
MGMT 690 - Pset 2
Spring 2024

Instructions:

• This pset is due on Sunday, April 7 at 11:59pm.

• Completed psets should be submitted to Gradescope.

• Exercises are for your own review only. They do not need to be submitted
and will not be graded.

• Complete all problems 1–5.

1 Exercises
Excercise 1
Proposition 1. Suppose f0, . . . , fk : Rn → R are SOCR functions and X1, . . . , Xm ⊆
Rn are SOCR set. Then the following problem

inf
x∈Rn

{
f0(x) : fi(x) ≤ 0, ∀i ∈ [k]

x ∈ Xi, ∀i ∈ [m]

}
has an SOC representation.

Proof. By assumption

epi(fi) = Π(x,t)

{
(x, t, u(i)) : A(i)(x, t, u(i)) − a(i) ∈ K(i)

}
where K(i) is a product of second order cones. Similarly,

Xj = Πx

{
(x, v(j)) : B(j)(x, v(j)) − b(j) ∈ W (j)

}
where W (j) is a product of second order cones.

Then,

inf
x∈Rn

{
f0(x) : fi(x) ≤ 0, ∀i ∈ [k]

x ∈ Xi, ∀i ∈ [m]

}

= inf
x,u(i),t(i),v(j)

t(0) :
A(i)(x, t(i), u(i)) − a(i) ∈ K(i), ∀i = 0, . . . , k
t(i) ≤ 0, ∀i = 1, . . . , k
B(j)(x, v(j)) − b(j) ∈ W (j), ∀j ∈ [m]

 . ■
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Exercise 2
Recall that Sk : Sn → R is the function where Sk(X) is the sum of the k largest
eigenvalues of X.

Proposition 2. It holds that

Sk(X) = max
Y ∈Sn

{
⟨X, Y ⟩ : 0 ⪯ Y ⪯ I

tr(Y ) = k

}
.

In particular, Sk(X) is convex.

Proof. Without loss of generality, X is diagonal (apply the spectral theorem).
Without loss of generality, Y is diagonal: given any Y ∈ Sn that is feasible, the
diagonal matrix Diag(diag(Y )) is also feasible with the same objective function.

We will thus consider the restricted maximization problem where X =
Diag(λ1, . . . , λn) and Y = Diag(y1, . . . , yn):

max
y∈Rn

{∑
i

xiyi : yi ∈ [0, 1], ∀i ∈ [n]∑
i yi = k

}
.

The optimal solution to this maximization problem places one unit of weight on
each i corresponding to the k largest entries of xi. Thus, the optimum value of
this problem is Sk(X).

Note that for every fixed Y , ⟨X, Y ⟩ is a convex (in fact linear) function of X.
Thus, Sk(X) is the maximum of a family of convex functions (parameterized by
Y ). We deduce that Sk is convex. ■

We derive the dual to this problem as follows. Let Z, W ⪰ 0 and let s ∈ R.
Then,

⟨I − Y, Z⟩ + ⟨Y, W ⟩ − s ⟨I, Y ⟩ + sk ≥ 0

Rearranging, we have that

sk + tr(Z) ≥ ⟨Z, Y ⟩ − ⟨Y, W ⟩ + ⟨sI, Y ⟩ .

Thus, the dual to the above problem is

inf
Z,W,s

{
sk + tr(Z) : Z − W + sI = X

W, Z ⪰ 0

}
= inf

Z,s

{
sk + tr(Z) : Z + sI ⪰ X

Z ⪰ 0

}
.
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Problems
Problem 1
Proposition 3. Strong duality fails for the following SDP:

inf
X∈S2

{
2X1,2 : X1,1 = 0

X ⪰ 0

}
Proof. Note that for a 2 × 2 matrix X, we have that X ⪰ 0 if and only if both
diagonal elements are nonnegative and the determinant is nonnegative. Thus,

inf
X∈S2

{
2X1,2 : X1,1 = 0

X ⪰ 0

}

= inf
X∈S2

2X1,2 :
X1,1 = 0
X2,2 ≥ 0
−X2

1,2 ≥ 0


= 0.

We construct the dual. Let Y ∈ S2
+ and let t ∈ R. Then,

tX1,1 + ⟨X, Y ⟩ ≥ 0

Thus, the dual is

sup
Y ∈S2, t∈R

0 :

(
t

0

)
+ Y =

(
0 1
1 0

)
Y ⪰ 0


= −∞. ■

Problem 2
Fix a discrete metric space X = {x1, . . . , xn}. Let D ∈ Rn×n denote the matrix
where Di,j is the distance between xi and xj .

Let P be a probability distribution on X defined by P = (p1, . . . , pn). Simi-
larly, let Q = (q1, . . . , qn) be a probability distribution on X .

The Wasserstein distance between P and Q can be written as the optimal
value of the following LP:

inf
Γ∈Rn×n

⟨D, Γ⟩ :
Γ1n = p
Γ⊺1n = q
Γ ≥ 0


We construct the dual to this LP. Let y ∈ Rn, z ∈ Rn and Ξ ∈ Rn×n

+ . Then,

⟨Γ, y1⊺n + 1nz⊺ + Ξ⟩ ≥ ⟨p, y⟩ + ⟨q, z⟩ .
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The dual of this LP is thus given by

sup
y∈Rn, z∈Rn, Ξ∈Rn×n

{
⟨p, y⟩ + ⟨q, z⟩ : y1⊺n + 1nz⊺ + Ξ = D

Ξ ≥ 0

}
= sup

y∈Rn, z∈Rn

{
⟨p, y⟩ + ⟨q, z⟩ : yi + zj ≤ Di,j , ∀i, j

}
.

Both primal and dual problems are solvable because they are both feasible:
Take Γ = pq⊺ in the primal, and take y = z = 0 in the dual. Complementary
slackness means that for all i, j, either Γi,j = 0 or yi + zj = Di,j .

One way to think of the dual is: it is a profit maximization problem for a
third party. This third party buys dirt at price-per-unit yi at location xi and
sells it at price-per-unit zj at location xj .

Problem 3
Proposition 4. The set {

(x, y) ∈ R2 : xy ≥ 1
x, y ≥ 0

}
is an SOCR set.

Proof. Suppose x, y ≥ 0. Then

xy ≥ 1
⇐⇒ (x + y)2 − (x − y)2 ≥ 4
⇐⇒ (x + y)2 ≥ 4 + (x − y)2

⇐⇒ x + y ≥
√

22 + (x − y)2

⇐⇒

x + y
x − y

2

 ∈ L1+2.

Thus, the set in question is equal to(x, y) ∈ R2 :

x, y ≥ 0x + y
x − y

2

 ∈ L1+2

 . ■

Problem 4
Consider an optimization problem of the form

inf
x∈Rn

{f(x) : gi(x) ≤ 0, ∀i ∈ [m]} .
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We make no assumptions on whether f or g1, . . . , gm is convex. Define

I :=




f(x)
g1(x)

...
gm(x)

 : x ∈ Rn

 + R1+m
+ .

Proposition 5. If f and g1, . . . , gm are convex functions, then I is a convex
set.

Proof. Suppose (ϕ, γ1, . . . , γm) ∈ I and (ϕ̂, γ̂1, . . . , γ̂m) ∈ I. That is, there exists
x and x̂ for which 

f(x)
g1(x)

...
gm(x)

 ≤


ϕ
γ1
...

γm


and similarly for the “hat” versions.

Now, suppose µ ∈ [0, 1] and define xµ = (1 − µ)x + µx̂. As f and each of the
gis are convex, we have that

f(xµ)
g1(xµ)

...
gm(xµ)

 ≤ (1 − µ)


f(x)
g1(x)

...
gm(x)

 + µ


f(x̂)
g1(x̂)

...
gm(x̂)

 ≤


(1 − µ)ϕ + µϕ̂

(1 − µ)γ1 + µγ̂1
...

(1 − µ)γm + µγ̂m

 . ■

Proposition 6. Suppose I is convex and there exists x̄ so that gi(x̄) < 0 for all
i ∈ [m], then

inf
x∈Rn

{f(x) : gi(x) ≤ 0, ∀i ∈ [m]}

= sup
u∈R, λ∈Rm

{
u : λ ≥ 0

f(x) +
∑m

i=1 λigi(x) ≥ u, ∀x ∈ Rn

}
and the dual problem is solvable.

Proof. The statement is vacuously true if Opt(Primal) = −∞. Thus, assume
that Opt(Primal) is finite.

Define the set

S :=




ϕ
γ1
...

γm

 : ϕ < Opt(Primal)
γi ≤ 0, ∀i ∈ [m]

 .

5



By assumption, I and S are disjoint nonempty convex sets. Thus, by the
hyperplane separation theorem, there exists (u, λ) ∈ R1+m not all zero so that

sup
(ϕ,γ)∈S

uϕ + ⟨λ, γ⟩ ≤ inf
(ϕ,γ)∈I

uϕ + ⟨λ, γ⟩ .

We claim that u, λ ≥ 0: Otherwise, take the relevant entry in S increasingly
negative to contradict the separation statement.

We claim that u ̸= 0: Otherwise, the LHS evaluates to zero, whereas our
strictly feasible x̄ shows that the RHS is negative (recall λ cannot also be
identically zero).

Thus, we may assume WLOG that u = 1. That is to say,

Opt(Primal) ≤ f(x) +
m∑

i=1
λigi(x), ∀x. ■

Problem 5
Proposition 7. Suppose K is a proper cone and consider the primal and dual
conic problems:

inf
x∈Rn

{
c⊺x : Ax − a ∈ K

Bx − b = 0

}
≥ sup

y∈Rm, z∈Rk

{
⟨a, y⟩ + ⟨b, z⟩ : A⊺y + B⊺z = c

y ∈ K∗

}
.

Furthermore, assume that the primal problem is feasible and that:

ker

c⊺

A
B

 = {0} .

Then, the primal problem has bounded sublevel sets, i.e.,

∀t ∈ R, the set St :=

x ∈ Rn :
c⊺x ≤ t
Ax − a ∈ K
Bx − b = 0

 is bounded

if and only if the dual problem is strictly feasible.

Proof. First, suppose the dual is strictly feasible. That is, there exists ȳ ∈ Rm

and z̄ ∈ Rk so that

A⊺ȳ + B⊺z̄ = c and ȳ ∈ int(K∗).

For the sake of contradiction, suppose St is unbounded so that x0 + R+x̂ ⊆ St

for some x̂ nonzero. Thus, it must hold that

c⊺x̂ ≤ 0, Ax̂ ∈ K, and Bx̂ = 0.
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The second deduction here requires that K is closed, which holds by assumption.
Thus, −c⊺x̂, ⟨ȳ, Ax̂⟩, and ⟨Bx̂, z̄⟩ are nonnegative quantities summing to

⟨Ax̂, ȳ⟩ + ⟨Bx̂, z̄⟩ − c⊺x̂ = ⟨A⊺ȳ + B⊺z̄ − c, x̂⟩ = 0.

We deduce that ⟨Ax̂, ȳ⟩ = 0. As ȳ ∈ int(K∗), we deduce that Ax̂ = 0. This
contradicts the nondegeneracy assumption.

Now, suppose that the primal problem has bounded sublevel sets. Let t be
such that St is nonempty. Thus,x ∈ Rn :

Ax ∈ K
Bx = 0
⟨c, x⟩ ≤ 0

 = {0} .

We write this set in terms of duals:

{0} =

x ∈ Rn :
⟨A⊺y, x⟩ ≥ 0, ∀y ∈ K∗
⟨B⊺z, x⟩ ≥ 0, ∀z ∈ Rn

⟨−c, x⟩ ≥ 0

 .

Here, we have used that (K∗)∗ = K. Now, taking the dual of either side, we get

Rn =

A⊺y + B⊺z − λc :
y ∈ K∗
z ∈ Rn

λ ≥ 0

 =
(
A⊺ B⊺ −c

)
(K∗ × Rn × R+).

We may now take the relative interior of either side:

Rn = int(Rn) =
(
A⊺ B⊺ −c

)
(int(K∗) × Rn × R++).

We deduce that there exists ȳ ∈ int(K∗), z̄ ∈ Rn, and λ > 0 such that

0 = A⊺ȳ + B⊺z̄ − λc.

Dividing by λ completes the proof. ■
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