
MGMT 690 - Pset 3
Spring 2024

Instructions:
• This pset is due on Sunday, April 21 at 11:59pm.

• Completed psets should be submitted to Gradescope.

• Exercises are for your own review only. They do not need to be submitted
and will not be graded.

• Complete all problems 1–4.

Exercises
• Consider f : R2 → R by

f(x) = |x1| + 2 |x2| .

Show that ∂f(1, 0) = {(1, y) : |y| ≤ 2}. Thus, (1, 2) ∈ ∂f(1, 0). Next, show
that f((1, 0) − t(1, 2)) > f(1, 0) for all t > 0. This example shows that a
negative subgradient is not necessarily a descent direction.

• Fill in the missing details in the proof of Theorem 21 in the notes.

Problems
1. [15pts] Let fi : Rd → R be convex and differentiable for i = 1, . . . , n. Let

F (x) := maxi fi(x). Show that

∂F (x) = conv({∇fi(x) : fi(x) = F (x)}).

2. [25pts] Let γ > 1 and consider the following function f : R2 → R

f(x) =
{√

x2
1 + γx2

2 if |x2| ≤ x1
x1+γ|x2|√

1+γ
else

This function is convex and √
γ-Lipschitz (you do not need to prove this).

Consider the subgradient method with exact line-search initialized at
x(0) = (γ, 1), i.e., for t ≥ 1, let g ∈ ∂f(x(t−1)) and set

x(t) = arg min
x∈x(t−1)−R+g

f(x)
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(a) [15pts] Prove that for a general convex function f : Rn → R, if f is
differentiable at x, then ∂f(x) = {∇f(x)}. Recall, if f is differentiable
at x, then ∇f(x) is defined to be the unique vector in Rn so that for
all u ∈ Rn,

d

dt
f(x + tu) = ⟨∇f(x), u⟩ .

(b) [10pts] Prove by induction that x(t) =
(

γ
(

γ−1
γ+1

)t

,
(

1−γ
γ+1

)t
)

for all
t ≥ 0.

This shows that the subgradient method with exact line-search converges
to the origin where f(0) = 0. On the other hand, f can be made arbitrarily
negative by sending x1 → −∞.

3. [30pts] Let f : Rn → R be a L-Lipschitz convex function with minimizer
x⋆ and minimum value f∗. Suppose that f satisfies the following growth
condition parameterized by δ > 0, α > 0:

f(x) − f⋆ ≤ δ =⇒ f(x) − f∗ ≥ α ∥x − x⋆∥2
.

Suppose we are given x0 ∈ Rn with ∥x0 − x⋆∥ ≤ R.
Fill in the missing details (i.e., replace the ?s) in the following restarted
subgradient method. Consider the following algorithm:

Algorithm 1 Restarted subgradient method
Given: L, R, α, δ, x0

• For each k = 0, . . .

– Run the subgradient method with constant stepsizes (see Corollary 7
in the notes) with initial iterate xk for

Tk =?

iterations. Let xk+1 to be the output of the subgradient method.

By setting T0 =?, we can ensure the following property:

Lemma 1. It holds that f(x1) − f⋆ ≤ δ.

Proof. ? ■

For k ≥ 1, define δk = 2
2k δ ≤ δ. By setting Tk =? for k ≥ 1, we can ensure

the following property:

Lemma 2. It holds that f(xk) − f⋆ ≤ δk.
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Proof. ? ■

We conclude that:

Proposition 1. The restarted subgradient method with constant stepsizes
and horizons T0 =? and Tk =? for all k ≥ 1 achieves a gap f(x) − f⋆ ≤ ϵ
after at most

O

(
L2R2

δ2 + L2

αϵ

)
total (inner) iterations. Thus for ϵ ≪ δ2

αR2 , this convergence rate is O
(

L2

αϵ

)
.

Compare this rate with Corollary 7 in the notes.

4. [30pts] This problem extends the accelerated gradient descent method for
L-smooth convex functions and its analysis to other “smoothly-proxable”
convex problems.
Formally, consider a minimization problem of the form

min
x∈Ω

F (x)

where F : Rn → R is an arbitrary function and Ω ⊆ Rn is an arbitrary set.
We say that

prox : Rn → Ω

is a smooth prox-oracle for this problem if prox satisfies the following
property: Given y ∈ Rn, define g(y) := L(y − prox(y)). Then, for all
z ∈ Ω, it holds that

F (prox(y)) ≤ f(z) + ⟨g(y), y − z⟩ − ∥g(y)∥2

2L
. (1)

We will replace the gradient step in accelerated gradient descent with the
prox oracle:
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Algorithm 2 Accelerated gradient descent for smoothly proxable problems
Given x0 ∈ Rd, F : Rn → R and prox : Rn → Ω

• Set y0 = x0 and λ−1 = 1
• For t = 0, . . .

λt =
1 +

√
1 + 4λ2

t−1

2

γt = λt−1 − 1
λt

xt+1 = prox(yt) = yt − 1
L

g(yt)

yt+1 = xt+1 + γt(xt+1 − xt)

(a) [10pts] Modify the analysis of ?? to show that:
Theorem 1. Suppose F : Rn → R and Ω ⊆ Rn and suppose prox :
Rn → Ω is a smooth prox-oracle for minx∈Ω F (x). Furthermore,
suppose F has minimizer x⋆ with minimum value F ⋆. Then, it holds
that

F (xT ) − F ⋆ = O

(
L ∥x0 − x⋆∥2 + F (x0) − F (x⋆)

T 2

)
.

(b) [10pts] Suppose F : Rn → R is an L-smooth convex function and
Ω ⊆ Rn is nonempty, closed, and convex. Define

prox(y) := arg min
x∈Ω

{
F (y) + ⟨∇F (y), x − y⟩ + L

2 ∥x − y∥2
}

.

Prove that this map is well-defined, is equal to

prox(y) = ΠΩ

(
y − 1

L
∇F (y)

)
,

and is a smooth prox-oracle for minx∈Ω F (x).
(c) [10pts] Suppose f1, . . . , fk : Rn → R are L-smooth convex functions

and define

F (x) := max
i∈[k]

fi(x).

Define

prox(y) := arg min
x∈Rn

max
i∈[k]

{
fi(y) + ⟨∇fi(y), x − y⟩ + L

2 ∥x − y∥2
}

.

Prove that this map is well-defined and is a smooth prox-oracle for
minx∈Ω F (x).
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