MGMT 690 - Pset 2

Spring 2024

Instructions:

- This pset is due on Sunday, April 7 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.

- Complete all problems 1-5.

1 Exercises

Excercise 1

Proposition 1. Suppose $f_{0}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $S O C R$ functions and $\mathcal{X}_{1}, \ldots, \mathcal{X}_{m} \subseteq$ \mathbb{R}^{n} are SOCR set. Then the following problem

$$
\inf _{x \in \mathbb{R}^{n}} \begin{cases}\left.f_{0}(x): \begin{array}{l}
f_{i}(x) \leq 0, \forall i \in[k] \\
x \in \mathcal{X}_{i}, \forall i \in[m]
\end{array}\right\}\end{cases}
$$

has an SOC representation.
Proof. By assumption

$$
\operatorname{epi}\left(f_{i}\right)=\Pi_{(x, t)}\left\{\left(x, t, u^{(i)}\right): A^{(i)}\left(x, t, u^{(i)}\right)-a^{(i)} \in K^{(i)}\right\}
$$

where $K^{(i)}$ is a product of second order cones. Similarly,

$$
\mathcal{X}_{j}=\Pi_{x}\left\{\left(x, v^{(j)}\right): B^{(j)}\left(x, v^{(j)}\right)-b^{(j)} \in W^{(j)}\right\}
$$

where $W^{(j)}$ is a product of second order cones.
Then,

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}}\left\{f_{0}(x): \begin{array}{l}
f_{i}(x) \leq 0, \forall i \in[k] \\
x \in \mathcal{X}_{i}, \forall i \in[m]
\end{array}\right\}
\end{aligned}
$$

Exercise 2

Recall that $S_{k}: \mathbb{S}^{n} \rightarrow \mathbb{R}$ is the function where $S_{k}(X)$ is the sum of the k largest eigenvalues of X.

Proposition 2. It holds that

$$
S_{k}(X)=\max _{Y \in \mathbb{S}^{n}}\left\{\langle X, Y\rangle: \begin{array}{l}
0 \preceq Y \preceq I \\
\operatorname{tr}(Y)=k
\end{array}\right\} .
$$

In particular, $S_{k}(X)$ is convex.
Proof. Without loss of generality, X is diagonal (apply the spectral theorem). Without loss of generality, Y is diagonal: given any $Y \in \mathbb{S}^{n}$ that is feasible, the diagonal matrix $\operatorname{Diag}(\operatorname{diag}(Y))$ is also feasible with the same objective function.

We will thus consider the restricted maximization problem where $X=$ $\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $Y=\operatorname{Diag}\left(y_{1}, \ldots, y_{n}\right)$:

$$
\max _{y \in \mathbb{R}^{n}}\left\{\sum_{i} x_{i} y_{i}: \begin{array}{l}
y_{i} \in[0,1], \forall i \in[n] \\
\sum_{i} y_{i}=k
\end{array}\right\}
$$

The optimal solution to this maximization problem places one unit of weight on each i corresponding to the k largest entries of x_{i}. Thus, the optimum value of this problem is $S_{k}(X)$.

Note that for every fixed $Y,\langle X, Y\rangle$ is a convex (in fact linear) function of X. Thus, $S_{k}(X)$ is the maximum of a family of convex functions (parameterized by $Y)$. We deduce that S_{k} is convex.

We derive the dual to this problem as follows. Let $Z, W \succeq 0$ and let $s \in \mathbb{R}$. Then,

$$
\langle I-Y, Z\rangle+\langle Y, W\rangle-s\langle I, Y\rangle+s k \geq 0
$$

Rearranging, we have that

$$
s k+\operatorname{tr}(Z) \geq\langle Z, Y\rangle-\langle Y, W\rangle+\langle s I, Y\rangle
$$

Thus, the dual to the above problem is

$$
\begin{array}{r}
\inf _{Z, W, s}\left\{s k+\operatorname{tr}(Z): \begin{array}{l}
Z-W+s I=X \\
W, Z \succeq 0
\end{array}\right\} \\
=\inf _{Z, s}\left\{s k+\operatorname{tr}(Z): \begin{array}{l}
Z+s I \succeq X \\
Z \succeq 0
\end{array}\right\}
\end{array}
$$

Problems

Problem 1

Proposition 3. Strong duality fails for the following SDP:

$$
\inf _{X \in \mathbb{S}^{2}}\left\{2 X_{1,2}: \begin{array}{l}
X_{1,1}=0 \\
X \succeq 0
\end{array}\right\}
$$

Proof. Note that for a 2×2 matrix X, we have that $X \succeq 0$ if and only if both diagonal elements are nonnegative and the determinant is nonnegative. Thus,

$$
\begin{aligned}
& \inf _{X \in \mathbb{S}^{2}}\left\{2 X_{1,2}: \begin{array}{l}
X_{1,1}=0 \\
X \succeq 0
\end{array}\right\} \\
& \quad=\inf _{X \in \mathbb{S}^{2}}\left\{\begin{array}{ll}
X_{1,1}=0 \\
2 X_{1,2}: & X_{2,2} \geq 0 \\
-X_{1,2}^{2} \geq 0
\end{array}\right\} \\
& \\
& =0
\end{aligned}
$$

We construct the dual. Let $Y \in \mathbb{S}_{+}^{2}$ and let $t \in \mathbb{R}$. Then,

$$
t X_{1,1}+\langle X, Y\rangle \geq 0
$$

Thus, the dual is

$$
\begin{aligned}
& \sup _{Y \in \mathbb{S}^{2}, t \in \mathbb{R}}\left\{\begin{array}{ll}
0: & \left(\begin{array}{ll}
t & \\
& 0
\end{array}\right)+Y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& Y \succeq 0
\end{array}\right\} \\
& =-\infty
\end{aligned}
$$

Problem 2

Fix a discrete metric space $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $D \in \mathbb{R}^{n \times n}$ denote the matrix where $D_{i, j}$ is the distance between x_{i} and x_{j}.

Let P be a probability distribution on \mathcal{X} defined by $P=\left(p_{1}, \ldots, p_{n}\right)$. Similarly, let $Q=\left(q_{1}, \ldots, q_{n}\right)$ be a probability distribution on \mathcal{X}.

The Wasserstein distance between P and Q can be written as the optimal value of the following LP:

$$
\inf _{\Gamma \in \mathbb{R}^{n \times n}}\left\{\begin{array}{ll}
& \Gamma 1_{n}=p \\
\langle D, \Gamma\rangle: & \Gamma^{\top} 1_{n}=q \\
& \Gamma \geq 0
\end{array}\right\}
$$

We construct the dual to this LP. Let $y \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}$ and $\Xi \in \mathbb{R}_{+}^{n \times n}$. Then,

$$
\left\langle\Gamma, y 1_{n}^{\top}+1_{n} z^{\top}+\Xi\right\rangle \geq\langle p, y\rangle+\langle q, z\rangle .
$$

The dual of this LP is thus given by

$$
\begin{aligned}
& \sup _{y \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}, \Xi \in \mathbb{R}^{n \times n}}\left\{\langle p, y\rangle+\langle q, z\rangle: \begin{array}{l}
y 1_{n}^{\top}+1_{n} z^{\top}+\Xi=D \\
=\sup _{y \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}}\{\langle p, y\rangle+\langle q, z\rangle:
\end{array}\right\} \\
& \left.y_{i}+z_{j} \leq D_{i, j}, \forall i, j\right\}
\end{aligned}
$$

Both primal and dual problems are solvable because they are both feasible: Take $\Gamma=p q^{\top}$ in the primal, and take $y=z=0$ in the dual. Complementary slackness means that for all i, j, either $\Gamma_{i, j}=0$ or $y_{i}+z_{j}=D_{i, j}$.

One way to think of the dual is: it is a profit maximization problem for a third party. This third party buys dirt at price-per-unit y_{i} at location x_{i} and sells it at price-per-unit z_{j} at location x_{j}.

Problem 3

Proposition 4. The set

$$
\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{l}
x y \geq 1 \\
x, y \geq 0
\end{array}\right\}
$$

is an $S O C R$ set.
Proof. Suppose $x, y \geq 0$. Then

$$
\begin{aligned}
& x y \geq 1 \\
& \Longleftrightarrow \quad(x+y)^{2}-(x-y)^{2} \geq 4 \\
& \Longleftrightarrow \quad(x+y)^{2} \geq 4+(x-y)^{2} \\
& \Longleftrightarrow \quad x+y \geq \sqrt{2^{2}+(x-y)^{2}} \\
& \Longleftrightarrow\left(\begin{array}{c}
x+y \\
x-y \\
2
\end{array}\right) \in \mathcal{L}^{1+2} \text {. }
\end{aligned}
$$

Thus, the set in question is equal to

$$
\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{c}
x, y \geq 0 \\
\left(\begin{array}{c}
x+y \\
x-y \\
2
\end{array}\right) \in \mathcal{L}^{1+2}
\end{array}\right\}
$$

Problem 4

Consider an optimization problem of the form

$$
\inf _{x \in \mathbb{R}^{n}}\left\{f(x): g_{i}(x) \leq 0, \forall i \in[m]\right\}
$$

We make no assumptions on whether f or g_{1}, \ldots, g_{m} is convex. Define

$$
\mathcal{I}:=\left\{\left(\begin{array}{c}
f(x) \\
g_{1}(x) \\
\vdots \\
g_{m}(x)
\end{array}\right): x \in \mathbb{R}^{n}\right\}+\mathbb{R}_{+}^{1+m}
$$

Proposition 5. If f and g_{1}, \ldots, g_{m} are convex functions, then \mathcal{I} is a convex set.

Proof. Suppose $\left(\phi, \gamma_{1}, \ldots, \gamma_{m}\right) \in \mathcal{I}$ and $\left(\hat{\phi}, \hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right) \in \mathcal{I}$. That is, there exists x and \hat{x} for which

$$
\left(\begin{array}{c}
f(x) \\
g_{1}(x) \\
\vdots \\
g_{m}(x)
\end{array}\right) \leq\left(\begin{array}{c}
\phi \\
\gamma_{1} \\
\vdots \\
\gamma_{m}
\end{array}\right)
$$

and similarly for the "hat" versions.
Now, suppose $\mu \in[0,1]$ and define $x_{\mu}=(1-\mu) x+\mu \hat{x}$. As f and each of the $g_{i} \mathrm{~s}$ are convex, we have that

$$
\left(\begin{array}{c}
f\left(x_{\mu}\right) \\
g_{1}\left(x_{\mu}\right) \\
\vdots \\
g_{m}\left(x_{\mu}\right)
\end{array}\right) \leq(1-\mu)\left(\begin{array}{c}
f(x) \\
g_{1}(x) \\
\vdots \\
g_{m}(x)
\end{array}\right)+\mu\left(\begin{array}{c}
f(\hat{x}) \\
g_{1}(\hat{x}) \\
\vdots \\
g_{m}(\hat{x})
\end{array}\right) \leq\left(\begin{array}{c}
(1-\mu) \phi+\mu \hat{\phi} \\
(1-\mu) \gamma_{1}+\mu \hat{\gamma}_{1} \\
\vdots \\
(1-\mu) \gamma_{m}+\mu \hat{\gamma}_{m}
\end{array}\right)
$$

Proposition 6. Suppose \mathcal{I} is convex and there exists \bar{x} so that $g_{i}(\bar{x})<0$ for all $i \in[m]$, then

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}}\left\{f(x): g_{i}(x) \leq 0, \forall i \in[m]\right\} \\
& =\sup _{u \in \mathbb{R}, \lambda \in \mathbb{R}^{m}}\left\{u: \begin{array}{l}
\lambda \geq 0 \\
f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x) \geq u, \forall x \in \mathbb{R}^{n}
\end{array}\right\}
\end{aligned}
$$

and the dual problem is solvable.
Proof. The statement is vacuously true if Opt(Primal) $=-\infty$. Thus, assume that Opt(Primal) is finite.

Define the set

$$
\left.\mathcal{S}:=\left\{\begin{array}{c}
\phi \\
\gamma_{1} \\
\vdots \\
\gamma_{m}
\end{array}\right): \begin{array}{l}
\phi<\operatorname{Opt}(\text { Primal }) \\
\gamma_{i} \leq 0, \forall i \in[m]
\end{array}\right\} .
$$

By assumption, \mathcal{I} and \mathcal{S} are disjoint nonempty convex sets. Thus, by the hyperplane separation theorem, there exists $(u, \lambda) \in \mathbb{R}^{1+m}$ not all zero so that

$$
\sup _{(\phi, \gamma) \in \mathcal{S}} u \phi+\langle\lambda, \gamma\rangle \leq \inf _{(\phi, \gamma) \in \mathcal{I}} u \phi+\langle\lambda, \gamma\rangle
$$

We claim that $u, \lambda \geq 0$: Otherwise, take the relevant entry in \mathcal{S} increasingly negative to contradict the separation statement.

We claim that $u \neq 0$: Otherwise, the LHS evaluates to zero, whereas our strictly feasible \bar{x} shows that the RHS is negative (recall λ cannot also be identically zero).

Thus, we may assume WLOG that $u=1$. That is to say,

$$
\text { Opt }(\text { Primal }) \leq f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x), \forall x
$$

Problem 5

Proposition 7. Suppose K is a proper cone and consider the primal and dual conic problems:

$$
\inf _{x \in \mathbb{R}^{n}}\left\{\begin{array}{ll}
c^{\top} x: & \left.\begin{array}{l}
A x-a \in K \\
B x-b=0
\end{array}\right\} \geq \sup _{y \in \mathbb{R}^{m}, z \in \mathbb{R}^{k}}\{\langle a, y\rangle+\langle b, z\rangle:
\end{array}\left\{\begin{array}{l}
A^{\top} y+B^{\top} z=c \\
y \in K_{*}
\end{array}\right\}\right.
$$

Furthermore, assume that the primal problem is feasible and that:

$$
\operatorname{ker}\left(\left(\begin{array}{c}
c^{\top} \\
A \\
B
\end{array}\right)\right)=\{0\}
$$

Then, the primal problem has bounded sublevel sets, i.e.,

$$
\forall t \in \mathbb{R}, \text { the set } \mathcal{S}_{t}:=\left\{\begin{array}{ll}
c^{\boldsymbol{\top}} x \leq t \\
x \in \mathbb{R}^{n}: & A x-a \in K \\
B x-b=0
\end{array}\right\} \text { is bounded }
$$

if and only if the dual problem is strictly feasible.
Proof. First, suppose the dual is strictly feasible. That is, there exists $\bar{y} \in \mathbb{R}^{m}$ and $\bar{z} \in \mathbb{R}^{k}$ so that

$$
A^{\top} \bar{y}+B^{\boldsymbol{\top}} \bar{z}=c \quad \text { and } \quad \bar{y} \in \operatorname{int}\left(K_{*}\right)
$$

For the sake of contradiction, suppose \mathcal{S}_{t} is unbounded so that $x_{0}+\mathbb{R}_{+} \hat{x} \subseteq \mathcal{S}_{t}$ for some \hat{x} nonzero. Thus, it must hold that

$$
c^{\top} \hat{x} \leq 0, \quad A \hat{x} \in K, \quad \text { and } \quad B \hat{x}=0
$$

The second deduction here requires that K is closed, which holds by assumption. Thus, $-c^{\top} \hat{x},\langle\bar{y}, A \hat{x}\rangle$, and $\langle B \hat{x}, \bar{z}\rangle$ are nonnegative quantities summing to

$$
\langle A \hat{x}, \bar{y}\rangle+\langle B \hat{x}, \bar{z}\rangle-c^{\top} \hat{x}=\left\langle A^{\top} \bar{y}+B^{\top} \bar{z}-c, \hat{x}\right\rangle=0
$$

We deduce that $\langle A \hat{x}, \bar{y}\rangle=0$. As $\bar{y} \in \operatorname{int}\left(K_{*}\right)$, we deduce that $A \hat{x}=0$. This contradicts the nondegeneracy assumption.

Now, suppose that the primal problem has bounded sublevel sets. Let t be such that \mathcal{S}_{t} is nonempty. Thus,

$$
\left\{\begin{array}{ll}
& A x \in K \\
x \in \mathbb{R}^{n}: & B x=0 \\
& \langle c, x\rangle \leq 0
\end{array}\right\}=\{0\}
$$

We write this set in terms of duals:

Here, we have used that $\left(K_{*}\right)_{*}=K$. Now, taking the dual of either side, we get

$$
\mathbb{R}^{n}=\left\{\begin{array}{ll}
& y \in K_{*} \\
A^{\top} y+B^{\top} z-\lambda c: & z \in \mathbb{R}^{n} \\
& \lambda \geq 0
\end{array}\right\}=\left(\begin{array}{lll}
A^{\top} & B^{\top} & -c
\end{array}\right)\left(K_{*} \times \mathbb{R}^{n} \times \mathbb{R}_{+}\right)
$$

We may now take the relative interior of either side:

$$
\mathbb{R}^{n}=\operatorname{int}\left(\mathbb{R}^{n}\right)=\left(\begin{array}{lll}
A^{\top} & B^{\top} & -c
\end{array}\right)\left(\operatorname{int}\left(K_{*}\right) \times \mathbb{R}^{n} \times \mathbb{R}_{++}\right)
$$

We deduce that there exists $\bar{y} \in \operatorname{int}\left(K_{*}\right), \bar{z} \in \mathbb{R}^{n}$, and $\lambda>0$ such that

$$
0=A^{\top} \bar{y}+B^{\top} \bar{z}-\lambda c
$$

Dividing by λ completes the proof.

