
MGMT 690 - Pset 1
Spring 2024

Instructions:
• This pset is due on Sunday, March 24 at 11:59pm.

• Completed psets should be submitted to Gradescope.

• Exercises are for your own review only. They do not need to be submitted
and will not be graded.

• Complete all problems 1–3 and one of either 4 or 5.

Exercises
1. Let V be a Euclidean space and let

∥v∥ :=
√

⟨v, v⟩.

Prove that this is a norm.

2. Let p ∈> 0. For x ∈ Rn, define

∥x∥p :=
(

n∑
i=1

|xi|p
)1/p

.

Prove that this is not a norm for p ∈ (0, 1) and n ≥ 2.

3. Prove that the affine image of a convex set is a convex set.

4. Let C ⊆ Rn be a convex set. Let x ∈ rint(C) and y ∈ cl(C). Prove that
for all θ ∈ [0, 1), that (1 − θ)x + θy ∈ rint(C).

Problems
1. [25 pts] Given A ∈ Sn and B ∈ Sm, the Kronecker product A ⊗ B is the

Smn matrix given in block form as

A ⊗ B =

A1,1B . . . A1,nB
...

. . .
...

An,1B . . . An,nB


Suppose A ∈ Sn

+ and B ∈ Sm
+ . Show that A ⊗ B ⪰ 0.
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2. [25 pts] Given a symmetric matrix A ∈ Sn, let Inertia(A) := (n−, n0, n+)
denote the number of negative eigenvalues, number of zero eigenvalues,
and number of positive eigenvalues of A. Prove that for any invertible
P ∈ Rn×n, that

Inertia(A) = Inertia(P ⊺AP ).

3. [25 pts] Prove that

(a) [5pts] the nonnegative orthant is self-dual,
(b) [10pts] the second-order cone is self-dual, and
(c) [10pts] the semidefinite cone is self-dual.

4. [25 pts] In sparse recovery, the goal is to recover a sparse vector x⋆ ∈ Rn

given linear measurements (A, b) ∈ Rm×n × Rm where b = Ax⋆. A convex-
optimization approach to this problem is to output the optimizer of

min
x∈Rn

{∥x∥1 : Ax = b} .

This problem gives a necessary and sufficient condition for when this
convex-optimization approach correctly recovers x⋆.
We say that a vector is k-sparse if it has at most k nonzero entries. Given
a subset S ⊆ [n] and a vector x ∈ Rn, let xS denote the restriction of x
onto the set S. Let Sc denote the complement of S. For a vector x ∈ Rn,
let sign(x) denote the {−1, 0, 1}-valued vector giving the individual signs
of the coordinates of x.

(a) [10pts] The descent cone of a convex-optimization problem at a feasible
solution x̄ is defined asδ ∈ Rn :

∀ϵ > 0 small enough :
x̄ + ϵδ is feasible
obj. value at x̄ + ϵδ ≤ obj. value at x̄


Show that for this problem, the descent cone at the optimal solution
x⋆ is {

δ ∈ Rn : δ ∈ ker(A)
⟨sign(x⋆), δS⋆⟩ +

∥∥δ(S⋆)C

∥∥
1 ≤ 0

}
where S⋆ is the support of x⋆.

(b) [10pts] The matrix A is said to satisfy the nullspace property at order
k if for all sets S ⊆ [n] with |S| ≤ k and for all δ ∈ ker(A) \ {0}, we
have

∥δS∥1 < ∥δSc∥1 .

Show that the descent cone at x⋆ is trivial, i.e., equal to {0}, if A
satisfies the nullspace property at order k and x⋆ is k-sparse.
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(c) [5pts] Show that if A does not satisfy the nullspace property at order
k, then there exists a k-sparse x⋆ for which the convex-optimization
approach may fail to recover x⋆. That is, for which the descent cone
at x⋆ is nontrivial.

5. [25 pts] Given a permutation σ of [n], we can associate σ with the n × n
permutation matrix

(Xσ)i,j =
{

1 if σ(i) = j

0 else
.

Let Pn denote the set of n! permutation matrices of size n × n. Prove that
conv(Pn) = DSn, the set of doubly stochastic matrices:

DSn :=

X ∈ Rn×n :
X ≥ 0
X⊺1n = 1n

X1n = 1n

 .

Hint: Use Hall’s marriage theorem to prove that the support of any doubly
stochastic matrix contains a permutation matrix.
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