MGMT 690 - Pset 1

Spring 2024

Instructions:

- This pset is due on Sunday, March 24 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1-3 and one of either 4 or 5.

Exercises

1. Let V be a Euclidean space and let

$$
\|v\|:=\sqrt{\langle v, v\rangle} .
$$

Prove that this is a norm.
2. Let $p \in>0$. For $x \in \mathbb{R}^{n}$, define

$$
\|x\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Prove that this is not a norm for $p \in(0,1)$ and $n \geq 2$.
3. Prove that the affine image of a convex set is a convex set.
4. Let $C \subseteq \mathbb{R}^{n}$ be a convex set. Let $x \in \operatorname{rint}(C)$ and $y \in \operatorname{cl}(C)$. Prove that for all $\theta \in[0,1)$, that $(1-\theta) x+\theta y \in \operatorname{rint}(C)$.

Problems

1. [25 pts] Given $A \in \mathbb{S}^{n}$ and $B \in \mathbb{S}^{m}$, the Kronecker product $A \otimes B$ is the $\mathbb{S}^{m n}$ matrix given in block form as

$$
A \otimes B=\left(\begin{array}{ccc}
A_{1,1} B & \ldots & A_{1, n} B \\
\vdots & \ddots & \vdots \\
A_{n, 1} B & \ldots & A_{n, n} B
\end{array}\right)
$$

Suppose $A \in \mathbb{S}_{+}^{n}$ and $B \in \mathbb{S}_{+}^{m}$. Show that $A \otimes B \succeq 0$.
2. [25 pts] Given a symmetric matrix $A \in \mathbb{S}^{n}$, let $\operatorname{Inertia}(A):=\left(n_{-}, n_{0}, n_{+}\right)$ denote the number of negative eigenvalues, number of zero eigenvalues, and number of positive eigenvalues of A. Prove that for any invertible $P \in \mathbb{R}^{n \times n}$, that

$$
\operatorname{Inertia}(A)=\operatorname{Inertia}\left(P^{\top} A P\right)
$$

3. [25 pts] Prove that
(a) $[5 \mathrm{pts}]$ the nonnegative orthant is self-dual,
(b) $[10 \mathrm{pts}]$ the second-order cone is self-dual, and
(c) $[10 \mathrm{pts}]$ the semidefinite cone is self-dual.
4. $[25 \mathrm{pts}]$ In sparse recovery, the goal is to recover a sparse vector $x^{\star} \in \mathbb{R}^{n}$ given linear measurements $(A, b) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{m}$ where $b=A x^{\star}$. A convexoptimization approach to this problem is to output the optimizer of

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|x\|_{1}: A x=b\right\}
$$

This problem gives a necessary and sufficient condition for when this convex-optimization approach correctly recovers x^{\star}.
We say that a vector is k-sparse if it has at most k nonzero entries. Given a subset $S \subseteq[n]$ and a vector $x \in \mathbb{R}^{n}$, let x_{S} denote the restriction of x onto the set S. Let S^{c} denote the complement of S. For a vector $x \in \mathbb{R}^{n}$, let $\operatorname{sign}(x)$ denote the $\{-1,0,1\}$-valued vector giving the individual signs of the coordinates of x.
(a) [10pts] The descent cone of a convex-optimization problem at a feasible solution \bar{x} is defined as

$$
\left\{\begin{array}{ll}
& \forall \epsilon>0 \text { small enough : } \\
\delta \in \mathbb{R}^{n}: & \bar{x}+\epsilon \delta \text { is feasible } \\
\text { obj. value at } \bar{x}+\epsilon \delta \leq \text { obj. value at } \bar{x}
\end{array}\right\}
$$

Show that for this problem, the descent cone at the optimal solution x^{\star} is

$$
\left\{\delta \in \mathbb{R}^{n}: \begin{array}{l}
\delta \in \operatorname{ker}(A) \\
\left\langle\operatorname{sign}\left(x^{\star}\right), \delta_{S^{\star}}\right\rangle+\left\|\delta_{\left(S^{\star}\right)^{C}}\right\|_{1} \leq 0
\end{array}\right\}
$$

where S^{\star} is the support of x^{\star}.
(b) [10pts] The matrix A is said to satisfy the nullspace property at order k if for all sets $S \subseteq[n]$ with $|S| \leq k$ and for all $\delta \in \operatorname{ker}(A) \backslash\{0\}$, we have

$$
\left\|\delta_{S}\right\|_{1}<\left\|\delta_{S^{c}}\right\|_{1}
$$

Show that the descent cone at x^{\star} is trivial, i.e., equal to $\{0\}$, if A satisfies the nullspace property at order k and x^{\star} is k-sparse.
(c) [5pts] Show that if A does not satisfy the nullspace property at order k, then there exists a k-sparse x^{\star} for which the convex-optimization approach may fail to recover x^{\star}. That is, for which the descent cone at x^{\star} is nontrivial.
5. [25 pts] Given a permutation σ of [n], we can associate σ with the $n \times n$ permutation matrix

$$
\left(X^{\sigma}\right)_{i, j}= \begin{cases}1 & \text { if } \sigma(i)=j \\ 0 & \text { else }\end{cases}
$$

Let \mathcal{P}_{n} denote the set of n ! permutation matrices of size $n \times n$. Prove that $\operatorname{conv}\left(\mathcal{P}_{n}\right)=\mathrm{DS}_{n}$, the set of doubly stochastic matrices:

$$
\mathrm{DS}_{n}:=\left\{\begin{array}{ll}
& X \geq 0 \\
X \in \mathbb{R}^{n \times n}: & X^{\top} 1_{n}=1_{n} \\
& X 1_{n}=1_{n}
\end{array}\right\}
$$

Hint: Use Hall's marriage theorem to prove that the support of any doubly stochastic matrix contains a permutation matrix.

