MGMT 690 - Pset 1

Spring 2024

Instructions:
e This pset is due on Sunday, March 24 at 11:59pm.
¢ Completed psets should be submitted to Gradescope.

o Exercises are for your own review only. They do not need to be submitted
and will not be graded.

¢ Complete all problems 1-3 and one of either 4 or 5.

1 Exercises

Exercise 1

Proposition 1. Let V be a Fuclidean space and let

[o]l == v/ {v, v).
Then, ||v|| is a norm.

Proof. We need to prove positivity, homogeneity, and the triangle inequality.
Let v € V. First, (v,v) > 0 by definition of an inner product where (v,v) =0
iff v = 0. We deduce that ||v|| > 0 and |Jv|| = 0 if and only if v = 0.
Next, let v € V and a € R. Then,

lav]| = v/{av, av) = /a2 (v,v) = |a| /{v,v) = |a] o]

The second equality follows from bilinearity of the inner product.
Finally, let u,v € V. Our goal is to prove that ||u + v|| < |Ju||+||v||. Consider
f(ev, B) = || + Bv||*. This is nonnegative for all a, 3 € R. Additionally,

F(as B) = a2 Jul® + 208 (u, v) + B2 o]]? = (g)T (”“2 m’}) (g)

(u, v)

As f(a, f) is nonnegative for all «, 3, we deduce that the 2 x 2 matrix on the
right is positive semidefinite and that its determinant must be nonnegative.
Thus,

2 2 2
[[ul™ floll” = (u,v)” > 0.



Rearranging, we get the Cauchy-Schwarz Inequality:
[(w, 0)] < [l [|o]] -
Now, we have that
2 2
(llull + [loll)? = flall® + 2 [l o] + o]

2 2

2 [Jul]” + 2 {u, v) + [|v]

= fJu+oll. o

Exercise 2

Proposition 2. Let p > 0. For x € R", define

n 1/p
Jal, = (zw) |
=1

Ifp€(0,1) and n > 2, then ||z||, is not a norm.

Proof. 1t is not hard to see that homogeneity and nonnegativity hold for any
p > 0. We will prove that the triangle inequality does not hold for p € (0,1) and
n > 2. Let p € (0,1). We compute:

lex + ezl = 277 > 2 = [leal], + [lez]l, - =

Exercise 3
Proposition 3. The affine image of a convez set is a convex set.

Proof. Let V,W be Euclidean spaces and let £ : V' — W be an affine transfor-
mation. That is, if aq,...,a € R satisfy Zle a; =1 and v; € V, then

k k
L (Z aivi> = Zaiﬁ(vi).

Let C C V be a convex set. Our goal is to show that £(C) is convex. Let
wy,we € L(C). By assumption, there exists v1,ve € C so that L(v;) = w;. As
C' is convex, for every A € [0, 1],

vy + (1 — )\)’Ug eC.
As L is affine, we have that

L(C) > L(Avy + (1 — X)ve)
= AL(v1) 4+ (1 — N)L(ve)
= /\’LU1 + (1 — /\)w2 | |



Exercise 4

Proposition 4. Let C C R" be a convex set. Let x € rint(C) and y € cl(C).
Prove that for all 6 € [0,1), that (1 — 0)x + Oy € rint(C).

Proof. Let € > 0 so that
B(z,e) naff(C) C C.

This exists as « € rint(C).
Let § > 0 and let y € C so that ||y — y|| <. This exists as y € cl(C).
Now, as C' is convex, we have that for all 6 € [0,1),

C2OB((1-0)x+0y,(1—0))
ODB((1—-0)x+0y,(1—0)e—09).

The radius of this set is positive for all § € [0, = ). Thus, (1—0)x + 0y € rint(C)

v}
for all 0 € [0 Letting § — 0 completes the proof. [ |

' o5 )-

2 Problems

Problem 1 [25pts]

Given A € S™ and B € S™, the Kronecker product A ® B is the S™" matrix
given in block form as

Al,lB . Al,nB
A® B = e
A.,1B ... A,.B
Proposition 5. Suppose A € St and B € ST'. Then, A® B = 0.
Proof. Let ay,...,a, € Ry and aq,...,a, € R" denote the eigenvalues and an
eigenbasis of A. Similarly define f1,..., 5, and by,..., by,.
For i € [n] and j € [m], define
(ai)1b;
Yij = @iffj =20 Cij = e R™™.
(ai)nb;

Our goal is to show that c;; are an eigenbasis with associated eigenvalues
ij = 0.



First
(Arp(ai)r + -+ Arnlai)n) (Bby)

(A® B)ci; :
(Apa(ai) + -+ Annlai)n) (Bb))
(@i)1b;
= azﬂj = YijCij-
(ai)nb;
Next,
{cij» cigr) = >
nbj
(@i, air) (b, bjr) .
We see that (c;j, civ;r) is positive if (z,7) = (7', ") and zero otherwise. |

Problem 2 [25pts]

Given a symmetric matrix A € S”, let Inertia(A4) := (n_,ng,ny) denote the
number of negative eigenvalues, number of zero eigenvalues, and number of
positive eigenvalues of A.

Proposition 6. Let A € S™ and let P € R™*™ be invertible. Then,
Inertia(A) = Inertia( PTAP).

Proof. Let (n_(A),ng(A),n4(A)) denote the inertia of A.

First, let V := ker(A). This is a subspace of R™ of dimension ng(A). Now, set
W := P71V. This again has dimension ng(A4). Then, for any w = P~tv € W
we have

(PTAP)w = PTAv = 0.

Thus, ng(B) > no(A).

Next, let V denote the subspace spanned by the eigenvectors of A cor-
responding to positive eigenvalues. This is a subspace of R™ of dimension
ny(A). Now, set W = P~1V. This again has dimension n (A). Then, for any
w= P~ lv e W\ {0} we have

w(PTAP)w = vTAv > 0.
By Courant-Fischer Theorem, ny (B) > n4(A).

An analogous proof shows that n_(B) > n_(A).
Thus, we have shown that

n(A)<n_(B)  no(A)<no(B)  ny(A) <ny(B).

Reversing the roles of A and B completes the proof.! |

LOr, simply observing that n_ +ng + n4 = n.



Problem 3 [25pts]
Proposition 7. The nonnegative orthant is self-dual.

Proof. Let K =R’ denote the nonnegative orthant.
We first show that K. C K: Suppose x ¢ KC. That is, there is some coordinate,
say 1, so that x; < 0. Then, e; € K satisfies
(es, ) < 0.

We deduce that x ¢ K..
Next, we show that IC C IC,. That is, given x,y € K, we need to show that

(x,y) > 0.

The left-hand side is just a sum of n nonnegative terms. |

Proposition 8. The second-order cone is self-dual.

Proof. Let K := £ denote the second-order cone.

We first show that IC, C K: Suppose (t,z) ¢ K. That is, t < ||z],. We
will show that (t,z) ¢ K. If ¢ < 0, then clearly (¢t,z) ¢ K. as (1,0) € K and
((t,x),(1,0)) = t. Now assume t > 0 and ¢ < ||z[|,. Thus,  # 0. Define
(s,y) € K by setting s = ||z||, and y = —z. Then,

<<y) ’ (t>> st (o) < ol — ol

We deduce that (¢, z) ¢ K.
Next, we show that K C K,. That is, given (t,), (s,y) € £, need to
show that

((t,z),(s,9)) = 0.
We compute
<(t= CE)7 (Svy)> =st+ <x7y>

> st —|[zly [lyll,
> st — st.

The first inequality follows from Cauchy-Schwarz and the second inequality
follows from the definition of the second-order cone. |
Proposition 9. The semidefinite cone is self-dual.

Proof. Let K =S8} denote the positive semidefinite cone.
We first show that IC. C KC: Suppose X ¢ K. That is, there is some v € R"
so that vTAv < 0. We can rewrite this as

(A, o7y =0T Av < 0



Note that voT € K. Thus, A ¢ K..

Next, we show that IC C KC,. That is, given X,Y € K, we need to show that
(X,Y) > 0. By the spectral theorem, we may write X = Z:’Zl Aiviv], where
/\7; Z 0. Then,

As Y = 0, the term in parentheses in the last line is nonnegative for all i. We
conclude that K C K,. | |

Problem 4 [25pts]

In sparse recovery, the goal is to recover a sparse vector z* € R™ given linear
measurements (A4,b) € R™*™ x R™ where b = Az*. A convex-optimization
approach to this problem is to output the optimizer of

min {|jz]|, : Az = b}

Given a subset S C [n] and a vector z € R", let zg denote the restriction of
x onto the set S. Let S¢ denote the complement of S.

Proposition 10. Let S* denote the support of x*. Then, the descent cone at

T* is

{56R”: d € ker(A) }

(sign(a), 6s-) + [|d(syell, <0
Proof. Let K denote the descent cone at x*. By definition,

Ve > 0 small enough :
K:=¢6eR": z*+ ¢ is feasible
obj. value at z* 4+ €6 < obj. value at x*

We specialize this to the current problem:

Ve > 0 small enough :
K=<¢deR": Ax*+e€Ad=05b
[a* + €d]ly < [la*]l,

Recall that Az* = b. Let S* denote the support of z*. We can decompose
|lz* + €|, = ||z* + €dg+||; + € H(S(S*)c

.
When € > 0 is small enough, the sign of (z* + edg~) is the same as the sign of
a*, thus for all € > 0 small enough,

la* + edll, = lla*]l, + e (sign(e*), 65-) + € |ds-)e

.
This gives us the form of K we set out to prove. |



The matrix A is said to satisfy the nullspace property at order k if for all sets
S C [n] with |S| < k and for all § € ker(A) \ {0}, we have

[0s1ly < [[0se]l; -

Proposition 11. Suppose x* is < k-sparse and A satisfies the nullspace property
at order k. Then, the descent cone at x* is trivial.

Proof. By the previous result, we have that any 0 in the descent cone at x*
satisfies

§ € ker(A) and (sign(a*), dg+) + ||6(s+)e

L <0

We can apply the nullspace property at order k to the set S* to deduce that
either 6 = 0 or

|(sign(z*), 05+ )| < (|05 || < [|6(s+)e

)

a contradiction. We conclude that § = 0 and that the descent cone at x* is
trivial. | |

Proposition 12. If A does not satisfy the nullspace property at order k, then
there exists a k-sparse x* for which the convex-optimization approach may fail
to recover x*.

Proof. By definition, there exists a set of coordinates S of size at most k and a

6 € ker(A) \ {0} : 10sly = 1dsell; -
Set z* = —sign(dg). This is a < k sparse vector. We verify that § is in the
descent cone at z*:
(sign(z”),ds) + |05 [ly = = [[0slly + [[0s¢l, < 0.

We conclude that z* is not the unique optimal solution to this problem (or
even necessarily an optimal solution). |

Problem 5 [25pts]

Given a permutation o of [n], we can associate o with the n x n permutation
matrix

(X%, = {1 ifo(i)=j

0 else

Let P,, denote the set of all n! permutation matrices.
Define the set of doubly stochastic matrices:

X>0
DS, =<{¢ X e R™" . XT1, =1,
X1, =1,



Proposition 13. Let n > 1, then conv(P,) = DS,.

Proof. First, we check that conv(P,) C DS,,;: Let X € P,. Then, X is a binary
matrix where each row and column contains exactly one 1. We deduce that
X € DS,,. As DS, is convex and conv(P,,) is the smallest convex set containing
Pn, we conclude that conv(P,) C DS,,.

Now, we check that DS,, C conv(P,): Let Y € DS,,. We will prove that
Y € conv(P,) via induction on the number of nonzero entries in Y. ¥ must have
some number of nonzero entries between n and n? (the lower bound comes from
the fact that each row and column needs to have at least one nonzero entry).

If Y has exactly n nonzero entries, then we are done because Y will itself be
a permutation matrix so Y € P,.

Now, suppose Y has > n nonzero entries.

Our first step is to deduce that the support of Y contains a permutation
matrix. We will do this by applying Hall’s marriage theorem to the following
bipartite graph: Let the left vertex set be indexed by ¢ € [n] and right vertex
set be indexed by j € [n] and connect (4, j) with an edge if ¥; ; > 0. In order to
apply Hall’s marriage theorem, we must check that for any subset £ of the left
vertices that the number of neighbors of £ is at least |£|. Let (L) denote the
neighbors of £. To see that this is true, let £ be any subset of the left vertices.
AsY € DS, it holds that

Ll=>"> "V
ieL j=1
=D > Yy
€L jeN (L)
= 2 2V
JEN(L) €L

< NV(L)].

Thus, we may apply Hall’s marriage theorem to conclude that the support of Y
contains a permutation matrix X.

Now, set 8 > 0 so that Y — 60X > 0 has support strictly less than the support
of Y. By induction, we have that

1%Q(Y —0X) € conv(Py).

Then, as X € P,, we conclude that

Y = 0X + (1-6) <1_19(Y - eX)) € conv(P). -



