MGMT 690 - Pset 2

Spring 2024

Instructions:
e This pset is due on Sunday, April 7 at 11:59pm.
e Completed psets should be submitted to Gradescope.

o Exercises are for your own review only. They do not need to be submitted
and will not be graded.

¢ Complete all problems 1-5.

1 Exercises

Excercise 1

Proposition 1. Suppose fo, ..., fr : R™ = R are SOCR functions and X1, ..., X, C
R™ are SOCR set. Then the following problem

{Mm:ﬂwSQWGM}

inf x € X;, Vi € [m)

zER™
has an SOC representation.
Proof. By assumption
epi(fi) = Iz {(z,t,u(i)) : A(i)(x,t,u(i)) —a e K(i)}
where K is a product of second order cones. Similarly,

X, =11, {(xw(j)) . BO (g, 0)) — pD) ¢ W(j)}

where WU is a product of second order cones.
Then,

, . filz) <0, Vi€ [K]
inf {fo(x) L re X, Vie m] }

xER™
AD (2,40 4Dy —a® ¢ KO vi=0,...,k
= inf <t D<o vi=1,... k N
2,uld) 10,0 B (z,0@) — @) € WO, Vj € [m]



Exercise 2

Recall that Si : S™ — R is the function where S (X) is the sum of the & largest
eigenvalues of X.

Proposition 2. It holds that

Sk(X)rYneaSg{<X,Y>:

In particular, Sk(X) is convez.

Proof. Without loss of generality, X is diagonal (apply the spectral theorem).
Without loss of generality, Y is diagonal: given any Y € S™ that is feasible, the
diagonal matrix Diag(diag(Y")) is also feasible with the same objective function.

We will thus consider the restricted maximization problem where X =
Diag(\1,...,\,) and Y = Diag(y1,...,yn):

in[O,l],V’iG[n]
gé%é{zi:xl%. Yivi=k '

The optimal solution to this maximization problem places one unit of weight on
each i corresponding to the k largest entries of x;. Thus, the optimum value of
this problem is Si(X).

Note that for every fixed Y, (X,Y) is a convex (in fact linear) function of X.
Thus, Sk(X) is the maximum of a family of convex functions (parameterized by
Y). We deduce that Sy is convex. |

We derive the dual to this problem as follows. Let Z, W = 0 and let s € R.
Then,

I-Y,Z)+ (Y, W) —=s([,Y)+sk>0
Rearranging, we have that

sk+tr(Z2) >(Z,)Y) = (Y,W) + (sI,Y).
Thus, the dual to the above problem is

inf {sk—i—tr(Z): Z_W+SI:X}

ZW,s W,Z =0
. C Z+sl =X
m)g{skthr(Z). Z =0 }



Problems
Problem 1
Proposition 3. Strong duality fails for the following SDP:

. . X171:O
;%2&{”1’2' X =0 }

Proof. Note that for a 2 x 2 matrix X, we have that X > 0 if and only if both
diagonal elements are nonnegative and the determinant is nonnegative. Thus,

. . X171:O
£2£2{2X1’2' X0 }

X171 = 0
== inf2 2X1)2 : X272 Z 0
Xes —X12)2 >0

=0.
We construct the dual. Let Y € Sf_ and let ¢t € R. Then,

X1 + (X,Y) 20

t 0 1
sup 0: ( O>+Y_<1 O)
Y

Y €S2, teR

Thus, the dual is

Problem 2

Fix a discrete metric space X = {z1,...,2,}. Let D € R"*™ denote the matrix
where D; ; is the distance between x; and x;.

Let P be a probability distribution on X defined by P = (p1,...,pn). Simi-
larly, let @ = (q1,- -, ¢n) be a probability distribution on X'.

The Wasserstein distance between P and @) can be written as the optimal
value of the following LP:

I, =p
inf (D,T): I''l, =¢q
FER’H,XTL F > O

We construct the dual to this LP. Let y € R", z € R™ and Z € R™". Then,

Loyl + 1,27+ 2) > (p,y) + (¢, 2) -



The dual of this LP is thus given by

T4+ 1,2T+Z=D
sup {<p7y>+<q7z>! 2oy }
yER™, zE€R", EER X7 =z

= sup {(py)+{(g2): yi+z <DijVi,j }.
yeR™, zeR™

Both primal and dual problems are solvable because they are both feasible:
Take I' = pqT in the primal, and take y = z = 0 in the dual. Complementary
slackness means that for all ¢, j, either I'; ; = 0 or y; + 2; = D; ;.

One way to think of the dual is: it is a profit maximization problem for a
third party. This third party buys dirt at price-per-unit y; at location x; and
sells it at price-per-unit z; at location x;.

Problem 3
Proposition 4. The set

9. xy2>1
{(m,y)eR : x,y>0}

is an SOCR set.

Proof. Suppose z,y > 0. Then

zy >1
= (rt+y)’-(r-y)?*>=4
= (a+y)P2d+(z-y)’
= rt+y>\/22+4 (z—y)?
T+y
= |z—y | et
2

Thus, the set in question is equal to

z,y >0
Tty
x—y | eLtt?
2

(z,y) e R?:

Problem 4

Consider an optimization problem of the form

Jnf {f(@): gi(z) <0, Vi€ [m]}.



We make no assumptions on whether f or gi,...,gm is convex. Define

f(x)
7= 91€$> cxrxeR” —HR_lﬁm.
gm ()
Proposition 5. If f and g1, ..., gm are convex functions, then T is a conver

set.

Proof. Suppose (¢,71,.-.,7vm) € Z and (q?), A1y« Ym) € Z. That is, there exists
x and Z for which

f(z) )

g1 (96) Al
) < | .

gm.(w) v;n

and similarly for the “hat” versions.
Now, suppose x € [0,1] and define z, = (1 — p)x + p&. As f and each of the
g;s are convex, we have that

f(wy) /(@) /() (1= )+ o
91(:%) < (1) g1 Em) u g1fm) - (1-— ,u)v:l +
gm(I/t) gm () Im () (1 — 1) ym + tm

Proposition 6. Suppose T is convex and there exists T so that g;(x) < 0 for all
i € [m], then

inf {f(2) gi(2) <0, Vi€ [m]}
B A>0

= su Uu: m n
u€R, A%Rm { f(z) + Zi=1 Aigi(z) > u, Ve e R }
and the dual problem is solvable.

Proof. The statement is vacuously true if Opt(Primal) = —co. Thus, assume
that Opt(Primal) is finite.
Define the set

711 ¢ < Opt(Primal)
. v < 0, Vi € [m}

Ym



By assumption, Z and S are disjoint nonempty convex sets. Thus, by the
hyperplane separation theorem, there exists (u, \) € R not all zero so that

sup ud+ (A, ) < inf w4+ (A,7).
(p,7)ES (¢,7)EL
We claim that u, A\ > 0: Otherwise, take the relevant entry in S increasingly
negative to contradict the separation statement.

We claim that u # 0: Otherwise, the LHS evaluates to zero, whereas our
strictly feasible z shows that the RHS is negative (recall A cannot also be
identically zero).

Thus, we may assume WLOG that u = 1. That is to say,

Opt(Primal) < f(z) + i”: Xigi(x), V. |
i=1

Problem 5

Proposition 7. Suppose K is a proper cone and consider the primal and dual
conic problems:

. Ar—a € K ATy+ BTz =c¢
f Ty > b, z): .
seRn {c T Br—b=0 } h yERiEI,ZeRk {(a,y> *(0:2) y € K, }

Furthermore, assume that the primal problem is feasible and that:
CT
ker A = {0}.
B

Then, the primal problem has bounded sublevel sets, i.e.,

cTe <t
VieR, theset S; =<2z €eR": Ar—ac K is bounded
Bxr—b=0

if and only if the dual problem is strictly feasible.

Proof. First, suppose the dual is strictly feasible. That is, there exists y € R™
and z € R¥ so that

ATy+ BTz=c and ¢ € int(K,).

For the sake of contradiction, suppose &; is unbounded so that g + R 2 C S,
for some & nonzero. Thus, it must hold that

T#<0, AieK, and Bi#=0.



The second deduction here requires that K is closed, which holds by assumption.
Thus, —cT%, (y, A%), and (B#, Z) are nonnegative quantities summing to

(A%,5) + (B#,2) — ¢Td = (ATg+ BTZ — ¢, &) = 0.

We deduce that (AZ,y) = 0. As y € int(K.), we deduce that A% = 0. This
contradicts the nondegeneracy assumption.

Now, suppose that the primal problem has bounded sublevel sets. Let t be
such that S&; is nonempty. Thus,

Ar e K
zeR": Bx=0 = {0}.
{c,z) <0
We write this set in terms of duals:
(ATy,2) >0, Vy € K,
{0} =qzeR": (BTz,z)>0,YzeR"
<_Ca 'I> > 0

Here, we have used that (K.). = K. Now, taking the dual of either side, we get

y € K,
R"=qATy+BTz—Xc: z€R" » = (AT BT —¢)(K.xR"xRy).

A>0

We may now take the relative interior of either side:

R" = int(R") = (AT BT —¢) (int(K,) x R" x Ry4).
We deduce that there exists y € int(K,), z € R", and A > 0 such that
0=ATy+ BTz — Ac.

Dividing by A completes the proof. |



