥∇f(x)∥2 .

Lemma 29. Suppose f : Rn → R is differentiable. Furthermore,
suppose that for all x, y ∈ Rn

f(y) ≤ f(x) + ⟨∇f(x), y− x⟩+ L

2 ∥x− y∥2 .

Then, f is L-smooth.

Proof. Our goal is to show that ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥2 for all
x, y ∈ Rn. It suffices to prove this statement in the case where x = 0,
f(x) = 0, and ∇f(x) = 0 as otherwise we can consider the function

g(δ) := f(δ + x0)− f(x0)− ⟨∇f(x0), δ⟩

instead.
Now, suppose x = 0, f(x) = 0, and ∇f(x) = 0. Let y be arbitrary

and set z = y− 1
L∇f(y). Then,

0 ≤ f(z) ≤ f(y)− 1
2L
∥∇f(y)∥2 ≤ L

2 ∥x− y∥2 − 1
2L
∥∇f(y)∥2 .

Rearranging completes the proof. ■

Lemma 30. Suppose µ ≥ 0 and f : Rn → R is convex. Then, f is
µ-strongly convex if and only if for all x, y ∈ Rn and all g ∈ ∂f(x),

f(y) ≥ f(x) + ⟨g, y− x⟩+ µ

2 ∥y− x∥2 .

gradient descent for smooth and strongly convex optimization 73

Proof. Throughout this proof let xt := (1− t)x + ty

First, suppose f is µ-strongly convex. By definition, for all t ∈
(0, 1],

f(y) ≥ f(xt)− (1− t)f(x)

t
+

µ

2 (1− t) ∥x− y∥2

= f(x) +
µ

2 (1− t) ∥x− y∥2 + f(xt)− f(x)

t

≥ f(x) +
µ

2 (1− t) ∥x− y∥2 + ⟨g, y− x⟩ .

Taking the limit as t→ 0 shows that

f(y) ≥ f(x) +
µ

2 ∥x− y∥2 + ⟨g, y− x⟩ .

In the other direction, fix t ∈ [0, 1] and set g ∈ ∂f(xt). Invoke the
supplied inequality twice to get

f(y) ≥ f(xt) + ⟨g, y− xt⟩+
µ

2 ∥xt − y∥2

f(x) ≥ f(xt) + ⟨g, x− xt⟩+
µ

2 ∥xt − x∥2 .

Note that y − xt = (1− t)(y − x) and x− xt = t(x− y). Thus, this is
equivalent to

f(y) ≥ f(xt) + (1− t) ⟨g, y− x⟩+ µ

2 (1− t)2 ∥y− x∥2

f(x) ≥ f(xt)− t ⟨g, y− x⟩+ µ

2 t2 ∥y− x∥2 .

Taking the t, (1− t) weighted average of these inequalities proved that
f is µ-strongly convex. ■

Lemma 31. Suppose f : Rn → R. Then, f is µ-strongly convex if and
only if f(x)− µ

2 ∥x∥
2 is convex.

Proof. Let g(x) = f(x)− µ
2 ∥x∥

2.
Note that g(x) is convex if and only if for all x, y ∈ Rn and t ∈

[0, 1],

g((1− t)x + ty) ≤ (1− t)g(x) + tg(y).

This is if and only if

f((1− t)x + ty)− µ

2 ∥(1− t)x + ty∥2

≤ (1− t)
[
f(x)− µ

2 ∥x∥
2
]
+ t
[
f(y)− µ

2 ∥y∥
2
]

.

Rearranging, this is

f((1− t)x + ty)

≤ (1− t)f(x) + tf(y) +
µ

2 t(1− t) ∥x− y∥2 . ■

74 mgmt 690—convex optimization

Lemma 32. Suppose f : Rn → R is µ-strongly convex and suppose x⋆

is a minimizer of f . Then,

f(y) ≥ f(x∗) +
µ

2 ∥y− x⋆∥2 .

Lemma 33. Suppose f , g : Rn → R are α-strongly convex and
β-strongly convex respectively. Then, f + g is α + β strongly convex.
Suppose λ ≥ 0, then λf is λα-strongly convex.

10.2 The Prox Point Method

Consider the following algorithm, known as the Prox Point Method:

Algorithm 3 Prox Point Method
Let f : Rn → R be an arbitrary convex function. Let x0 ∈ Rn and let
η0, η1, · · · > 0

• For t = 1, . . . , set

xt ∈ arg min
x∈Rn

{
f(x) +

1
2ηt−1

∥x− xt−1∥2
}

This algorithm is not practically implementable (usually). However,
it will serve as a template for understanding other algorithms.

Theorem 15. Suppose f : Rn → R is a convex function with a
minimizer x⋆ with value f⋆. Suppose η0, . . . , ηT −1 > 0. Then,

f(xT)− f⋆ ≤

(
T −1∑
t=0

ηt−1

)−1
∥x0 − x⋆∥2

2 .

Proof. Suppose t ≥ 1. Then,

ϕ(x) := ηt−1f(x) +
1
2 ∥x− xt−1∥2

is a 1-strongly convex function. Thus,

ϕ(xt) +
1
2 ∥xt − x⋆∥2 ≤ ϕ(x⋆).

Expanding this and dropping the term ∥xt − xt−1∥2 gives

ηt−1(f(xt)− f⋆) +
1
2

(
∥xt − x⋆∥2 − ∥xt−1 − x⋆∥2

)
≤ 0.

Summing up these inequalities over t gives

T∑
t=1

ηt−1(f(xt)− f⋆) +
1
2

(
∥xT − x⋆∥2 − ∥x0 − x⋆∥2

)
≤ 0.

gradient descent for smooth and strongly convex optimization 75

Note also that f(x0) ≥ f(x1) ≥ This follows as

ηt−1f(xt) +
1
2 ∥xt − xt−1∥2 ≤ ηt−1f(xt−1).

We conclude that

f(xT)− f⋆ ≤

(
T∑

t=1
ηt−1

)−1
∥x0 − x⋆∥2

2 . ■

10.3 Gradient descent for smooth convex functions

We will attempt to approximate the prox-point method by the update
rule

xt ∈ arg min
x∈Rn

{
f(xt−1) + ⟨∇f(xt−1), x− xt−1⟩+

1
2ηt−1

∥x− xt−1∥2
}

.

That is, we replace f(x) by its first-order approximation at xt−1.
Another way to write this update rule is as

xt = xt−1 − ηt−1∇f(xt−1).

This is the gradient descent update rule.

Theorem 16. Suppose f : Rd → R is an L-smooth convex function
with minimizer x⋆ and value f⋆. Let x0 ∈ Rd and iteratively set
xt = xt−1 − η∇f(xt−1), where η = 1

L . Then,

fT − f⋆ ≤ L ∥x0 − x⋆∥2

2T
.

Proof. We will attempt to use the same proof strategy as for the
prox-point method, but will have to keep track of potential errors.

Suppose t ≥ 1. Then,

ϕ(x) := η (ft−1 + ⟨gt−1, x− xt−1⟩) +
1
2 ∥x− xt−1∥2

is 1-strongly convex. Thus,

ϕ(xt) +
1
2 ∥xt − x⋆∥2 ≤ ϕ(x⋆).

We will use the bounds:

ft −
L

2 ∥xt − xt−1∥2 ≤ ft−1 + ⟨gt−1, xt − xt−1⟩

ft−1 + ⟨gt−1, x⋆ − xt−1⟩ ≤ f(x⋆)

Thus,

η(ft − f⋆) +
1
2

(
∥xt − x⋆∥2 − ∥xt−1 − x⋆∥2

)
≤ 0.

76 mgmt 690—convex optimization

Adding up these inequalities gives

T∑
t=1

η(ft − f⋆) ≤ ∥x0 − x⋆∥2

2 .

Next, we have that f0 ≥ f1 ≥ This holds because

ft ≤ ft−1 −
∥gt−1∥2

2L
.

We conclude that

fT − f⋆ ≤ L ∥x0 − x⋆∥2

2T
. ■

10.4 Accelerated gradient descent for smooth minimization

It turns out that gradient descent does not achieve the optimal conver-
gence rate. We can do much better if we decouple the location where
we query first order information from our sequence xt. Consider the
following scheme

Algorithm 4 Accelerated gradient descent for smooth convex mini-
mization
Given x0 ∈ Rd, f : Rd → R convex and L-smooth

• Set y0 = x0

• For t = 0, . . .

xt+1 = yt −
1
L
∇f(yt)

yt+1 = xt+1 + γt(xt+1 − xt)

We will attempt to prove a convergence rate for this method that
has the usual telescoping structure. There will be a natural choice of
γt that will appear in the proof that will allow for telescoping:

Proof/Derivation of γt. Let δt = f(xt) − f⋆, gt = ∇f(yt), and
∆t = yt − xt.

Now, as f is L-smooth, we have that for all t ≥ 0.

f(xt+1) ≤ f(yt)−
1

2L
∥∇f(yt)∥2 .

Combining this with f(yt) ≤ f(xt) + ⟨∇f(yt), yt − xt⟩ gives

δt+1 − δt ≤ ⟨gt, ∆t⟩ −
1

2L
∥gt∥2 .

gradient descent for smooth and strongly convex optimization 77

Combining this with f(yt) ≤ f⋆ + ⟨∇f(yt), yt − x⋆⟩ gives

δt+1 ≤ ⟨gt, ∆t + xt − x⋆⟩ − 1
2L
∥gt∥2

Now, let us take the first inequality weighted by (λt − 1) for some
λt ≥ 1 and add it to the second inequality to get

λtδt+1 − (λt − 1)δt ≤ ⟨gt, λt∆t + (xt − x⋆)⟩ − λt

2L
∥gt∥2 .

We will complete the square on the right hand side to write it as

⟨gt, λt∆t + (λt − 1)(xt − x⋆)⟩ − λt

2L
∥gt∥2

=
L

2λt

(
2
〈

λtgt

L
, λt∆t + (xt − x⋆)

〉
−
∥∥∥∥λtgt

L

∥∥∥∥2
)

=
L

2λt

(
∥λt∆t + (xt − x⋆)∥2 −

∥∥∥∥λt∆t + (xt − x⋆)− λtgt

L

∥∥∥∥2
)

.

We will choose λt and γt so that

λt∆t + (xt − x⋆)− λtgt

L
= λt+1∆t+1 + (xt+1 − x⋆).

This can be achieved by setting λt = 1 + λt+1γt+1. Finally, set
λ2

t−1 = λ2
t − λt where λ−1 := 1. This gives us for all t ≥ 0,

λ2
t δt+1 − λ2

t−1δt ≤
L

2

(
∥λt∆t + (xt − x⋆)∥2 − ∥λt+1∆t+1 + (xt+1 − x⋆)∥2

)
.

Now, telescoping this inequality gives us

λ2
T δT+1 ≤

L

2 ∥x0 − x⋆∥2 + δ0. ■

We summarize the derivation above:

Theorem 17. Consider the accelerated gradient descent method where
λ−1 = 1 and we inductively define for t ≥ 0λt =

1+
√

1+4λ2
t−1

2

γt =
λt−1−1

λt

.

Then,

f(xT)− f⋆ ≤ 4L

(T + 2)2 ∥x0 − x⋆∥2 ,

Proof. It suffices to check that

λ−1 = 1 λt ≥
1
2 + λt−1

so that λT −1 ≥ T+2
2 . ■

78 mgmt 690—convex optimization

L-smooth L-smooth, µ-SC
GD L∥x0−x⋆∥2

T

(
1− κ−1)T (L ∥x0 − x⋆∥2

)
Accel. GD L∥x0−x⋆∥2

T 2

(
1− κ−1/2

)T (
L ∥x0 − x⋆∥2

)
Table 10.1: Bounds on f (xT) − f⋆

for gradient descent and accelerated
gradient descent for L-smooth and
L-smooth and µ-strongly convex
minimization up to O(·).

10.5 (Accelerated) gradient descent for smooth strongly con-
vex minimization

A similar story holds for smooth and strongly convex minimization.

Algorithm 5 Accelerated gradient descent for smooth and strongly
convex minimization
Given x0 ∈ Rd, f : Rd → R that is L-smooth and µ-strongly convex

• Set x1 = x0 − 1
L∇f(x0)

• For t = 1, . . .

yt = xt +

(√
κ− 1√
κ + 1

)
(xt − xt−1)

xt+1 = yt −
1
L
∇f(yt)

Theorem 18. Suppose f : Rd → R is L-smooth and µ-strongly convex
(set κ = L/µ). Suppose f has a minimizer x⋆ with optimal value f⋆.
Then, for any x0 ∈ Rd, we have

f(xT)− f⋆ ≤
(

1− 1√
κ

)k (
L ∥x0 − x⋆∥2

)
.

10.6 Minimizing a quadratic function

Consider a quadratic function of the form

f(x) =
x⊺Ax

2 + b⊺x + c.

We will assume that A ≻ 0 so that the unique minimizer of this
problem is x⋆ = A−1b. We can alternatively write

f(x) =
1
2 (x− x⋆)⊺A(x− x⋆) + c + (x⋆)⊺Ax⋆ =:

1
2 (x− x⋆)⊺A(x− x⋆) + c′.

Note that ∇f(x) = A(x− x⋆).

Lemma 34. f(x) is L-smooth µ-strongly convex function if and only if
µI ⪯ A ⪯ L.

Now, suppose we employ a first-order method to minimize this
function beginning at some x0 ∈ Rn.

gradient descent for smooth and strongly convex optimization 79

Having learned g0 = A(x0 − x⋆), we will form x1 ∈ x0 + span(g0).
Suppose x1 = x0 + αg0 for some α ≥ 0. Then,

g1 = A(x1 − x⋆)

= A(x0 − x⋆ + αg0)

= (A + αA2)(x0 − x⋆).

Thus, after querying ∇f(x1) we will have learned A2(x0 − x⋆).
Repeating this logic, one can check that after T queries to the

first-order oracle, we can learn

A(x0 − x⋆), A2(x0 − x⋆), . . . , AT −1(x0 − x⋆).

Now, we ask what x̄ should we output to minimize ∥x̄−x⋆∥
∥x0−x⋆∥ in the

worst-case? Equivalently, we ask how should we set c1, c2, . . . , cT −1 to
minimize

max
x0∈Rn

∥∥∥x0 − x⋆ +
∑T −1

i=0 ciA
i(x0 − x⋆)

∥∥∥
∥x0 − x⋆∥

= max
x0∈Rn

∥∥∥(I +
∑T −1

i=0 ciA
i
)
(x0 − x⋆)

∥∥∥
∥x0 − x⋆∥

= max
x0∈Rn

∥p(A)(x0 − x⋆)∥
∥x0 − x⋆∥

= ∥p(A)∥2

where p(x) = 1 + c1x + c2x2 + · · ·+ cT −1xT −1. In other words, we
get to design a polynomial p(x) whose constant term is 1 in order to
minimize ∥p(A)∥2 in the worst-case over A.

It is not too hard to check that if A = U Diag(λi)U⊺ is an eigen-
value decomposition of A, then

p(A) = U


p(λ1)

p(λ2)
. . .

p(λn)

U⊺.

Thus,

∥p(A)∥2 ≤ max
λ∈[µ,L]

p(λ).

Our goal is now to pick c1, . . . , cT −1 in order to minimize

max
λ∈[µ,L]

p(λ).

Thankfully, this is a well-studied problem. The degree T − 1-polynomial
that minimizes this quantity is a shifted and scaled version of the

80 mgmt 690—convex optimization

(T − 1)th Chebyshev polynomial, pT −1(λ). These polynomials can be
defined via the following recurrence:

p0(λ) := 1

δ1 :=
L− µ

L + µ

p1(λ) := 1− 2
L + µ

λ

δk :=
1

2L+µ
L−µ − δk−1

∀k ≥ 2

pk(λ) :=
2δk

L− µ
(L + µ− 2λ)pk−1(λ) +

(
1− 2δk(L + µ)

L− µ

)
pk−2(λ) ∀k ≥ 2.

It is not too important to know what this recurrence is, just that it
satisfies the above recursive formula. This tell us that we can itera-
tively maintain x̄t := pt(A)(x0 − x⋆) + x⋆ as follows:

x̄0 = x0

x̄1 = x0 −
2

L + µ
∇f(x0)

x̄k =
2δk(L + µ)

L− µ

[
x̄k−1 −

2
L + µ

∇f(x̄k−1)

]
+

(
1− 2δk(L + µ)

L− µ

)
x̄k−2 ∀k ≥ 2

This is gradient descent with a step size of 2
L+µ plus a momentum

term weighted by
(

2δk(L+µ)
L−µ − 1

)
.

Theorem 19. The iterates x̄k satisfy

∥x̄k − x⋆∥
∥x̄0 − x⋆∥

≤ 2
(√

κ− 1√
κ + 1

)k

.

gradient descent for smooth and strongly convex optimization 81

Problems

1. This problem extends the accelerated gradient descent method for
L-smooth convex functions and its analysis to other “smoothly-
proxable” convex problems.
Formally, consider a minimization problem of the form

min
x∈Ω

F (x)

where F : Rn → R is an arbitrary function and Ω ⊆ Rn is an
arbitrary set. We say that

prox : Rn → Ω

is a smooth prox-oracle for this problem if prox satisfies the follow-
ing property: Given y ∈ Rn, define g(y) := L(y − prox(y)). Then,
for all z ∈ Ω, it holds that

F (prox(y)) ≤ f(z) + ⟨g(y), y− z⟩ − ∥g(y)∥
2

2L
. (10.1)

We will replace the gradient step in accelerated gradient descent
with the prox oracle:

Algorithm 6 Accelerated gradient descent for smoothly proxable
problems
Given x0 ∈ Rd, F : Rn → R and prox : Rn → Ω

• Set y0 = x0 and λ−1 = 1

• For t = 0, . . .

λt =
1 +

√
1 + 4λ2

t−1

2
γt =

λt−1 − 1
λt

xt+1 = prox(yt) = yt −
1
L

g(yt)

yt+1 = xt+1 + γt(xt+1 − xt)

(a) Modify the analysis of Theorem 17 to show that:
Theorem 20. Suppose F : Rn → R and Ω ⊆ Rn and suppose
prox : Rn → Ω is a smooth prox-oracle for minx∈Ω F (x).
Furthermore, suppose F has minimizer x⋆ with minimum value
F ⋆. Then, it holds that

F (xT)− F ⋆ = O

(
L ∥x0 − x⋆∥2

T 2

)
.

82 mgmt 690—convex optimization

(b) Suppose F : Rn → R is an L-smooth convex function and
Ω ⊆ Rn is nonempty, closed, and convex. Define

prox(y) := arg min
x∈Ω

{
F (y) + ⟨∇F (y), x− y⟩+ L

2 ∥x− y∥2
}

.

Prove that this map is well-defined, is equal to

prox(y) = ΠΩ

(
y− 1

L
∇F (y)

)
,

and is a smooth prox-oracle for minx∈Ω F (x).

(c) Suppose f1, . . . , fk : Rn → R are L-smooth convex functions and
define

F (x) := max
i∈[k]

fi(x).

Define

prox(y) := arg min
x∈Rn

max
i∈[k]

{
fi(y) + ⟨∇fi(y), x− y⟩+ L

2 ∥x− y∥2
}

.

Prove that this map is well-defined and is a smooth prox-oracle
for minx∈Ω F (x).

11
Oracle lower bounds

In this lecture, we will prove that the convergence rates attained by
subgradient descent for nonsmooth minimization and accelerated
gradient descent for both smooth and smooth and strongly convex
minimization are optimal up to constants.

11.1 Oracle complexity of nonsmooth convex minimization

Let L, D > 0 and define

PL,D :=

{
(f , x0) :

f : Rn → R is convex and L-Lipschitz with minimizer x⋆

∥x0 − x⋆∥ ≤ D

}
.

This is the family of problem instances that one may encounter in
Lipschitz convex minimization.

We would like to argue that subgradient descent is the best possible
algorithm within a given class of candidate algorithms. Our class of
candidate algorithms will be any deterministic algorithm that interacts
with the objective function f only through at most T first-order oracle
calls

• For t ≥ 0, . . . , T − 1

– Invoke the first-order oracle to receive: f(xt) and gt ∈ ∂f(xt)

– Use a deterministic procedure applied to x0, . . . , xt, f0, . . . , ft, g0, . . . , gt

to construct xt+1

• Output xT

We call such methods first-order methods. Note that T is not directly
related to computational complexity. For example, in our definition
of a first-order method, the determinstic procedure is given unlimited
computational power. The parameter T only controls the number of
calls to the first-order oracle.

84 mgmt 690—convex optimization

Remark 9. Note that the deterministic procedure for constructing
xt+1 has access to all first-order information (not just first-order
information at time t) so that first-order mechanisms like momentum
or accelerated gradient descent can be written in this form. □

Our goal is to construct a worst-case function for 1-Lipschitz convex
minimization where x0 = 0 and D = 1. The general case follows by
rescaling. For notational simplicity, we will also assume T + 1 = 2k for
some k. The general case then follows by taking T ′ be the first power
of 2 larger than or equal to T .

Let Σ denote the kth Hadamard matrix (scaled):

Σ :=
1√
2k

(
1 1
1 −1

)⊗k

.

This is an orthonormal matrix.
We construct f in response to the algorithm. Let I0 denote the

columns of Σ as a set and f0(x) := − ϵ
2 where ϵ will be fixed later.

Note that I0 has size 2k = T + 1. Pick arbitrary numbers ϵ/2 ≥ δ0 >

δ1 > · · · > δT > 0.
For t = 0, . . . , T , let

σt ∈ arg max
σ∈It

|⟨σ, xt⟩|

and define ωt = sign(⟨σt, xt⟩). Update It+1 := It \ {σt} and define
ft+1(x) := max(ft(x), ⟨ωtσt, x⟩+ δt). Then, return ft+1(xt) and any
subgradient gt ∈ ∂ft+1(xt).

We claim that the algorithm performs poorly on f := fT+1:
First, note that f(x) = ft+1(x) on a neighborhood of xt for all

t = 0, . . . , T . To see this, note that

f(x) = max
(

ft+1(x), max
j∈[t+1,T −1]

{〈
ωjσj , x

〉
+ δj

})
.

Next, for any j ≥ t,

ft+1(xt) ≥ ⟨ωtσt, xt⟩+ δt

>
〈
ωjσj , xt

〉
+ δj .

The second inequality follows as σj ∈ It and δt > δj . Thus, gt ∈
∂f(xt).

From this, we also deduce that

f(xT) ≥ ⟨wT σT , xT ⟩+ δT ≥ 0.

On the other hand, as Σ is orthonormal, so too is(
ω0σ0 . . . ωT σT

)
.

oracle lower bounds 85

Thus, there exists some x with ∥x∥ = 1 so that ⟨ωiσi, x⟩ = − 1√
2k

for
all i. Then,

f(x) = max
{
− ϵ

2 , −1√
2k

+ δ0

}
≤ max

{
− ϵ

2 , −1√
2k

+
ϵ

2

}
.

Setting ϵ = 1√
2k

, we conclude that

f(xT)− f⋆ ≥ 1
2
√

2k
=

1
2
√

T + 1
.

Theorem 21. Consider any deterministic method that makes at
most T calls to a first-order oracle for f before outputting xT . Then,
there exists an L-Lipschitz convex function f with optimizer x⋆ and
∥x⋆∥ ≤ D so that

f(xT)− f⋆ ≥ LD

2
√

2T + 1
.

11.2 Oracle complexity for smooth convex minimization

A similar story holds for smooth and smooth and strongly convex
minimization.

Theorem 22. Consider any deterministic method that makes at most
T calls to a first-order oracle for f before outputting xT . Then, there
exists an L-smooth convex function f with optimizer x⋆ and ∥x⋆∥ ≤ D

so that

f(xT)− f⋆ = Ω
(

LD2

T 2

)
.

Theorem 23. Consider any deterministic method that makes at most
T calls to a first-order oracle for f before outputting xT . Then, there
exists an L-smooth and µ-strongly convex function f with optimizer x⋆

and ∥x⋆∥ ≤ D so that

f(xT)− f⋆ = Ω
(

µ
(

1− cκ−1/2
)T

D2
)

,

where c is an absolute constant.

We will prove just the smooth (non-strongly convex) statement.
We will slightly cheat and make the assumption the following span-
respecting assumption:

xt+1 ∈ x0 + span {g0, g1, . . . , gt} .

This is not a big deal and the same proof strategy can be made to
work without this assumption using a “doubling trick.”

86 mgmt 690—convex optimization

Proof of Theorem 22. Define the following sequence of matrices

Ak =



2 −1
−1 2 −1

−1 . . .
. . .

. . . 2 −1
−1 2


Let

fk(x) =
L

4 (x⊺Akx− x1) .

We will imagine running some first-order method on fN (x) where
N ≫ T .

Note that

∇fN (x) =
L

4 (AN x− e1) .

Thus, if x is supported on the first k coordinates, then ∇fN (x) is
supported on the first k + 1 coordinates. By the span respecting
assumption, if x0 = 0, then xT is supported on the first T coordinates.

Note that fN on the first k coordinates is equal to fT . Thus,

fN (xT) ≥ min
x

fT (x).

Our goal now is to understand the minimum value and minimizer of
a general fk. One can show that1 1 Exercise: Verify this.

min
x

fk(x) =
L

8

(
−1 + 1

k + 1

)
∥∥∥∥arg min

x
fk(x)

∥∥∥∥2
= O(k).

Thus, by setting N = 2T , we have that

fN (xT)− f⋆
N = Ω

(
L

T

)
despite ∥x⋆∥2 ≤ O(T). This matches the claimed lower bound:

fN (xT)− f⋆
N = Ω

(
L ∥x0 − x⋆∥2

T 2

)

One can normalize2 the constructed function f appropriately, to get a 2 Exercise: Explain how this normal-
ization works.family of lower bounds with arbitrary ∥x0 − x⋆∥. ■

12
Performance Estimation Programming

This chapter introduces performance estimation programming (PEP).
We begin by reviewing the convex conjugate of a function. This will
be used in developing the PEP SDP.

12.1 The convex conjugate

Definition 34. Let f : Rn → [−∞→∞]. The convex conjugate f∗ of
f is the extended-valued function f∗ : Rn → [−∞,+∞] given by

f∗(y) := sup
x∈Rn

{⟨y, x⟩ − f(x)} . □

Remark 10. How should one think about the convex conjugate? Up
to some convex analysis technicalities (that we will formalize soon), we
can think of any convex function as a supremum over affine functions
(possibly infinitely many). We can parameterize an affine function
x 7→ ⟨y, x⟩ − c by some y ∈ Rn and some c ∈ R. Thus, there exists
some function c : Rn → R so that

f(x) = sup
y∈Rn

⟨y, x⟩ − c(y).

This function c is “the definition” of f∗. Furthermore, you may have
noticed there is a nice symmetry that goes from f to f∗ and back.
This intuition is basically all true except for some technicalities that
we now make formal. □

Definition 35. An extended-valued function f : Rn → [−∞,∞] is
closed if the epigraph

{(x, t) : t ≥ f(x)}

is closed. We say f is convex if the epigraph is convex. We say f is
proper if the epigraph is nonempty. □

Lemma 35. Let f : Rn → [−∞,∞]. Then f∗ is a closed and convex
function.

88 mgmt 690—convex optimization

Proof. Note that the epigraph is given by⋂
x∈Rn

{(y, t) : t ≥ ⟨y, x⟩ − f(x)} ,

where the set in the intersection is closed and convex for each x ∈ Rn.
Recalling that an arbitrary intersection of closed convex sets is closed
and convex proves the lemma. ■

Lemma 36 (Fenchel-Young). Suppose f : Rn → [−∞,∞] and
x, y ∈ Rn. Then,

f(x) + f∗(y) ≥ ⟨x, y⟩ .

Proof. By definition,

f∗(y) = sup
z∈Rn

⟨z, y⟩ − f(z) ≥ ⟨x, y⟩ − f(x). ■

Lemma 37. Suppose f : Rn → [−∞,∞] is closed and convex. Then,

ℓ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(ℓ) ⇐⇒ x ∈ arg max
x̃

⟨ℓ, x̃⟩ − f(x̃)

⇐⇒ ℓ ∈ arg max
ℓ̃

〈
ℓ̃, x
〉
− f∗(x) ⇐⇒ f(x) + f∗(ℓ) = ⟨x, ℓ⟩ .

Proof. Note ℓ̄ ∈ ∂f(x̄) if and only if 0 is in the subgradient of

f(x)−
〈
ℓ̄, x
〉

at x̄ if and only if

f∗(ℓ̄) = sup
x

〈
ℓ̄, x
〉
− f(x) =

〈
ℓ̄, x̄
〉
− f(x̄).

if and only if

f(x̄) + f∗(ℓ̄) =
〈
ℓ̄, x̄
〉

.

Reversing the roles completes the proof. ■

Lemma 38. Suppose f : Rn → [−∞,∞]. Then, f∗∗(x) ≤ f(x) for all
x ∈ Rn.

Proof. Let x, y ∈ Rn. Then,

f∗(y) ≥ ⟨y, x⟩ − f(x)

Thus,

f(x) ≥ ⟨y, x⟩ − f∗(y)

Taking the supremum of the RHS in y gives

f(x) ≥ sup
y∈Rn

{⟨y, x⟩ − f∗(y)} = f∗∗(y). ■

performance estimation programming 89

Lemma 39. Suppose f : Rn → R is convex. Then, f∗∗ = f .1 1 This can be extended to the setting
of an extended-real-valued function
f as long as it is proper, closed, and
convex.

Proof. We have shown that f∗∗ ≤ f pointwise. Now, for the sake of
contradiction, suppose there exists x̄ so that f∗∗(x̄) < f(x̄). As

S = {(x, t) : t ≥ f(x)}

is a closed convex set, and (x̄, f∗∗(x̄)) is not in this set, by the strict
hyperplane separation theorem, there exists (a, b) ∈ R1+n nonzero so
that

⟨a, x̄⟩ − bf∗∗(x̄) > sup
(x,t)∈S

⟨a, x⟩ − bt.

We have that b ≥ 0 (else send t → ∞ for a contradiction) and that
b ̸= 0 (else send x→∞a).

Thus, we assume WLOG that b = 1 and get

⟨a, x̄⟩ − f∗∗(x̄) > sup
x∈Rn

⟨a, x⟩ − f(x) = f∗(a).

This contradicts Fenchel’s inequality:

f∗(a) + f∗∗(x̄) ≥ ⟨a, x̄⟩ . ■

Lemma 40. Suppose f , g : Rn → [−∞,+∞] are such that f ≥ g

pointwise. Then, f∗ ≤ g∗ pointwise.

Proof.

f∗(y) := sup
x∈Rn

⟨x, y⟩ − f(x)

≤ sup
x∈Rn

⟨x, y⟩ − g(x)

= g∗(y). ■

Corollary 8. Suppose f , g : Rn → R and g is convex. If f ≥ g

pointwise, then f∗∗ ≥ g pointwise.

Proof. Assume f ≥ g pointwise. By previous lemma, f∗ ≤ g∗ point-
wise. Applying the lemma once more gives, f∗∗ ≥ g∗∗ pointwise.
Finally, note that as g is a real-valued convex function, g∗∗ = g. ■

In other words, given f : Rn → R, the function f∗∗ : Rn → R is the
pointwise largest convex function laying below f . To make this more
precise,

f∗∗(x) = max
g

{
g(x) :

g : Rn → R is convex
f ≥ g pointwise

}
.

Lemma 41. Suppose f : Rn → R is µ-strongly convex, then f∗ : Rn →
R is a 1

µ -smooth convex function.

90 mgmt 690—convex optimization

Proof. First, note that

sup
x∈Rn

{⟨ℓ, x⟩ − f(x)}

has finite value as f is strongly convex.
In fact, this maximization problem has a unique maximizer. By

previous lemma, the subdifferential of f∗ at any point is unique so
that f∗ is differentiable.

By µ-strong convexity, we have that for any x, x′ ∈ Rn and ℓ ∈
∂f(x) and ℓ′ ∈ ∂f(x′), that〈

ℓ− ℓ′, x− x′〉 ≥ µ
∥∥x− x′∥∥2 .

Recognizing that x = ∇f∗(ℓ) and x′ = ∇f∗(ℓ′) gives us〈
ℓ− ℓ′,∇f∗(ℓ)−∇f∗(ℓ′)

〉
≥ µ

∥∥∇f∗(ℓ)−∇f∗(ℓ′)
∥∥2 .

By Cauchy-Schwarz,∥∥∇f∗(ℓ)−∇f∗(ℓ′)
∥∥ ≤ 1

µ

∥∥ℓ− ℓ′∥∥ . ■

12.2 PEP and interpolation

For concreteness, consider the following first-order method for minimiz-
ing a 1-smooth convex function f : Rn → R:

x0 is given satisfying ∥x0 − x⋆∥2 ≤ 1
x1 = x0 − h1,0∇f(x0)

x2 = x1 − h2,0∇f(x0)− h2,1∇f(x1)

xk = xk−1 −
k−1∑
i=0

hk,i∇f(xi) ∀k = 1, . . . , T

This first-order method is defined by a lower triangular matrix h ∈
RT ×T where the columns and rows are both indexed by 0, . . . , T − 1.

Now, we will attempt to find the worst-case function

(PEP) = max
f ,x0,xT ,x⋆

f(xk)− f(x⋆) :

f : Rn → R is convex and 1-smooth
∇f(x⋆) = 0
∥x0 − x⋆∥2 ≤ 1
xT is produced by FOM starting at x0

 .

On the surface, this is an infinite-dimensional nonconvex optimiza-
tion problem. We will rewrite this problem in several ways to end up
with a finite-dimensional convex optimization problem (an SDP).

The first step is to reduce optimizing over f to only optimizing over
the first-order data D = {(f⋆, g⋆, x⋆), (f0, g0, x0), . . . , (fT , gT , xT)}. For

performance estimation programming 91

notational convenience, let I = {⋆, 0, 1, . . . , T}. Then, the above is
equal to

(PEP) = max
f⋆,f0,...,fT ∈R

g⋆,g0,...,gT ∈Rn

x⋆,x0,...,xT ∈Rn

fT − f⋆ :

∃f : Rn → R convex and 1-smooth interpolating {(fi, gi, xi)}i∈I
g⋆ = 0
∥x0 − x⋆∥2 ≤ 1
xT is produced by FOM given D starting at x0

 .

Here, we say that:
Definition 36. A function f : Rn → R interpolates {(fi, gi, xi)}i∈I if

f(xi) = fi and ∇f(xi) = gi ∀i ∈ I. □

Theorem 24. Fix a set D := {(fi, gi, xi)}i∈I . There exists a convex
1-smooth function f interpolating D if and only if

fi ≥ fj +
〈
gj , xi − xj

〉
+

1
2
∥∥gi − gj

∥∥2 ∀i, j ∈ I.

Proof. In the forward direction, suppose there exists a convex 1-
smooth function for which

f(xi) = fi and ∇f(xi) = gi ∀i ∈ I.

Fix an arbitrary i, j ∈ I. Set

h(x) = f(x)−
〈
∇f(xj), x− xj

〉
.

Note that h is a convex 1-smooth function for which ∇h(xj) = 0.
Thus,

h(xj) = min
x∈Rn

h(x)

≤ min
x∈Rn

h(xi) + ⟨∇h(xi), x− xi⟩+
1
2 ∥x− xi∥2

= h(xi)−
1
2 ∥∇h(xi)∥2 .

Expanding the definition of h gives us

f(xj) ≤ f(xi)−
〈
∇f(xj), xi − xj

〉
− 1

2
∥∥∇f(xi)−∇f(xj)

∥∥2 .

In the reverse direction, our goal is: Given D := {(fi, gi, xi)}i∈I
satisfying

fi ≥ fj +
〈
gj , xi − xj

〉
+

1
2
∥∥gi − gj

∥∥2 ∀i, j ∈ I,

construct a convex 1-smooth function f interpolating D.
We will do this as follows. Define

h(x) = min
i∈I

fi + ⟨gi, x− xi⟩+
1
2 ∥x− xi∥2

92 mgmt 690—convex optimization

and f := h∗∗.
There are two things to check. First, we must check that f is 1-

smooth. It suffices to check that h∗ is 1-strongly convex. Second, we
must check that f(xi) = fi and ∇f(xi) = gi.

For the first assertion, we compute

h∗(y) = sup
x∈Rn

⟨y, x⟩ −
[
min
i∈I

fi + ⟨gi, x− xi⟩+
1
2 ∥x− xi∥2

]
= max

i∈I
sup

x∈Rn

(
⟨y, x⟩ − fi − ⟨gi, x− xi⟩ −

1
2 ∥x− xi∥2

)
= max

i∈I
sup

x∈Rn

(
⟨y, xi⟩ − fi + ⟨y− gi, x− xi⟩ −

1
2 ∥x− xi∥2

)
= max

i∈I

{
⟨y, xi⟩ − fi +

∥y− gi∥2

2

}
=: max

i∈I
si(y).

Thus, h∗(y) is the pointwise maximum of 1-strongly convex functions
so is also 1-strongly convex. We conclude that f(x) is 1-smooth.

Now, suppose i ∈ I. Our goal is to check that f(xi) = fi and
∇f(xi) = gi. We claim it suffices to check that

i ∈ arg max
j∈I

sj(gi).

Indeed, supposing this is true, then

xi = ∇si(gi) ∈ ∂h∗(gi) ⇐⇒ gi = ∇f(xi).

Furthermore, gi maximizes ⟨y, xi⟩ − h∗(y). Thus, by definition, f(xi) =

⟨gi, xi⟩ − si(gi) = fi.
This condition is equivalent to saying that for all i, j ∈ I,

si(gi) ≥ sj(gi)

⇐⇒ ⟨gi, xi⟩ − fi +
∥gi − gi∥2

2 ≥
〈
gi, xj

〉
− fj +

∥∥gi − gj

∥∥2

2

⇐⇒ fj ≥ fi +
〈
gi, xj − xi

〉
+

∥∥gi − gj

∥∥2

2 . ■

With this interpolation theorem in hand, we may now rewrite the
PEP as

(PEP) = max
f⋆,f0,...,fT ∈R

g⋆,g0,...,gT ∈Rn

x⋆,x0,...,xT ∈Rn

fT − f⋆ :

fj ≥ fi +
〈
gi, xj − xi

〉
+
∥gi−gj∥2

2 ∀i, j ∈ I
g⋆ = 0
∥x0 − x⋆∥2 ≤ 1
xt = xt−1 +

∑t−1
i=0 Ht,igi ∀t = 1, . . . , T

 .

This is now a finite-dimensional nonconvex problem. We will fix
x⋆ = 0 without loss of generality and get rid of the optimization on

performance estimation programming 93

xis as they are completely determined by the gi. Instead, we will treat
x1, . . . , xT as linear functions in x0 and g0, . . . , gT . We can arrange

G =
(

x0 g0 . . . gT −1 gT

)
.

Thus,

= max
f⋆,f0,...,fT ∈R

G∈Rn×(T+2)

{
fT − f⋆ : fj ≥ fi +

〈
gi, xj(G)− xi(G)

〉
+
∥gi−gj∥2

2 ∀i, j ∈ I
∥x0∥2 ≤ 1

}
.

Now, we observe that the dependence on the columns of G in this
problem are all quadratic, i.e., the constraints are linear in (f⋆, . . . , fT)

and Q := G⊺G ∈ ST+2.
Thus, there exist Mi,j ∈ ST+2 depending on H so that

〈
Mi,j , G⊺G

〉
=
〈
gi, xj(G)− xi(G)

〉
+

∥∥gi − gj

∥∥2

2 .

Then,

(PEP) ≤ max
f⋆,f0,...,fT ∈R

Q∈ST+2

fT − f⋆ :
fj ≥ fi +

〈
Q, Mi,j

〉
∀i, j ∈ I

Q1,1 ≤ 1
Q ⪰ 0

 .

This relaxation is exact if d ≥ T + 2 as given any Q ⪰ 0, we can
take any matrix satisfying G⊺G = Q (which exists as Q is positive
semidefinite) and set x0, g0, . . . , gT to be the columns of G.

13
Mirror descent

In this lecture, we will discuss mirror descent. This is an extension
of the projected subgradient method to nonsmooth non-Euclidean
settings.1 1 There are also extensions of gradient

descent and accelerated gradient
descent to smooth non-Euclidean
settings.13.1 Mirror descent setup and algorithm

In Mirror Descent, we will assume we have the following setup:

• A norm ∥·∥

• Problem domain X ⊆ Rn nonempty, closed, convex, with
nonempty interior2 2 Nonempty interior is not really

required but makes the exposition
easier• Objective function f : X → R is closed and convex, i.e.,{

(x, t) :
x ∈ X
f(x) ≤ t

}

is closed and convex and subdifferentiable on X , i.e., ∂f(x) is
nonempty for all x ∈ X . Further, assume that for all x ∈ X , we can
algorithmically find g ∈ ∂f(x) with

∥g∥∗ ≤ L.

For example, if f is L-Lipschitz and defined on an open neighbor-
hood of X , then any subgradient suffices. In general, if f : X → R

is only defined on X and is L-Lipschitz, then any subgradient suf-
fices on int(X), but some care will need to be taken at bd(X).

• A distance generating function ω : X → R that is closed and
convex. We assume that ω is differentiable over dom(∂(ω)) and is
1-strongly convex on X , i.e., for all x, y ∈ X and α ∈ [0, 1]

ω((1− α)x + αy) ≤ (1− α)ω(x) + αω(y)− 1
2α(1− α) ∥x− y∥2 .

96 mgmt 690—convex optimization

Remark 11. Recall that the subgradient of a convex function is
always nonempty within the interior of the domain (here, X). Thus,
the assumption that ω is differentiable on dom(∂(ω)) implies that ω

is differentiable on int(X). In some cases ∂(ω) = X , but this is not
always the case. For example, consider X = [0, 1] and ω(x) = −

√
x.

Then, ω is a closed convex function. The subgradient ∂ω is defined
for all x ∈ (0, 1] but is not defined at 0 ∈ X . In this case, ω is
differentiable on dom(∂ω) = (0, 1]. □

Recall that the basic step in the projected subgradient method is

xk+1 = arg min
x∈Ω

{
f(xk) + ⟨gk, x− xk⟩+

1
2ηk
∥x− xk∥22

}
,

where gk ∈ ∂f(xk). In the non-Euclidean setting, we will want to
replace 1

2 ∥x− xk∥22 with something more specific to the norm ∥·∥. We
will do so with what is called a Bregman divergence (to be defined
below) D(y||x). Then, the basic step in mirror descent will be of the
form

xk+1 = arg min
x∈Ω

{
f(xk) + ⟨gk, x− xk⟩+

1
ηk

D(x||xk)

}
.

Definition 37. For y ∈ Ω and x ∈ dom(∂ω), the Bregman divergence
is

D(y||x) := ω(y)− (ω(x) + ⟨∇ω(x), y− x⟩) . □

Note that for all y ∈ Ω and x ∈ dom(∂ω), D(y||x) ≥ 1
2 ∥x− y∥2.

Example 19. Example mirror setups and their Bregman divergences:

• Take ∥·∥ to be the Euclidean norm and define ω(x) = 1
2 ∥x− x0∥2.

Then,

D(y||x) = 1
2 ∥y− x0∥2 −

(
1
2 ∥x− x0∥2 + ⟨x− x0, y− x⟩

)
=

1
2 ∥x− y∥2 .

Thus, the mirror descent step with this mirror setup is

xk+1 = arg min
x∈Ω

{
f(xk) + ⟨gk, x− xk⟩+

1
2ηk
∥x− xk∥2

}
and recovers the projected subgradient step.

• Take ∥·∥ to be the ℓ1-norm, X = Rn
+ and

ω(x) :=
n∑

i=1
xi log(xi)

where we take the convention 0 log 0 := 0. We will see in the
homework that this is a 1-strongly convex function w.r.t. the ℓ1
norm, compute the Bregman divergence, and give a closed-form
solution to the mirror descent step.

mirror descent 97

• A suitable mirror-descent setups for the ℓp norms p ∈ (1, 2] is
ω(x) := αp

2 ∥x− x0∥2p for any base point x0. The normalizing
constant αp is set to make ω 1-strongly convex. □

Algorithm 7 Mirror Descent
Given mirror setup, initial x0 ∈ dom(∂(ω)), step lengths η0, . . . , ηT >

0, time horizon T

• For t = 0, . . . T − 1

– Let gt ∈ ∂(f(xt))

– Set xt+1 = arg minx∈Ω

{
f(xt) + ⟨gt, x− xt⟩+ 1

ηt
D(x||xt)

}
• Return x̄ :=

∑T

t=0 ηtxt∑T

t=0 ηt

.

Remark 12. Why do we care about the mirror descent algorithm?
The guarantees for mirror descent will look quite similar to the guaran-
tees for subgradient descent:

f(x̄T)− f⋆ ≤ O

(
L · (some distance measure)√

T

)
.

The main advantage is that, if the objective function has a geometry
which is “non-Euclidean”, then we may be able to drastically reduce
the Lipschitz constant L by working in a more appropriate norm. For
example consider the function

f(x) = ∥x− x0∥1 .

This function is
√

n-Lipschitz in the Euclidean norm so that the
guarantees of the projected subgradient method would include

√
n. On

the other hand, this function is 1-Lipschitz in the ℓ1 norm. □

It will be useful to simplify the objective function in the definition
of xt+1. An equivalent definition of xt+1 is

xt+1 = arg min
x∈X

{⟨ηtgt −∇ω(xt), x⟩+ ω(x)} .

Lemma 42. Mirror descent is well-defined, i.e., for all η > 0, x̄ ∈
dom(∂(ω)), and ḡ ∈ ∂f(x̄), then

arg min
x∈X

{⟨ηḡ−∇ω(x̄), x⟩+ ω(x)} = {x̃} ,

for some x̃ ∈ dom(∂(ω)).

Proof. This objective function is 1-strongly convex so that the min-
imizer exists and is unique. Call this minimizer x̄ ∈ Ω. Now, by

98 mgmt 690—convex optimization

first-order optimality, we deduce that

0 ∈ ηḡ−∇ω(x̄) + ∂ω(x̃).

In other words, ∇ω(x̄)− ηḡ ∈ ∂ω(x̃) so that x̃ ∈ dom(∂ω).3 ■ 3 Note: this does not imply that
∇ω(x̃) = ∇ω(x̄) − ηḡ. Specifically, if x̃

is on the boundary of X , then it may
be the case that {∇ω(x̃)} ⊊ ∂ω(x̃).

We now know that xt ∈ dom(∂(ω)) for all t = 0, . . . , T .

13.2 Convergence analysis

The following lemma follows by simply expanding definitions and is
omitted.

Lemma 43 (Three point identity). Suppose x, y ∈ dom(∂ω) and
z ∈ Ω. Then,

D(z||x)−D(z||y)−D(y||x) = ⟨∇ω(y)−∇ω(x), z − y⟩ .

We apply the first order optimality condition to the mirror descent
step: let t ≥ 0, then

⟨∇ω(xt+1) + ηtgt −∇ω(xt), y− xt+1⟩ ≥ 0, ∀y ∈ X ,

rearranging,

⟨ηtgt, xt+1 − y⟩ ≤ ⟨∇ω(xt+1)−∇ω(xt), y− xt+1⟩ , ∀y ∈ X.

Applying the three point identity,

⟨ηtgt, xt+1 − y⟩ ≤ D(y||xt)−D(y||xt+1)−D(xt+1||xt), ∀y ∈ X.

This is going to give us an opportunity to create a telescoping sum
(take y = x⋆). Additionally, the final term is negative!

Theorem 25. Suppose infx∈X f(x) has a minimizer x⋆ with optimal
value f⋆ and D(x⋆||x0) ≤ R2

2 . The Mirror Descent method guarantees

f (x̄)− f⋆ ≤ R2

2H
+

∑T
t=0 η2

t ∥gt∥2∗
2H

≤ R2

2H
+

L2∑T
t=0 η2

t

2H
,

where H =
∑T

t=0 ηt.

Proof. For the sake of the proof, we will imagine simulating one
additional step of the method so that xT+1 and yT+1 are also defined.

Let t ∈ [0, T]. By the previous inequality, we know that

⟨ηtgt, xt+1 − x⋆⟩ ≤ D(x⋆||xt)−D(x⋆||xt+1)−D(xt+1||xt).

mirror descent 99

Thus,

⟨ηtgt, xt − x⋆⟩ ≤ ⟨ηtgt, xt − xt+1⟩+ D(x⋆||xt)−D(x⋆||xt+1)−D(xt+1||xt)

≤ ηt ∥gt∥∗ ∥xt − xt+1∥+ D(x⋆||xt)−D(x⋆||xt+1)−
1
2 ∥xt+1 − xt∥2

≤ D(x⋆||xt)−D(x⋆||xt+1) + max
α

(
ηt ∥gt∥∗ α− 1

2α2
)

= D(x⋆||xt)−D(x⋆||xt+1) +
η2

t ∥gt∥2∗
2 .

Now, we also have by the definition of the subgradient that

ηt(f(xt)− f∗) ≤ ⟨ηtgt, xt − x⋆⟩

≤ D(x⋆||xt)−D(x⋆||xt+1) +
η2

t ∥gt∥2∗
2 .

Let H =
∑T

t=0 ηt. We will take a 1
H -weighted combination of the

above inequalities for t = 0, . . . , T to get

T∑
t=0

ηt

H
(f(xt)− f⋆) ≤ D(x⋆||x0)−D(x∗||xT+1)

H
+

∑T
t=0 η2

t ∥gt∥2∗
2H

≤ R2

H
+

∑T
t=0 η2

t ∥gt∥2∗
2H

≤ R2

H
+

L2∑T
t=0 η2

t

2H
.

The fact that f(x̄)− f⋆ is at most the LHS follows from convexity. ■

The following corollaries from this base guarantee are proved in ex-
actly the same way as were proved for projected subgradient descent:

Corollary 9. Suppose ηt > 0 satisfies
∑∞

t=0 ηt =∞ and
∑∞

t=0 ηt <∞.
Then, f(x̄T)− f⋆ → 0.

Corollary 10. Taking ηt =
R

∥gt∥∗
√

t+1 gives

f(x̄T)− f⋆ ≤ LR(2 + ln(T + 1))
2(
√

T + 2− 1)

Corollary 11. Taking η = R
L

√
T+1 guarantees

f (x̄)− f⋆ ≤ LR√
T + 1

.

In particular, it achieves an ϵ suboptimal solution in O
((

LR
ϵ

)2)
iterations.

14
Frank–Wolfe / Conditional Gradient Descent

This lecture studies the Frank–Wolfe algorithm (also known as Con-
ditional Gradient Descent) for smooth convex minimization1 over a 1 Homework 4 will contain an ex-

tension to smooth strongly convex
objective functions and strongly
convex sets.

compact convex set X ⊆ Rn in an arbitrary norm ∥·∥:

min
x∈X

f(x).

One algorithm we have already seen for problems of this form (for the
Euclidean norm) is the accelerated projected gradient descent method
(Homework 3 Problem 4.b). That algorithm achieves a O

(
LD2

T 2

)
convergence rate, which we have also shown is optimal among first-
order methods. In each iteration, the accelerated projected gradient
method requires a projection:

xt+1 = ΠX

(
yt −

1
L
∇f(yt)

)
.

We assumed that this projection could be done cheaply and de-
ferred its computation to a projection oracle. In some applications,
however, this projection is expensive to compute. For example, if
X =

{
X ∈ Sn

+ : tr(X) ≤ 1
}

is the set of positive semidefinite matrices
with bounded trace, then this projection requires performing an SVD
(practically O(n3) time).

The Frank–Wolfe method, which we will study in this lecture, has a
worse convergence rate O

(
LD2

T

)
, however will not require a projection

in each iteration. Instead, Frank–Wolfe will only need to “access” Ω
through a linear minimization oracle: Given ℓ ∈ Rn, find a minimizer
of

min
x∈Ω
⟨ℓ, x⟩ .

For example, if X =
{

X ∈ Sn
+ : tr(X) ≤ 1

}
is the set of positive

semidefinite matrices with bounded trace, then linear minimization
requires computing just a single leading eigenvector (practically O(n2)

time or even smaller).

102 mgmt 690—convex optimization

Algorithm 8 Frank–Wolfe
Given x0 ∈ X and smooth convex function f : Rn → R and step-sizes
η0, . . . , ηT −1 ∈ [0, 1].

• For t = 0, . . . , T − 1

– yt ∈ arg miny∈X ⟨∇f(xt), y⟩

– xt+1 = (1− ηt)xt + ηtyt

Let x⋆ be a minimizer of minx∈X f(x). We will bound the primal
gap f(xt)− f(x⋆) by what is known as the Wolfe–gap (the last expres-
sion below):

f(xt)− f⋆ ≤ ⟨∇f(xt), xt − x⋆⟩ ≤ max
y∈X
⟨∇f(xt), xt − y⟩ .

Note that by definition, yt is the maximizer of the Wolfe–gap. So

f(xt)− f⋆ ≤ ⟨∇f(xt), xt − yt⟩ .

The following lemma gives the per-step improvement in the smooth
setting:

Lemma 44. Suppose f is convex and L-smooth w.r.t. ∥·∥ and the
diameter of Ω is bounded by D w.r.t. ∥·∥. Then,

f(xt+1) ≤ f(xt)− ηt ⟨∇f(xt), xt − yt⟩+
Lη2

t

2 ∥xt − yt∥2 .

Proof. Recall that xt+1 = (1− ηt)xt + ηtyt where

yt ∈ arg min
y∈X

⟨∇f(xt), y⟩ .

By smoothness,

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2 ∥xt − xt+1∥2 .

Plugging in the definition of xt+1, we get

f(xt+1) ≤ f(xt)− ηt ⟨∇f(xt), xt − yt⟩+
Lη2

t

2 ∥xt − yt∥2 . ■

Theorem 26. Suppose we pick ηt ∈ [0, 1] to minimize the upper bound
at each iteration. Let δt := f(xt)− f⋆. Then,

δ1, δ2, . . .

is a nonincreasing sequence and δT ≤ ϵ for all

T ≥ O

(
LD2

ϵ

)
.

frank–wolfe / conditional gradient descent 103

Remark 13. Some notes:

• The same rate can be achieved by explicitly setting ηt =
2

t+2 .

• The proof below is not as “elegant” as the standard proof of this
result. The standard proof gives a better bound and is also shorter
but relies on guessing a nice inductive hypothesis. The proof I
present below is not as “elegant” but is easier to come up with. □

Proof. First, note that
By the previous lemma, for all t ≥ 0,

δt+1 ≤ min
ηt∈[0,1]

(
δt − ηt ⟨∇f(xt), xt − yt⟩+

Lη2
t

2 ∥xt − yt∥2
)

.

Thus, by taking η0 = 1 and noting that ⟨∇f(xt), xt − yt⟩ ≥ δt, we
deduce that

δ1 ≤
LD2

2 .

Next, note that δt is a nonincreasing sequence as we may take η = 0 at
each step. Explicitly, the upper bound on δt+1 is given by

δt+1 ≤

δt − ⟨∇f (xt),xt−yt⟩2

L∥xt−yt∥2 if ⟨∇f(xt), xt − yt⟩ ≤ L ∥xt − yt∥2

δt − ⟨∇f(xt), xt − yt⟩+ L
2 ∥xt − yt∥2 else.

In the first case, we may bound ⟨∇f(xt), xt − yt⟩ ≥ δt and
∥xt − yt∥ ≤ D. In the second case, we can bound ⟨∇f(xt), xt − yt⟩ ≥
L
2 ∥xt − yt∥2 + 1

2δt. Thus,

δt+1 ≤ max
(

δt −
δ2

t

LD2 , δt/2
)

.

Now, fix ϵ > 0. For each index t = 1, 2, . . . we will place t in the
box Bk where

LD2

2k+1 < δt ≤
LD2

2k
.

Note that every index t = 1, 2, . . . falls in some box Bk for k ≥ 1.
We will now bound the size of Bk for k ≥ 1. There is at most one

index t ∈ Bk satisfying

δt+1 ≤ δt/2.

Every other index in Bk satisfies

δt+1 ≤ δt −
δ2

t

LD2 ≤ δt −
LD2

(2k+1)2 .

Thus,

|Bk| = O
(

2k
)

.

We note that δT ≤ ϵ if

T > |B1|+ |B2|+ · · ·+
∣∣∣B⌈log2(LD2/2ϵ)⌉

∣∣∣ = O

(
LD2

ϵ

)
. ■

104 mgmt 690—convex optimization

14.1 Lower bounds

We now show that this O(LD2
T) convergence rate is in fact optimal (up

to constants) if one assumes to only have first-order access to f and
linear minimization oracle (LMO) access to Ω.

Theorem 27. Consider an algorithm that makes T calls to a LMO
(receiving response x1, . . . , xT) and an arbitrary number of calls to
a first-order oracle, and that outputs x̄ ∈ conv(x1, . . . , xT). Then,
there exists an L-smooth convex function in the Euclidean norm and a
closed convex set X ⊆ Rn with diameter ≤ D in the Euclidean norm
s.t.

f(x̄)− f⋆ ≥ LD2

8T

Proof. Let n = 2T and define ∆ := D√
2 conv({e1, . . . , en}). Consider

min
x∈∆

L

2 ∥x∥
2 .

This objective function is L-smooth in the Euclidean norm. The
diameter of ∆ in the Euclidean norm is D.

By symmetry, the optimal value is achieved by D
n

√
21 and is

f⋆ =
LD2

4n
=

LD2

8T
.

On the other hand, for any algorithm satisfying the assump-
tions, the responses x1, . . . , xT will each have support 1 so that
conv({x1, . . . , xT }) contains only vectors with support at most T .
Thus,

f(x̄) ≥ LD2

4T

and f(x̄)− f⋆ ≥ LD2
8T . ■

	Linear algebra review
	Euclidean space
	PSD matrices and the Singular Value Decomposition

	Elementary convex analysis I
	Convex sets
	The convex hull
	Sets related to a convex set

	Elementary convex analysis II
	Convex functions
	Separation of convex sets
	Basic definitions about general convex programs

	Conic programming I
	Dual cones
	What is a conic program?
	Weak Conic Duality
	Cones and inequalities

	Conic programming II
	Strong Conic Duality

	SOCP representability
	Second-order cone programming/conic quadratic program
	Rational convex powers and p norms are SOCR

	SDP representability
	Schatten-norms
	Some comments on lifting

	SDP applications
	Stability analysis and synthesis
	SDP Relaxation of Max-Cut
	SDP relaxations of polynomial optimization problems

	Subgradient descent for nonsmooth convex optimization
	Subgradients of convex functions
	The projected subgradient algorithm

	Gradient descent for smooth and strongly convex optimization
	Smoothness and strong convexity
	The Prox Point Method
	Gradient descent for smooth convex functions
	Accelerated gradient descent for smooth minimization
	(Accelerated) gradient descent for smooth strongly convex minimization
	Minimizing a quadratic function

	Oracle lower bounds
	Oracle complexity of nonsmooth convex minimization
	Oracle complexity for smooth convex minimization

	Performance Estimation Programming
	The convex conjugate
	PEP and interpolation

	Mirror descent
	Mirror descent setup and algorithm
	Convergence analysis

	Frank–Wolfe / Conditional Gradient Descent
	Lower bounds

