
MGMT 690 - Pset 1
Spring 2024

Instructions:

• This pset is due on Sunday, March 24 at 11:59pm.

• Completed psets should be submitted to Gradescope.

• Exercises are for your own review only. They do not need to be submitted
and will not be graded.

• Complete all problems 1–3 and one of either 4 or 5.

1 Exercises
Exercise 1
Proposition 1. Let V be a Euclidean space and let

∥v∥ :=
√

⟨v, v⟩.

Then, ∥v∥ is a norm.

Proof. We need to prove positivity, homogeneity, and the triangle inequality.
Let v ∈ V . First, ⟨v, v⟩ ≥ 0 by definition of an inner product where ⟨v, v⟩ = 0

iff v = 0. We deduce that ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0.
Next, let v ∈ V and α ∈ R. Then,

∥αv∥ =
√

⟨αv, αv⟩ =
√

α2 ⟨v, v⟩ = |α|
√

⟨v, v⟩ = |α| ∥v∥ .

The second equality follows from bilinearity of the inner product.
Finally, let u, v ∈ V . Our goal is to prove that ∥u + v∥ ≤ ∥u∥+∥v∥. Consider

f(α, β) := ∥αu + βv∥2. This is nonnegative for all α, β ∈ R. Additionally,

f(α, β) = α2 ∥u∥2 + 2αβ ⟨u, v⟩ + β2 ∥v∥2 =
(

α
β

)⊺(∥u∥2 ⟨u, v⟩
⟨u, v⟩ ∥v∥2

)(
α
β

)
.

As f(α, β) is nonnegative for all α, β, we deduce that the 2 × 2 matrix on the
right is positive semidefinite and that its determinant must be nonnegative.
Thus,

∥u∥2 ∥v∥2 − ⟨u, v⟩2 ≥ 0.
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Rearranging, we get the Cauchy-Schwarz Inequality:

|⟨u, v⟩| ≤ ∥u∥ ∥v∥ .

Now, we have that

(∥u∥ + ∥v∥)2 = ∥u∥2 + 2 ∥u∥ ∥v∥ + ∥v∥2

≥ ∥u∥2 + 2 ⟨u, v⟩ + ∥v∥2

= ∥u + v∥2
. ■

Exercise 2
Proposition 2. Let p > 0. For x ∈ Rn, define

∥x∥p :=
(

n∑
i=1

|xi|p
)1/p

.

If p ∈ (0, 1) and n ≥ 2, then ∥x∥p is not a norm.

Proof. It is not hard to see that homogeneity and nonnegativity hold for any
p > 0. We will prove that the triangle inequality does not hold for p ∈ (0, 1) and
n ≥ 2. Let p ∈ (0, 1). We compute:

∥e1 + e2∥p = 21/p > 2 = ∥e1∥p + ∥e2∥p . ■

Exercise 3
Proposition 3. The affine image of a convex set is a convex set.

Proof. Let V, W be Euclidean spaces and let L : V → W be an affine transfor-
mation. That is, if α1, . . . , αk ∈ R satisfy

∑k
i=1 αi = 1 and vi ∈ V , then

L

(
k∑

i=1
αivi

)
=

k∑
i=1

αiL(vi).

Let C ⊆ V be a convex set. Our goal is to show that L(C) is convex. Let
w1, w2 ∈ L(C). By assumption, there exists v1, v2 ∈ C so that L(vi) = wi. As
C is convex, for every λ ∈ [0, 1],

λv1 + (1 − λ)v2 ∈ C.

As L is affine, we have that

L(C) ∋ L(λv1 + (1 − λ)v2)
= λL(v1) + (1 − λ)L(v2)
= λw1 + (1 − λ)w2. ■
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Exercise 4
Proposition 4. Let C ⊆ Rn be a convex set. Let x ∈ rint(C) and y ∈ cl(C).
Prove that for all θ ∈ [0, 1), that (1 − θ)x + θy ∈ rint(C).

Proof. Let ϵ > 0 so that

B(x, ϵ) ∩ aff(C) ⊆ C.

This exists as x ∈ rint(C).
Let δ > 0 and let ȳ ∈ C so that ∥ȳ − y∥ ≤ δ. This exists as y ∈ cl(C).
Now, as C is convex, we have that for all θ ∈ [0, 1),

C ⊇ B ((1 − θ)x + θȳ, (1 − θ)ϵ)
⊇ B ((1 − θ)x + θy, (1 − θ)ϵ − θδ) .

The radius of this set is positive for all θ ∈ [0, ϵ
ϵ+δ ). Thus, (1−θ)x+θy ∈ rint(C)

for all θ ∈ [0, ϵ
ϵ+δ ). Letting δ → 0 completes the proof. ■

2 Problems
Problem 1 [25pts]
Given A ∈ Sn and B ∈ Sm, the Kronecker product A ⊗ B is the Smn matrix
given in block form as

A ⊗ B =

A1,1B . . . A1,nB
...

. . .
...

An,1B . . . An,nB


Proposition 5. Suppose A ∈ Sn

+ and B ∈ Sm
+ . Then, A ⊗ B ⪰ 0.

Proof. Let α1, . . . , αn ∈ R+ and a1, . . . , an ∈ Rn denote the eigenvalues and an
eigenbasis of A. Similarly define β1, . . . , βm and b1, . . . , bm.

For i ∈ [n] and j ∈ [m], define

γij = αiβj ≥ 0 cij =

(ai)1bj
...

(ai)nbj

 ∈ Rnm.

Our goal is to show that cij are an eigenbasis with associated eigenvalues
γij ≥ 0.
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First

(A ⊗ B)cij =

(A1,1(ai)1 + · · · + A1,n(ai)n)(Bbj)
...

(An,1(ai)1 + · · · + An,n(ai)n)(Bbj)


= αiβj

(ai)1bj
...

(ai)nbj

 = γijcij .

Next,

⟨cij , ci′j′⟩ =
〈(ai)1bj

...
(ai)nbj

 ,

(ai′)1bj′

...
(ai′)nbj′

〉

= ⟨ai, ai′⟩ ⟨bj , bj′⟩ .

We see that ⟨cij , ci′j′⟩ is positive if (i, j) = (i′, j′) and zero otherwise. ■

Problem 2 [25pts]
Given a symmetric matrix A ∈ Sn, let Inertia(A) := (n−, n0, n+) denote the
number of negative eigenvalues, number of zero eigenvalues, and number of
positive eigenvalues of A.
Proposition 6. Let A ∈ Sn and let P ∈ Rn×n be invertible. Then,

Inertia(A) = Inertia(P ⊺AP ).
Proof. Let (n−(A), n0(A), n+(A)) denote the inertia of A.

First, let V := ker(A). This is a subspace of Rn of dimension n0(A). Now, set
W := P −1V . This again has dimension n0(A). Then, for any w = P −1v ∈ W
we have

(P ⊺AP )w = P ⊺Av = 0.

Thus, n0(B) ≥ n0(A).
Next, let V denote the subspace spanned by the eigenvectors of A cor-

responding to positive eigenvalues. This is a subspace of Rn of dimension
n+(A). Now, set W := P −1V . This again has dimension n+(A). Then, for any
w = P −1v ∈ W \ {0} we have

w(P ⊺AP )w = v⊺Av > 0.

By Courant-Fischer Theorem, n+(B) ≥ n+(A).
An analogous proof shows that n−(B) ≥ n−(A).
Thus, we have shown that

n−(A) ≤ n−(B) n0(A) ≤ n0(B) n+(A) ≤ n+(B).
Reversing the roles of A and B completes the proof.1 ■

1Or, simply observing that n− + n0 + n+ = n.
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Problem 3 [25pts]
Proposition 7. The nonnegative orthant is self-dual.

Proof. Let K := Rn
+ denote the nonnegative orthant.

We first show that K∗ ⊆ K: Suppose x /∈ K. That is, there is some coordinate,
say i, so that xi < 0. Then, ei ∈ K satisfies

⟨ei, x⟩ < 0.

We deduce that x /∈ K∗.
Next, we show that K ⊆ K∗. That is, given x, y ∈ K, we need to show that

⟨x, y⟩ ≥ 0.

The left-hand side is just a sum of n nonnegative terms. ■

Proposition 8. The second-order cone is self-dual.

Proof. Let K := L1+n denote the second-order cone.
We first show that K∗ ⊆ K: Suppose (t, x) /∈ K. That is, t < ∥x∥2. We

will show that (t, x) /∈ K∗. If t < 0, then clearly (t, x) /∈ K∗ as (1, 0) ∈ K and
⟨(t, x), (1, 0)⟩ = t. Now assume t ≥ 0 and t < ∥x∥2. Thus, x ≠ 0. Define
(s, y) ∈ K by setting s = ∥x∥2 and y = −x. Then,〈(

s
y

)
,

(
t
x

)〉
= st + ⟨x, y⟩ < ∥x∥2

2 − ∥x∥2
2 .

We deduce that (t, x) /∈ K∗.
Next, we show that K ⊆ K∗. That is, given (t, x), (s, y) ∈ L1+n, need to

show that

⟨(t, x), (s, y)⟩ ≥ 0.

We compute

⟨(t, x), (s, y)⟩ = st + ⟨x, y⟩
≥ st − ∥x∥2 ∥y∥2
≥ st − st.

The first inequality follows from Cauchy-Schwarz and the second inequality
follows from the definition of the second-order cone. ■

Proposition 9. The semidefinite cone is self-dual.

Proof. Let K := Sn
+ denote the positive semidefinite cone.

We first show that K∗ ⊆ K: Suppose X /∈ K. That is, there is some v ∈ Rn

so that v⊺Av < 0. We can rewrite this as

⟨A, vv⊺⟩ = v⊺Av < 0
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Note that vv⊺ ∈ K. Thus, A /∈ K∗.
Next, we show that K ⊆ K∗. That is, given X, Y ∈ K, we need to show that

⟨X, Y ⟩ ≥ 0. By the spectral theorem, we may write X =
∑n

i=1 λiviv
⊺
i , where

λi ≥ 0. Then,

⟨X, Y ⟩ =
〈

n∑
i=1

λiviv
⊺
i , Y

〉

=
n∑

i=1
λi(v⊺

i Y vi).

As Y ⪰ 0, the term in parentheses in the last line is nonnegative for all i. We
conclude that K ⊆ K∗. ■

Problem 4 [25pts]
In sparse recovery, the goal is to recover a sparse vector x⋆ ∈ Rn given linear
measurements (A, b) ∈ Rm×n × Rm where b = Ax⋆. A convex-optimization
approach to this problem is to output the optimizer of

min
x∈Rn

{∥x∥1 : Ax = b} .

Given a subset S ⊆ [n] and a vector x ∈ Rn, let xS denote the restriction of
x onto the set S. Let Sc denote the complement of S.
Proposition 10. Let S⋆ denote the support of x⋆. Then, the descent cone at
x⋆ is {

δ ∈ Rn : δ ∈ ker(A)
⟨sign(x⋆), δS⋆⟩ +

∥∥δ(S⋆)C

∥∥
1 ≤ 0

}
Proof. Let K denote the descent cone at x⋆. By definition,

K :=

δ ∈ Rn :
∀ϵ > 0 small enough :
x⋆ + ϵδ is feasible
obj. value at x⋆ + ϵδ ≤ obj. value at x⋆

 .

We specialize this to the current problem:

K =

δ ∈ Rn :
∀ϵ > 0 small enough :
Ax⋆ + ϵAδ = b
∥x⋆ + ϵδ∥1 ≤ ∥x⋆∥1

 .

Recall that Ax⋆ = b. Let S⋆ denote the support of x⋆. We can decompose

∥x⋆ + ϵδ∥1 = ∥x⋆ + ϵδS⋆∥1 + ϵ
∥∥δ(S⋆)c

∥∥
1 .

When ϵ > 0 is small enough, the sign of (x⋆ + ϵδS∗) is the same as the sign of
x⋆, thus for all ϵ > 0 small enough,

∥x⋆ + ϵδ∥1 = ∥x⋆∥1 + ϵ ⟨sign(x⋆), δS⋆⟩ + ϵ
∥∥δ(S⋆)c

∥∥
1 .

This gives us the form of K we set out to prove. ■
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The matrix A is said to satisfy the nullspace property at order k if for all sets
S ⊆ [n] with |S| ≤ k and for all δ ∈ ker(A) \ {0}, we have

∥δS∥1 < ∥δSc∥1 .

Proposition 11. Suppose x⋆ is ≤ k-sparse and A satisfies the nullspace property
at order k. Then, the descent cone at x⋆ is trivial.

Proof. By the previous result, we have that any δ in the descent cone at x⋆

satisfies

δ ∈ ker(A) and ⟨sign(x⋆), δS⋆⟩ +
∥∥δ(S⋆)c

∥∥
1 ≤ 0.

We can apply the nullspace property at order k to the set S⋆ to deduce that
either δ = 0 or

|⟨sign(x⋆), δS⋆⟩| ≤ ∥δS∗∥ <
∥∥δ(S∗)c

∥∥ ,

a contradiction. We conclude that δ = 0 and that the descent cone at x⋆ is
trivial. ■

Proposition 12. If A does not satisfy the nullspace property at order k, then
there exists a k-sparse x⋆ for which the convex-optimization approach may fail
to recover x⋆.

Proof. By definition, there exists a set of coordinates S of size at most k and a

δ ∈ ker(A) \ {0} : ∥δS∥1 ≥ ∥δSc∥1 .

Set x⋆ = − sign(δS). This is a ≤ k sparse vector. We verify that δ is in the
descent cone at x⋆:

⟨sign(x⋆), δS⟩ + ∥δSc∥1 = − ∥δS∥1 + ∥δSc∥1 ≤ 0.

We conclude that x⋆ is not the unique optimal solution to this problem (or
even necessarily an optimal solution). ■

Problem 5 [25pts]
Given a permutation σ of [n], we can associate σ with the n × n permutation
matrix

(Xσ)i,j =
{

1 if σ(i) = j

0 else
.

Let Pn denote the set of all n! permutation matrices.
Define the set of doubly stochastic matrices:

DSn :=

X ∈ Rn×n :
X ≥ 0
X⊺1n = 1n

X1n = 1n

 .
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Proposition 13. Let n ≥ 1, then conv(Pn) = DSn.

Proof. First, we check that conv(Pn) ⊆ DSn: Let X ∈ Pn. Then, X is a binary
matrix where each row and column contains exactly one 1. We deduce that
X ∈ DSn. As DSn is convex and conv(Pn) is the smallest convex set containing
Pn, we conclude that conv(Pn) ⊆ DSn.

Now, we check that DSn ⊆ conv(Pn): Let Y ∈ DSn. We will prove that
Y ∈ conv(Pn) via induction on the number of nonzero entries in Y . Y must have
some number of nonzero entries between n and n2 (the lower bound comes from
the fact that each row and column needs to have at least one nonzero entry).

If Y has exactly n nonzero entries, then we are done because Y will itself be
a permutation matrix so Y ∈ Pn.

Now, suppose Y has > n nonzero entries.
Our first step is to deduce that the support of Y contains a permutation

matrix. We will do this by applying Hall’s marriage theorem to the following
bipartite graph: Let the left vertex set be indexed by i ∈ [n] and right vertex
set be indexed by j ∈ [n] and connect (i, j) with an edge if Yi,j > 0. In order to
apply Hall’s marriage theorem, we must check that for any subset L of the left
vertices that the number of neighbors of L is at least |L|. Let N (L) denote the
neighbors of L. To see that this is true, let L be any subset of the left vertices.
As Y ∈ DSn, it holds that

|L| =
∑
i∈L

n∑
j=1

Yi,j

=
∑
i∈L

∑
j∈N (L)

Yi,j

=
∑

j∈N (L)

∑
i∈L

Yi,j

≤ |N (L)| .

Thus, we may apply Hall’s marriage theorem to conclude that the support of Y
contains a permutation matrix X.

Now, set θ > 0 so that Y − θX ≥ 0 has support strictly less than the support
of Y . By induction, we have that

1
1 − θ

(Y − θX) ∈ conv(Pn).

Then, as X ∈ Pn, we conclude that

Y = θX + (1 − θ)
(

1
1 − θ

(Y − θX)
)

∈ conv(Pn). ■
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