MGMT 690 - Pset 1

Spring 2024

Instructions:

- This pset is due on Sunday, March 24 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- **Exercises** are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1–3 and one of either 4 or 5.

1 Exercises

Exercise 1

Proposition 1. Let V be a Euclidean space and let

$$\|v\| \coloneqq \sqrt{\langle v, v \rangle}.$$

Then, ||v|| is a norm.

Proof. We need to prove positivity, homogeneity, and the triangle inequality. Let $v \in V$. First, $\langle v, v \rangle \ge 0$ by definition of an inner product where $\langle v, v \rangle = 0$

iff v = 0. We deduce that $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.

Next, let $v \in V$ and $\alpha \in \mathbb{R}$. Then,

$$\|\alpha v\| = \sqrt{\langle \alpha v, \alpha v \rangle} = \sqrt{\alpha^2 \langle v, v \rangle} = |\alpha| \sqrt{\langle v, v \rangle} = |\alpha| \|v\|$$

The second equality follows from bilinearity of the inner product.

Finally, let $u, v \in V$. Our goal is to prove that $||u + v|| \le ||u|| + ||v||$. Consider $f(\alpha, \beta) := ||\alpha u + \beta v||^2$. This is nonnegative for all $\alpha, \beta \in \mathbb{R}$. Additionally,

$$f(\alpha,\beta) = \alpha^{2} \left\| u \right\|^{2} + 2\alpha\beta \left\langle u, v \right\rangle + \beta^{2} \left\| v \right\|^{2} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \left\| u \right\|^{2} & \left\langle u, v \right\rangle \\ \left\langle u, v \right\rangle & \left\| v \right\|^{2} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

As $f(\alpha, \beta)$ is nonnegative for all α, β , we deduce that the 2×2 matrix on the right is positive semidefinite and that its determinant must be nonnegative. Thus,

$$||u||^{2} ||v||^{2} - \langle u, v \rangle^{2} \ge 0.$$

Rearranging, we get the Cauchy-Schwarz Inequality:

 $|\langle u, v \rangle| \le \|u\| \, \|v\| \, .$

Now, we have that

$$(||u|| + ||v||)^{2} = ||u||^{2} + 2 ||u|| ||v|| + ||v||^{2}$$

$$\geq ||u||^{2} + 2 \langle u, v \rangle + ||v||^{2}$$

$$= ||u + v||^{2}.$$

Exercise 2

Proposition 2. Let p > 0. For $x \in \mathbb{R}^n$, define

$$\|x\|_p \coloneqq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

If $p \in (0,1)$ and $n \ge 2$, then $||x||_p$ is not a norm.

Proof. It is not hard to see that homogeneity and nonnegativity hold for any p > 0. We will prove that the triangle inequality does *not* hold for $p \in (0, 1)$ and $n \ge 2$. Let $p \in (0, 1)$. We compute:

$$||e_1 + e_2||_p = 2^{1/p} > 2 = ||e_1||_p + ||e_2||_p.$$

Exercise 3

Proposition 3. The affine image of a convex set is a convex set.

Proof. Let V, W be Euclidean spaces and let $\mathcal{L} : V \to W$ be an affine transformation. That is, if $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ satisfy $\sum_{i=1}^k \alpha_i = 1$ and $v_i \in V$, then

$$\mathcal{L}\left(\sum_{i=1}^{k} \alpha_i v_i\right) = \sum_{i=1}^{k} \alpha_i \mathcal{L}(v_i).$$

Let $C \subseteq V$ be a convex set. Our goal is to show that $\mathcal{L}(C)$ is convex. Let $w_1, w_2 \in \mathcal{L}(C)$. By assumption, there exists $v_1, v_2 \in C$ so that $\mathcal{L}(v_i) = w_i$. As C is convex, for every $\lambda \in [0, 1]$,

$$\lambda v_1 + (1 - \lambda)v_2 \in C.$$

As \mathcal{L} is affine, we have that

$$\mathcal{L}(C) \ni \mathcal{L}(\lambda v_1 + (1 - \lambda)v_2)$$

= $\lambda \mathcal{L}(v_1) + (1 - \lambda)\mathcal{L}(v_2)$
= $\lambda w_1 + (1 - \lambda)w_2.$

Exercise 4

Proposition 4. Let $C \subseteq \mathbb{R}^n$ be a convex set. Let $x \in \operatorname{rint}(C)$ and $y \in \operatorname{cl}(C)$. Prove that for all $\theta \in [0, 1)$, that $(1 - \theta)x + \theta y \in \operatorname{rint}(C)$.

Proof. Let $\epsilon > 0$ so that

$$B(x,\epsilon) \cap \operatorname{aff}(C) \subseteq C.$$

This exists as $x \in \operatorname{rint}(C)$.

Let $\delta > 0$ and let $\bar{y} \in C$ so that $\|\bar{y} - y\| \leq \delta$. This exists as $y \in cl(C)$. Now, as C is convex, we have that for all $\theta \in [0, 1)$,

$$C \supseteq B\left((1-\theta)x + \theta \bar{y}, (1-\theta)\epsilon\right)$$

$$\supseteq B\left((1-\theta)x + \theta y, (1-\theta)\epsilon - \theta\delta\right).$$

The radius of this set is positive for all $\theta \in [0, \frac{\epsilon}{\epsilon+\delta})$. Thus, $(1-\theta)x + \theta y \in \operatorname{rint}(C)$ for all $\theta \in [0, \frac{\epsilon}{\epsilon+\delta})$. Letting $\delta \to 0$ completes the proof.

2 Problems

Problem 1 [25pts]

Given $A \in \mathbb{S}^n$ and $B \in \mathbb{S}^m$, the Kronecker product $A \otimes B$ is the \mathbb{S}^{mn} matrix given in block form as

$$A \otimes B = \begin{pmatrix} A_{1,1}B & \dots & A_{1,n}B \\ \vdots & \ddots & \vdots \\ A_{n,1}B & \dots & A_{n,n}B \end{pmatrix}$$

Proposition 5. Suppose $A \in \mathbb{S}^n_+$ and $B \in \mathbb{S}^m_+$. Then, $A \otimes B \succeq 0$.

Proof. Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}_+$ and $a_1, \ldots, a_n \in \mathbb{R}^n$ denote the eigenvalues and an eigenbasis of A. Similarly define β_1, \ldots, β_m and b_1, \ldots, b_m .

For $i \in [n]$ and $j \in [m]$, define

$$\gamma_{ij} = \alpha_i \beta_j \ge 0$$
 $c_{ij} = \begin{pmatrix} (a_i)_1 b_j \\ \vdots \\ (a_i)_n b_j \end{pmatrix} \in \mathbb{R}^{nm}.$

Our goal is to show that c_{ij} are an eigenbasis with associated eigenvalues $\gamma_{ij} \ge 0$.

First

$$(A \otimes B)c_{ij} = \begin{pmatrix} (A_{1,1}(a_i)_1 + \dots + A_{1,n}(a_i)_n)(Bb_j) \\ \vdots \\ (A_{n,1}(a_i)_1 + \dots + A_{n,n}(a_i)_n)(Bb_j) \end{pmatrix}$$
$$= \alpha_i \beta_j \begin{pmatrix} (a_i)_1 b_j \\ \vdots \\ (a_i)_n b_j \end{pmatrix} = \gamma_{ij} c_{ij}.$$

Next,

$$\langle c_{ij}, c_{i'j'} \rangle = \left\langle \begin{pmatrix} (a_i)_1 b_j \\ \vdots \\ (a_i)_n b_j \end{pmatrix}, \begin{pmatrix} (a_{i'})_1 b_{j'} \\ \vdots \\ (a_{i'})_n b_{j'} \end{pmatrix} \right\rangle$$
$$= \langle a_i, a_{i'} \rangle \langle b_j, b_{j'} \rangle.$$

We see that $\langle c_{ij}, c_{i'j'} \rangle$ is positive if (i, j) = (i', j') and zero otherwise.

Problem 2 [25pts]

Given a symmetric matrix $A \in \mathbb{S}^n$, let $\text{Inertia}(A) \coloneqq (n_-, n_0, n_+)$ denote the number of negative eigenvalues, number of zero eigenvalues, and number of positive eigenvalues of A.

Proposition 6. Let $A \in \mathbb{S}^n$ and let $P \in \mathbb{R}^{n \times n}$ be invertible. Then,

 $Inertia(A) = Inertia(P^{\intercal}AP).$

Proof. Let $(n_{-}(A), n_{0}(A), n_{+}(A))$ denote the inertia of A.

First, let $V \coloneqq \ker(A)$. This is a subspace of \mathbb{R}^n of dimension $n_0(A)$. Now, set $W \coloneqq P^{-1}V$. This again has dimension $n_0(A)$. Then, for any $w = P^{-1}v \in W$ we have

$$(P^{\mathsf{T}}AP)w = P^{\mathsf{T}}Av = 0.$$

Thus, $n_0(B) \ge n_0(A)$.

Next, let V denote the subspace spanned by the eigenvectors of A corresponding to positive eigenvalues. This is a subspace of \mathbb{R}^n of dimension $n_+(A)$. Now, set $W \coloneqq P^{-1}V$. This again has dimension $n_+(A)$. Then, for any $w = P^{-1}v \in W \setminus \{0\}$ we have

$$w(P^{\mathsf{T}}AP)w = v^{\mathsf{T}}Av > 0.$$

By Courant-Fischer Theorem, $n_+(B) \ge n_+(A)$.

An analogous proof shows that $n_{-}(B) \ge n_{-}(A)$.

Thus, we have shown that

$$n_{-}(A) \le n_{-}(B)$$
 $n_{0}(A) \le n_{0}(B)$ $n_{+}(A) \le n_{+}(B).$

Reversing the roles of A and B completes the proof.¹

¹Or, simply observing that $n_{-} + n_0 + n_{+} = n$.

Problem 3 [25pts]

Proposition 7. The nonnegative orthant is self-dual.

Proof. Let $\mathcal{K} := \mathbb{R}^n_+$ denote the nonnegative orthant.

We first show that $\mathcal{K}_* \subseteq \mathcal{K}$: Suppose $x \notin \mathcal{K}$. That is, there is some coordinate, say *i*, so that $x_i < 0$. Then, $e_i \in \mathcal{K}$ satisfies

 $\langle e_i, x \rangle < 0.$

We deduce that $x \notin \mathcal{K}_*$.

Next, we show that $\mathcal{K} \subseteq \mathcal{K}_*$. That is, given $x, y \in \mathcal{K}$, we need to show that

 $\langle x, y \rangle \ge 0.$

The left-hand side is just a sum of n nonnegative terms.

Proposition 8. The second-order cone is self-dual.

Proof. Let $\mathcal{K} \coloneqq \mathcal{L}^{1+n}$ denote the second-order cone.

We first show that $\mathcal{K}_* \subseteq \mathcal{K}$: Suppose $(t, x) \notin \mathcal{K}$. That is, $t < ||x||_2$. We will show that $(t, x) \notin \mathcal{K}_*$. If t < 0, then clearly $(t, x) \notin \mathcal{K}_*$ as $(1, 0) \in \mathcal{K}$ and $\langle (t, x), (1, 0) \rangle = t$. Now assume $t \ge 0$ and $t < ||x||_2$. Thus, $x \ne 0$. Define $(s, y) \in \mathcal{K}$ by setting $s = ||x||_2$ and y = -x. Then,

$$\left\langle \begin{pmatrix} s \\ y \end{pmatrix}, \begin{pmatrix} t \\ x \end{pmatrix} \right\rangle = st + \langle x, y \rangle < \|x\|_2^2 - \|x\|_2^2.$$

We deduce that $(t, x) \notin \mathcal{K}_*$.

Next, we show that $\mathcal{K} \subseteq \mathcal{K}_*$. That is, given $(t, x), (s, y) \in \mathcal{L}^{1+n}$, need to show that

$$\langle (t,x), (s,y) \rangle \ge 0$$

We compute

$$\langle (t, x), (s, y) \rangle = st + \langle x, y \rangle$$

$$\geq st - \|x\|_2 \|y\|_2$$

$$> st - st.$$

The first inequality follows from Cauchy-Schwarz and the second inequality follows from the definition of the second-order cone.

Proposition 9. The semidefinite cone is self-dual.

Proof. Let $\mathcal{K} := \mathbb{S}^n_+$ denote the positive semidefinite cone.

We first show that $\mathcal{K}_* \subseteq \mathcal{K}$: Suppose $X \notin \mathcal{K}$. That is, there is some $v \in \mathbb{R}^n$ so that $v^{\mathsf{T}} A v < 0$. We can rewrite this as

$$\langle A, vv^{\mathsf{T}} \rangle = v^{\mathsf{T}} A v < 0$$

Note that $vv^{\intercal} \in \mathcal{K}$. Thus, $A \notin \mathcal{K}_*$.

Next, we show that $\mathcal{K} \subseteq \mathcal{K}_*$. That is, given $X, Y \in \mathcal{K}$, we need to show that $\langle X, Y \rangle \geq 0$. By the spectral theorem, we may write $X = \sum_{i=1}^n \lambda_i v_i v_i^{\mathsf{T}}$, where $\lambda_i \geq 0$. Then,

$$\langle X, Y \rangle = \left\langle \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}, Y \right\rangle$$
$$= \sum_{i=1}^{n} \lambda_i (v_i^{\mathsf{T}} Y v_i).$$

As $Y \succeq 0$, the term in parentheses in the last line is nonnegative for all *i*. We conclude that $\mathcal{K} \subseteq \mathcal{K}_*$.

Problem 4 [25pts]

In sparse recovery, the goal is to recover a sparse vector $x^* \in \mathbb{R}^n$ given linear measurements $(A, b) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m$ where $b = Ax^*$. A convex-optimization approach to this problem is to output the optimizer of

$$\min_{x \in \mathbb{R}^n} \left\{ \|x\|_1 : Ax = b \right\}.$$

Given a subset $S \subseteq [n]$ and a vector $x \in \mathbb{R}^n$, let x_S denote the restriction of x onto the set S. Let S^c denote the complement of S.

Proposition 10. Let S^* denote the support of x^* . Then, the descent cone at x^* is

$$\left\{ \delta \in \mathbb{R}^n : \begin{array}{l} \delta \in \ker(A) \\ \langle \operatorname{sign}(x^\star), \delta_{S^\star} \rangle + \left\| \delta_{(S^\star)^C} \right\|_1 \leq 0 \end{array} \right\}$$

Proof. Let \mathcal{K} denote the descent cone at x^* . By definition,

$$\mathcal{K} := \left\{ \begin{aligned} &\forall \epsilon > 0 \text{ small enough :} \\ &\delta \in \mathbb{R}^n : \quad x^\star + \epsilon \delta \text{ is feasible} \\ &\text{obj. value at } x^\star + \epsilon \delta \leq \text{obj. value at } x^\star \end{aligned} \right\}.$$

We specialize this to the current problem:

$$\mathcal{K} = \left\{ \begin{aligned} &\forall \epsilon > 0 \text{ small enough :} \\ \delta \in \mathbb{R}^n : & Ax^* + \epsilon A \delta = b \\ & \|x^* + \epsilon \delta\|_1 \le \|x^*\|_1 \end{aligned} \right\}.$$

Recall that $Ax^* = b$. Let S^* denote the support of x^* . We can decompose

$$\left\|x^{\star} + \epsilon\delta\right\|_{1} = \left\|x^{\star} + \epsilon\delta_{S^{\star}}\right\|_{1} + \epsilon \left\|\delta_{(S^{\star})^{c}}\right\|_{1}.$$

When $\epsilon > 0$ is small enough, the sign of $(x^* + \epsilon \delta_{S^*})$ is the same as the sign of x^* , thus for all $\epsilon > 0$ small enough,

$$\|x^{\star} + \epsilon \delta\|_{1} = \|x^{\star}\|_{1} + \epsilon \langle \operatorname{sign}(x^{\star}), \delta_{S^{\star}} \rangle + \epsilon \|\delta_{(S^{\star})^{c}}\|_{1}.$$

This gives us the form of \mathcal{K} we set out to prove.

The matrix A is said to satisfy the *nullspace property at order* k if for all sets $S \subseteq [n]$ with $|S| \leq k$ and for all $\delta \in \ker(A) \setminus \{0\}$, we have

$$\|\delta_S\|_1 < \|\delta_{S^c}\|_1$$
.

Proposition 11. Suppose x^* is $\leq k$ -sparse and A satisfies the nullspace property at order k. Then, the descent cone at x^* is trivial.

Proof. By the previous result, we have that any δ in the descent cone at x^* satisfies

$$\delta \in \ker(A)$$
 and $\langle \operatorname{sign}(x^*), \delta_{S^*} \rangle + \|\delta_{(S^*)^c}\|_1 \le 0.$

We can apply the nullspace property at order k to the set S^{\star} to deduce that either $\delta=0$ or

$$|\langle \operatorname{sign}(x^{\star}), \delta_{S^{\star}} \rangle| \leq ||\delta_{S^{\star}}|| < ||\delta_{(S^{\star})^{c}}||,$$

a contradiction. We conclude that $\delta = 0$ and that the descent cone at x^* is trivial.

Proposition 12. If A does not satisfy the nullspace property at order k, then there exists a k-sparse x^* for which the convex-optimization approach may fail to recover x^* .

Proof. By definition, there exists a set of coordinates S of size at most k and a

$$\delta \in \ker(A) \setminus \{0\}: \qquad \|\delta_S\|_1 \ge \|\delta_{S^c}\|_1.$$

Set $x^* = -\operatorname{sign}(\delta_S)$. This is a $\leq k$ sparse vector. We verify that δ is in the descent cone at x^* :

$$\langle \operatorname{sign}(x^{\star}), \delta_{S} \rangle + \|\delta_{S^{c}}\|_{1} = -\|\delta_{S}\|_{1} + \|\delta_{S^{c}}\|_{1} \leq 0.$$

We conclude that x^* is not the unique optimal solution to this problem (or even necessarily *an* optimal solution).

Problem 5 [25pts]

Given a permutation σ of [n], we can associate σ with the $n\times n$ permutation matrix

$$(X^{\sigma})_{i,j} = \begin{cases} 1 & \text{if } \sigma(i) = j \\ 0 & \text{else} \end{cases}.$$

Let \mathcal{P}_n denote the set of all n! permutation matrices.

Define the set of doubly stochastic matrices:

$$DS_n \coloneqq \left\{ X \in \mathbb{R}^{n \times n} : \begin{array}{c} X \ge 0 \\ X^{\intercal} \mathbf{1}_n = \mathbf{1}_n \\ X \mathbf{1}_n = \mathbf{1}_n \end{array} \right\}.$$

Proposition 13. Let $n \ge 1$, then $\operatorname{conv}(\mathcal{P}_n) = \mathrm{DS}_n$.

Proof. First, we check that $\operatorname{conv}(\mathcal{P}_n) \subseteq \operatorname{DS}_n$: Let $X \in \mathcal{P}_n$. Then, X is a binary matrix where each row and column contains exactly one 1. We deduce that $X \in \operatorname{DS}_n$. As DS_n is convex and $\operatorname{conv}(\mathcal{P}_n)$ is the smallest convex set containing \mathcal{P}_n , we conclude that $\operatorname{conv}(\mathcal{P}_n) \subseteq \operatorname{DS}_n$.

Now, we check that $DS_n \subseteq conv(\mathcal{P}_n)$: Let $Y \in DS_n$. We will prove that $Y \in conv(\mathcal{P}_n)$ via induction on the number of nonzero entries in Y. Y must have some number of nonzero entries between n and n^2 (the lower bound comes from the fact that each row and column needs to have at least one nonzero entry).

If Y has exactly n nonzero entries, then we are done because Y will itself be a permutation matrix so $Y \in \mathcal{P}_n$.

Now, suppose Y has > n nonzero entries.

Our first step is to deduce that the support of Y contains a permutation matrix. We will do this by applying Hall's marriage theorem to the following bipartite graph: Let the left vertex set be indexed by $i \in [n]$ and right vertex set be indexed by $j \in [n]$ and connect (i, j) with an edge if $Y_{i,j} > 0$. In order to apply Hall's marriage theorem, we must check that for any subset \mathcal{L} of the left vertices that the number of neighbors of \mathcal{L} is at least $|\mathcal{L}|$. Let $\mathcal{N}(\mathcal{L})$ denote the neighbors of \mathcal{L} . To see that this is true, let \mathcal{L} be any subset of the left vertices. As $Y \in DS_n$, it holds that

$$\begin{aligned} |\mathcal{L}| &= \sum_{i \in \mathcal{L}} \sum_{j=1}^{n} Y_{i,j} \\ &= \sum_{i \in \mathcal{L}} \sum_{j \in \mathcal{N}(\mathcal{L})} Y_{i,j} \\ &= \sum_{j \in \mathcal{N}(\mathcal{L})} \sum_{i \in \mathcal{L}} Y_{i,j} \\ &\leq |\mathcal{N}(\mathcal{L})| \,. \end{aligned}$$

Thus, we may apply Hall's marriage theorem to conclude that the support of Y contains a permutation matrix X.

Now, set $\theta > 0$ so that $Y - \theta X \ge 0$ has support strictly less than the support of Y. By induction, we have that

$$\frac{1}{1-\theta}(Y-\theta X)\in \operatorname{conv}(\mathcal{P}_n).$$

Then, as $X \in \mathcal{P}_n$, we conclude that

$$Y = \theta X + (1 - \theta) \left(\frac{1}{1 - \theta} (Y - \theta X) \right) \in \operatorname{conv}(\mathcal{P}_n).$$