MGMT 690 - Pset 1

Spring 2024

Instructions:

- This pset is due on Sunday, March 24 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1-3 and one of either 4 or 5.

1 Exercises

Exercise 1

Proposition 1. Let V be a Euclidean space and let

$$
\|v\|:=\sqrt{\langle v, v\rangle} .
$$

Then, $\|v\|$ is a norm.
Proof. We need to prove positivity, homogeneity, and the triangle inequality.
Let $v \in V$. First, $\langle v, v\rangle \geq 0$ by definition of an inner product where $\langle v, v\rangle=0$ iff $v=0$. We deduce that $\|v\| \geq 0$ and $\|v\|=0$ if and only if $v=0$.

Next, let $v \in V$ and $\alpha \in \mathbb{R}$. Then,

$$
\|\alpha v\|=\sqrt{\langle\alpha v, \alpha v\rangle}=\sqrt{\alpha^{2}\langle v, v\rangle}=|\alpha| \sqrt{\langle v, v\rangle}=|\alpha|\|v\| .
$$

The second equality follows from bilinearity of the inner product.
Finally, let $u, v \in V$. Our goal is to prove that $\|u+v\| \leq\|u\|+\|v\|$. Consider $f(\alpha, \beta):=\|\alpha u+\beta v\|^{2}$. This is nonnegative for all $\alpha, \beta \in \mathbb{R}$. Additionally,

$$
f(\alpha, \beta)=\alpha^{2}\|u\|^{2}+2 \alpha \beta\langle u, v\rangle+\beta^{2}\|v\|^{2}=\binom{\alpha}{\beta}^{\top}\left(\begin{array}{ll}
\|u\|^{2} & \langle u, v\rangle \\
\langle u, v\rangle & \|v\|^{2}
\end{array}\right)\binom{\alpha}{\beta} .
$$

As $f(\alpha, \beta)$ is nonnegative for all α, β, we deduce that the 2×2 matrix on the right is positive semidefinite and that its determinant must be nonnegative. Thus,

$$
\|u\|^{2}\|v\|^{2}-\langle u, v\rangle^{2} \geq 0
$$

Rearranging, we get the Cauchy-Schwarz Inequality:

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

Now, we have that

$$
\begin{aligned}
(\|u\|+\|v\|)^{2} & =\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2} \\
& \geq\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2} \\
& =\|u+v\|^{2}
\end{aligned}
$$

Exercise 2

Proposition 2. Let $p>0$. For $x \in \mathbb{R}^{n}$, define

$$
\|x\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

If $p \in(0,1)$ and $n \geq 2$, then $\|x\|_{p}$ is not a norm.
Proof. It is not hard to see that homogeneity and nonnegativity hold for any $p>0$. We will prove that the triangle inequality does not hold for $p \in(0,1)$ and $n \geq 2$. Let $p \in(0,1)$. We compute:

$$
\left\|e_{1}+e_{2}\right\|_{p}=2^{1 / p}>2=\left\|e_{1}\right\|_{p}+\left\|e_{2}\right\|_{p}
$$

Exercise 3

Proposition 3. The affine image of a convex set is a convex set.
Proof. Let V, W be Euclidean spaces and let $\mathcal{L}: V \rightarrow W$ be an affine transformation. That is, if $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ satisfy $\sum_{i=1}^{k} \alpha_{i}=1$ and $v_{i} \in V$, then

$$
\mathcal{L}\left(\sum_{i=1}^{k} \alpha_{i} v_{i}\right)=\sum_{i=1}^{k} \alpha_{i} \mathcal{L}\left(v_{i}\right)
$$

Let $C \subseteq V$ be a convex set. Our goal is to show that $\mathcal{L}(C)$ is convex. Let $w_{1}, w_{2} \in \mathcal{L}(C)$. By assumption, there exists $v_{1}, v_{2} \in C$ so that $\mathcal{L}\left(v_{i}\right)=w_{i}$. As C is convex, for every $\lambda \in[0,1]$,

$$
\lambda v_{1}+(1-\lambda) v_{2} \in C
$$

As \mathcal{L} is affine, we have that

$$
\begin{aligned}
\mathcal{L}(C) & \ni \mathcal{L}\left(\lambda v_{1}+(1-\lambda) v_{2}\right) \\
& =\lambda \mathcal{L}\left(v_{1}\right)+(1-\lambda) \mathcal{L}\left(v_{2}\right) \\
& =\lambda w_{1}+(1-\lambda) w_{2}
\end{aligned}
$$

Exercise 4

Proposition 4. Let $C \subseteq \mathbb{R}^{n}$ be a convex set. Let $x \in \operatorname{rint}(C)$ and $y \in \operatorname{cl}(C)$. Prove that for all $\theta \in[0,1)$, that $(1-\theta) x+\theta y \in \operatorname{rint}(C)$.

Proof. Let $\epsilon>0$ so that

$$
B(x, \epsilon) \cap \operatorname{aff}(C) \subseteq C
$$

This exists as $x \in \operatorname{rint}(C)$.
Let $\delta>0$ and let $\bar{y} \in C$ so that $\|\bar{y}-y\| \leq \delta$. This exists as $y \in \operatorname{cl}(C)$.
Now, as C is convex, we have that for all $\theta \in[0,1)$,

$$
\begin{aligned}
C & \supseteq B((1-\theta) x+\theta \bar{y},(1-\theta) \epsilon) \\
& \supseteq B((1-\theta) x+\theta y,(1-\theta) \epsilon-\theta \delta)
\end{aligned}
$$

The radius of this set is positive for all $\theta \in\left[0, \frac{\epsilon}{\epsilon+\delta}\right)$. Thus, $(1-\theta) x+\theta y \in \operatorname{rint}(C)$ for all $\theta \in\left[0, \frac{\epsilon}{\epsilon+\delta}\right)$. Letting $\delta \rightarrow 0$ completes the proof.

2 Problems

Problem 1 [25pts]

Given $A \in \mathbb{S}^{n}$ and $B \in \mathbb{S}^{m}$, the Kronecker product $A \otimes B$ is the $\mathbb{S}^{m n}$ matrix given in block form as

$$
A \otimes B=\left(\begin{array}{ccc}
A_{1,1} B & \ldots & A_{1, n} B \\
\vdots & \ddots & \vdots \\
A_{n, 1} B & \ldots & A_{n, n} B
\end{array}\right)
$$

Proposition 5. Suppose $A \in \mathbb{S}_{+}^{n}$ and $B \in \mathbb{S}_{+}^{m}$. Then, $A \otimes B \succeq 0$.
Proof. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}_{+}$and $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ denote the eigenvalues and an eigenbasis of A. Similarly define $\beta_{1}, \ldots, \beta_{m}$ and b_{1}, \ldots, b_{m}.

For $i \in[n]$ and $j \in[m]$, define

$$
\gamma_{i j}=\alpha_{i} \beta_{j} \geq 0 \quad c_{i j}=\left(\begin{array}{c}
\left(a_{i}\right)_{1} b_{j} \\
\vdots \\
\left(a_{i}\right)_{n} b_{j}
\end{array}\right) \in \mathbb{R}^{n m}
$$

Our goal is to show that $c_{i j}$ are an eigenbasis with associated eigenvalues $\gamma_{i j} \geq 0$.

First

$$
\begin{aligned}
(A \otimes B) c_{i j} & =\left(\begin{array}{c}
\left(A_{1,1}\left(a_{i}\right)_{1}+\cdots+A_{1, n}\left(a_{i}\right)_{n}\right)\left(B b_{j}\right) \\
\vdots \\
\left(A_{n, 1}\left(a_{i}\right)_{1}+\cdots+A_{n, n}\left(a_{i}\right)_{n}\right)\left(B b_{j}\right)
\end{array}\right) \\
& =\alpha_{i} \beta_{j}\left(\begin{array}{c}
\left(a_{i}\right)_{1} b_{j} \\
\vdots \\
\left(a_{i}\right)_{n} b_{j}
\end{array}\right)=\gamma_{i j} c_{i j} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\left\langle c_{i j}, c_{i^{\prime} j^{\prime}}\right\rangle & =\left\langle\left(\begin{array}{c}
\left(a_{i}\right)_{1} b_{j} \\
\vdots \\
\left(a_{i}\right)_{n} b_{j}
\end{array}\right),\left(\begin{array}{c}
\left(a_{i^{\prime}}\right)_{1} b_{j^{\prime}} \\
\vdots \\
\left(a_{i^{\prime}}\right)_{n} b_{j^{\prime}}
\end{array}\right)\right\rangle \\
& =\left\langle a_{i}, a_{i^{\prime}}\right\rangle\left\langle b_{j}, b_{j^{\prime}}\right\rangle
\end{aligned}
$$

We see that $\left\langle c_{i j}, c_{i^{\prime} j^{\prime}}\right\rangle$ is positive if $(i, j)=\left(i^{\prime}, j^{\prime}\right)$ and zero otherwise.

Problem 2 [25pts]

Given a symmetric matrix $A \in \mathbb{S}^{n}$, let $\operatorname{Inertia}(A):=\left(n_{-}, n_{0}, n_{+}\right)$denote the number of negative eigenvalues, number of zero eigenvalues, and number of positive eigenvalues of A.
Proposition 6. Let $A \in \mathbb{S}^{n}$ and let $P \in \mathbb{R}^{n \times n}$ be invertible. Then,

$$
\operatorname{Inertia}(A)=\operatorname{Inertia}\left(P^{\top} A P\right)
$$

Proof. Let $\left(n_{-}(A), n_{0}(A), n_{+}(A)\right)$ denote the inertia of A.
First, let $V:=\operatorname{ker}(A)$. This is a subspace of \mathbb{R}^{n} of dimension $n_{0}(A)$. Now, set $W:=P^{-1} V$. This again has dimension $n_{0}(A)$. Then, for any $w=P^{-1} v \in W$ we have

$$
\left(P^{\top} A P\right) w=P^{\top} A v=0
$$

Thus, $n_{0}(B) \geq n_{0}(A)$.
Next, let V denote the subspace spanned by the eigenvectors of A corresponding to positive eigenvalues. This is a subspace of \mathbb{R}^{n} of dimension $n_{+}(A)$. Now, set $W:=P^{-1} V$. This again has dimension $n_{+}(A)$. Then, for any $w=P^{-1} v \in W \backslash\{0\}$ we have

$$
w\left(P^{\top} A P\right) w=v^{\top} A v>0
$$

By Courant-Fischer Theorem, $n_{+}(B) \geq n_{+}(A)$.
An analogous proof shows that $n_{-}(B) \geq n_{-}(A)$.
Thus, we have shown that

$$
n_{-}(A) \leq n_{-}(B) \quad n_{0}(A) \leq n_{0}(B) \quad n_{+}(A) \leq n_{+}(B)
$$

Reversing the roles of A and B completes the proof. ${ }^{1}$

[^0]
Problem 3 [25pts]

Proposition 7. The nonnegative orthant is self-dual.
Proof. Let $\mathcal{K}:=\mathbb{R}_{+}^{n}$ denote the nonnegative orthant.
We first show that $\mathcal{K}_{*} \subseteq \mathcal{K}$: Suppose $x \notin \mathcal{K}$. That is, there is some coordinate, say i, so that $x_{i}<0$. Then, $e_{i} \in \mathcal{K}$ satisfies

$$
\left\langle e_{i}, x\right\rangle<0 .
$$

We deduce that $x \notin \mathcal{K}_{*}$.
Next, we show that $\mathcal{K} \subseteq \mathcal{K}_{*}$. That is, given $x, y \in \mathcal{K}$, we need to show that

$$
\langle x, y\rangle \geq 0 .
$$

The left-hand side is just a sum of n nonnegative terms.

Proposition 8. The second-order cone is self-dual.
Proof. Let $\mathcal{K}:=\mathcal{L}^{1+n}$ denote the second-order cone.
We first show that $\mathcal{K}_{*} \subseteq \mathcal{K}$: Suppose $(t, x) \notin \mathcal{K}$. That is, $t<\|x\|_{2}$. We will show that $(t, x) \notin \mathcal{K}_{*}$. If $t<0$, then clearly $(t, x) \notin \mathcal{K}_{*}$ as $(1,0) \in \mathcal{K}$ and $\langle(t, x),(1,0)\rangle=t$. Now assume $t \geq 0$ and $t<\|x\|_{2}$. Thus, $x \neq 0$. Define $(s, y) \in \mathcal{K}$ by setting $s=\|x\|_{2}$ and $y=-x$. Then,

$$
\left\langle\binom{ s}{y},\binom{t}{x}\right\rangle=s t+\langle x, y\rangle<\|x\|_{2}^{2}-\|x\|_{2}^{2} .
$$

We deduce that $(t, x) \notin \mathcal{K}_{*}$.
Next, we show that $\mathcal{K} \subseteq \mathcal{K}_{*}$. That is, given $(t, x),(s, y) \in \mathcal{L}^{1+n}$, need to show that

$$
\langle(t, x),(s, y)\rangle \geq 0
$$

We compute

$$
\begin{aligned}
\langle(t, x),(s, y)\rangle & =s t+\langle x, y\rangle \\
& \geq s t-\|x\|_{2}\|y\|_{2} \\
& \geq s t-s t .
\end{aligned}
$$

The first inequality follows from Cauchy-Schwarz and the second inequality follows from the definition of the second-order cone.

Proposition 9. The semidefinite cone is self-dual.
Proof. Let $\mathcal{K}:=\mathbb{S}_{+}^{n}$ denote the positive semidefinite cone.
We first show that $\mathcal{K}_{*} \subseteq \mathcal{K}$: Suppose $X \notin \mathcal{K}$. That is, there is some $v \in \mathbb{R}^{n}$ so that $v^{\boldsymbol{\top}} A v<0$. We can rewrite this as

$$
\left\langle A, v v^{\top}\right\rangle=v^{\top} A v<0
$$

Note that $v v^{\top} \in \mathcal{K}$. Thus, $A \notin \mathcal{K}_{*}$.
Next, we show that $\mathcal{K} \subseteq \mathcal{K}_{*}$. That is, given $X, Y \in \mathcal{K}$, we need to show that $\langle X, Y\rangle \geq 0$. By the spectral theorem, we may write $X=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}$, where $\lambda_{i} \geq 0$. Then,

$$
\begin{aligned}
\langle X, Y\rangle & =\left\langle\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}, Y\right\rangle \\
& =\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} Y v_{i}\right)
\end{aligned}
$$

As $Y \succeq 0$, the term in parentheses in the last line is nonnegative for all i. We conclude that $\mathcal{K} \subseteq \mathcal{K}_{*}$.

Problem 4 [25pts]

In sparse recovery, the goal is to recover a sparse vector $x^{\star} \in \mathbb{R}^{n}$ given linear measurements $(A, b) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{m}$ where $b=A x^{\star}$. A convex-optimization approach to this problem is to output the optimizer of

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|x\|_{1}: A x=b\right\}
$$

Given a subset $S \subseteq[n]$ and a vector $x \in \mathbb{R}^{n}$, let x_{S} denote the restriction of x onto the set S. Let S^{c} denote the complement of S.

Proposition 10. Let S^{\star} denote the support of x^{\star}. Then, the descent cone at x^{\star} is

$$
\left\{\delta \in \mathbb{R}^{n}: \begin{array}{l}
\delta \in \operatorname{ker}(A) \\
\left\langle\operatorname{sign}\left(x^{\star}\right), \delta_{S^{\star}}\right\rangle+\left\|\delta_{\left(S^{\star}\right)^{C}}\right\|_{1} \leq 0
\end{array}\right\}
$$

Proof. Let \mathcal{K} denote the descent cone at x^{\star}. By definition,

$$
\mathcal{K}:=\left\{\delta \in \mathbb{R}^{n}: \begin{array}{ll}
\forall \epsilon>0 \text { small enough : } \\
x^{\star}+\epsilon \delta \text { is feasible } \\
\text { obj. value at } x^{\star}+\epsilon \delta \leq \mathrm{obj} . \text { value at } x^{\star}
\end{array}\right\} .
$$

We specialize this to the current problem:

$$
\mathcal{K}=\left\{\begin{array}{ll}
& \forall \epsilon>0 \text { small enough : } \\
& A x^{\star}+\epsilon A \delta=b \\
& \left\|x^{\star}+\epsilon \delta\right\|_{1} \leq\left\|x^{\star}\right\|_{1}
\end{array}\right\}
$$

Recall that $A x^{\star}=b$. Let S^{\star} denote the support of x^{\star}. We can decompose

$$
\left\|x^{\star}+\epsilon \delta\right\|_{1}=\left\|x^{\star}+\epsilon \delta_{S^{\star}}\right\|_{1}+\epsilon\left\|\delta_{\left(S^{\star}\right)^{c}}\right\|_{1}
$$

When $\epsilon>0$ is small enough, the sign of $\left(x^{\star}+\epsilon \delta_{S^{*}}\right)$ is the same as the sign of x^{\star}, thus for all $\epsilon>0$ small enough,

$$
\left\|x^{\star}+\epsilon \delta\right\|_{1}=\left\|x^{\star}\right\|_{1}+\epsilon\left\langle\operatorname{sign}\left(x^{\star}\right), \delta_{S^{\star}}\right\rangle+\epsilon\left\|\delta_{\left(S^{\star}\right)^{c}}\right\|_{1} .
$$

This gives us the form of \mathcal{K} we set out to prove.

The matrix A is said to satisfy the nullspace property at order k if for all sets $S \subseteq[n]$ with $|S| \leq k$ and for all $\delta \in \operatorname{ker}(A) \backslash\{0\}$, we have

$$
\left\|\delta_{S}\right\|_{1}<\left\|\delta_{S^{c}}\right\|_{1}
$$

Proposition 11. Suppose x^{\star} is $\leq k$-sparse and A satisfies the nullspace property at order k. Then, the descent cone at x^{\star} is trivial.

Proof. By the previous result, we have that any δ in the descent cone at x^{\star} satisfies

$$
\delta \in \operatorname{ker}(A) \quad \text { and } \quad\left\langle\operatorname{sign}\left(x^{\star}\right), \delta_{S^{\star}}\right\rangle+\left\|\delta_{\left(S^{\star}\right)^{c}}\right\|_{1} \leq 0 .
$$

We can apply the nullspace property at order k to the set S^{\star} to deduce that either $\delta=0$ or

$$
\left|\left\langle\operatorname{sign}\left(x^{\star}\right), \delta_{S^{\star}}\right\rangle\right| \leq\left\|\delta_{S^{*}}\right\|<\left\|\delta_{\left(S^{*}\right)^{c}}\right\|
$$

a contradiction. We conclude that $\delta=0$ and that the descent cone at x^{\star} is trivial.

Proposition 12. If A does not satisfy the nullspace property at order k, then there exists a k-sparse x^{\star} for which the convex-optimization approach may fail to recover x^{\star}.

Proof. By definition, there exists a set of coordinates S of size at most k and a

$$
\delta \in \operatorname{ker}(A) \backslash\{0\}: \quad\left\|\delta_{S}\right\|_{1} \geq\left\|\delta_{S^{c}}\right\|_{1}
$$

Set $x^{\star}=-\operatorname{sign}\left(\delta_{S}\right)$. This is a $\leq k$ sparse vector. We verify that δ is in the descent cone at x^{\star} :

$$
\left\langle\operatorname{sign}\left(x^{\star}\right), \delta_{S}\right\rangle+\left\|\delta_{S^{c}}\right\|_{1}=-\left\|\delta_{S}\right\|_{1}+\left\|\delta_{S^{c}}\right\|_{1} \leq 0
$$

We conclude that x^{\star} is not the unique optimal solution to this problem (or even necessarily an optimal solution).

Problem 5 [25pts]

Given a permutation σ of $[n]$, we can associate σ with the $n \times n$ permutation matrix

$$
\left(X^{\sigma}\right)_{i, j}= \begin{cases}1 & \text { if } \sigma(i)=j \\ 0 & \text { else }\end{cases}
$$

Let \mathcal{P}_{n} denote the set of all n ! permutation matrices.
Define the set of doubly stochastic matrices:

$$
\mathrm{DS}_{n}:=\left\{\begin{array}{ll}
& X \geq 0 \\
X \in \mathbb{R}^{n \times n}: & X^{\top} 1_{n}=1_{n} \\
& X 1_{n}=1_{n}
\end{array}\right\}
$$

Proposition 13. Let $n \geq 1$, then $\operatorname{conv}\left(\mathcal{P}_{n}\right)=\mathrm{DS}_{n}$.
Proof. First, we check that $\operatorname{conv}\left(\mathcal{P}_{n}\right) \subseteq \mathrm{DS}_{n}$: Let $X \in \mathcal{P}_{n}$. Then, X is a binary matrix where each row and column contains exactly one 1 . We deduce that $X \in \mathrm{DS}_{n}$. As DS_{n} is convex and $\operatorname{conv}\left(\mathcal{P}_{n}\right)$ is the smallest convex set containing \mathcal{P}_{n}, we conclude that $\operatorname{conv}\left(\mathcal{P}_{n}\right) \subseteq \mathrm{DS}_{n}$.

Now, we check that $\mathrm{DS}_{n} \subseteq \operatorname{conv}\left(\mathcal{P}_{n}\right)$: Let $Y \in \mathrm{DS}_{n}$. We will prove that $Y \in \operatorname{conv}\left(\mathcal{P}_{n}\right)$ via induction on the number of nonzero entries in Y. Y must have some number of nonzero entries between n and n^{2} (the lower bound comes from the fact that each row and column needs to have at least one nonzero entry).

If Y has exactly n nonzero entries, then we are done because Y will itself be a permutation matrix so $Y \in \mathcal{P}_{n}$.

Now, suppose Y has $>n$ nonzero entries.
Our first step is to deduce that the support of Y contains a permutation matrix. We will do this by applying Hall's marriage theorem to the following bipartite graph: Let the left vertex set be indexed by $i \in[n]$ and right vertex set be indexed by $j \in[n]$ and connect (i, j) with an edge if $Y_{i, j}>0$. In order to apply Hall's marriage theorem, we must check that for any subset \mathcal{L} of the left vertices that the number of neighbors of \mathcal{L} is at least $|\mathcal{L}|$. Let $\mathcal{N}(\mathcal{L})$ denote the neighbors of \mathcal{L}. To see that this is true, let \mathcal{L} be any subset of the left vertices. As $Y \in \mathrm{DS}_{n}$, it holds that

$$
\begin{aligned}
|\mathcal{L}| & =\sum_{i \in \mathcal{L}} \sum_{j=1}^{n} Y_{i, j} \\
& =\sum_{i \in \mathcal{L}} \sum_{j \in \mathcal{N}(\mathcal{L})} Y_{i, j} \\
& =\sum_{j \in \mathcal{N}(\mathcal{L})} \sum_{i \in \mathcal{L}} Y_{i, j} \\
& \leq|\mathcal{N}(\mathcal{L})| .
\end{aligned}
$$

Thus, we may apply Hall's marriage theorem to conclude that the support of Y contains a permutation matrix X.

Now, set $\theta>0$ so that $Y-\theta X \geq 0$ has support strictly less than the support of Y. By induction, we have that

$$
\frac{1}{1-\theta}(Y-\theta X) \in \operatorname{conv}\left(\mathcal{P}_{n}\right)
$$

Then, as $X \in \mathcal{P}_{n}$, we conclude that

$$
Y=\theta X+(1-\theta)\left(\frac{1}{1-\theta}(Y-\theta X)\right) \in \operatorname{conv}\left(\mathcal{P}_{n}\right)
$$

[^0]: ${ }^{1}$ Or, simply observing that $n_{-}+n_{0}+n_{+}=n$.

