MGMT 690 - Pset 1

Spring 2024

Instructions:

- This pset is due on Sunday, March 24 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- **Exercises** are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1–3 and one of either 4 or 5.

Exercises

1. Let V be a Euclidean space and let

$$\|v\| \coloneqq \sqrt{\langle v, v \rangle}.$$

Prove that this is a norm.

2. Let $p \in > 0$. For $x \in \mathbb{R}^n$, define

$$\|x\|_p \coloneqq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Prove that this is *not* a norm for $p \in (0, 1)$ and $n \ge 2$.

- 3. Prove that the affine image of a convex set is a convex set.
- 4. Let $C \subseteq \mathbb{R}^n$ be a convex set. Let $x \in \operatorname{rint}(C)$ and $y \in \operatorname{cl}(C)$. Prove that for all $\theta \in [0, 1)$, that $(1 \theta)x + \theta y \in \operatorname{rint}(C)$.

Problems

1. [25 pts] Given $A \in \mathbb{S}^n$ and $B \in \mathbb{S}^m$, the Kronecker product $A \otimes B$ is the \mathbb{S}^{mn} matrix given in block form as

$$A \otimes B = \begin{pmatrix} A_{1,1}B & \dots & A_{1,n}B \\ \vdots & \ddots & \vdots \\ A_{n,1}B & \dots & A_{n,n}B \end{pmatrix}$$

Suppose $A \in \mathbb{S}^n_+$ and $B \in \mathbb{S}^m_+$. Show that $A \otimes B \succeq 0$.

2. [25 pts] Given a symmetric matrix $A \in \mathbb{S}^n$, let Inertia $(A) \coloneqq (n_-, n_0, n_+)$ denote the number of negative eigenvalues, number of zero eigenvalues, and number of positive eigenvalues of A. Prove that for any invertible $P \in \mathbb{R}^{n \times n}$, that

Inertia
$$(A)$$
 = Inertia $(P^{\intercal}AP)$.

- 3. [25 pts] Prove that
 - (a) [5pts] the nonnegative orthant is self-dual,
 - (b) [10pts] the second-order cone is self-dual, and
 - (c) [10pts] the semidefinite cone is self-dual.
- 4. [25 pts] In sparse recovery, the goal is to recover a sparse vector $x^* \in \mathbb{R}^n$ given linear measurements $(A, b) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m$ where $b = Ax^*$. A convex-optimization approach to this problem is to output the optimizer of

$$\min_{x \in \mathbb{R}^n} \{ \|x\|_1 : Ax = b \}$$

This problem gives a necessary and sufficient condition for when this convex-optimization approach correctly recovers x^* .

We say that a vector is k-sparse if it has at most k nonzero entries. Given a subset $S \subseteq [n]$ and a vector $x \in \mathbb{R}^n$, let x_S denote the restriction of x onto the set S. Let S^c denote the complement of S. For a vector $x \in \mathbb{R}^n$, let $\operatorname{sign}(x)$ denote the $\{-1, 0, 1\}$ -valued vector giving the individual signs of the coordinates of x.

(a) [10pts] The *descent cone* of a convex-optimization problem at a feasible solution \bar{x} is defined as

$$\begin{cases} \forall \epsilon > 0 \text{ small enough :} \\ \delta \in \mathbb{R}^n : \quad \bar{x} + \epsilon \delta \text{ is feasible} \\ \text{obj. value at } \bar{x} + \epsilon \delta \leq \text{obj. value at } \bar{x} \end{cases}$$

Show that for this problem, the descent cone at the optimal solution x^\star is

$$\left\{ \delta \in \mathbb{R}^{n} : \begin{array}{c} \delta \in \ker(A) \\ \langle \operatorname{sign}(x^{\star}), \delta_{S^{\star}} \rangle + \left\| \delta_{(S^{\star})^{C}} \right\|_{1} \leq 0 \end{array} \right\}$$

where S^{\star} is the support of x^{\star} .

(b) [10pts] The matrix A is said to satisfy the nullspace property at order k if for all sets $S \subseteq [n]$ with $|S| \leq k$ and for all $\delta \in \ker(A) \setminus \{0\}$, we have

$$\|\delta_S\|_1 < \|\delta_{S^c}\|_1$$
 .

Show that the descent cone at x^* is trivial, i.e., equal to $\{0\}$, if A satisfies the nullspace property at order k and x^* is k-sparse.

- (c) [5pts] Show that if A does not satisfy the nullspace property at order k, then there exists a k-sparse x^* for which the convex-optimization approach may fail to recover x^* . That is, for which the descent cone at x^* is nontrivial.
- 5. [25 pts] Given a permutation σ of [n], we can associate σ with the $n \times n$ permutation matrix

$$(X^{\sigma})_{i,j} = \begin{cases} 1 & \text{if } \sigma(i) = j \\ 0 & \text{else} \end{cases}.$$

Let \mathcal{P}_n denote the set of n! permutation matrices of size $n \times n$. Prove that $\operatorname{conv}(\mathcal{P}_n) = \mathrm{DS}_n$, the set of doubly stochastic matrices:

$$\mathrm{DS}_n \coloneqq \left\{ X \in \mathbb{R}^{n \times n} : \begin{array}{l} X \ge 0 \\ X^{\mathsf{T}} \mathbf{1}_n = \mathbf{1}_n \\ X \mathbf{1}_n = \mathbf{1}_n \end{array} \right\}.$$

Hint: Use Hall's marriage theorem to prove that the support of any doubly stochastic matrix contains a permutation matrix.