MGMT 690 - Pset 3

Spring 2024

Instructions:

- This pset is due on Sunday, April 21 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1-4.

Exercises

- Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x)=\left|x_{1}\right|+2\left|x_{2}\right| .
$$

Show that $\partial f(1,0)=\{(1, y):|y| \leq 2\}$. Thus, $(1,2) \in \partial f(1,0)$. Next, show that $f((1,0)-t(1,2))>f(1,0)$ for all $t>0$. This example shows that a negative subgradient is not necessarily a descent direction.

- Fill in the missing details in the proof of Theorem 21 in the notes.

Problems

1. [15pts] Let $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and differentiable for $i=1, \ldots, n$. Let $F(x):=\max _{i} f_{i}(x)$. Show that

$$
\partial F(x)=\operatorname{conv}\left(\left\{\nabla f_{i}(x): f_{i}(x)=F(x)\right\}\right)
$$

2. [25pts] Let $\gamma>1$ and consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}\sqrt{x_{1}^{2}+\gamma x_{2}^{2}} & \text { if }\left|x_{2}\right| \leq x_{1} \\ \frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}} & \text { else }\end{cases}
$$

This function is convex and $\sqrt{\gamma}$-Lipschitz (you do not need to prove this). Consider the subgradient method with exact line-search initialized at $x^{(0)}=(\gamma, 1)$, i.e., for $t \geq 1$, let $g \in \partial f\left(x^{(t-1)}\right)$ and set

$$
x^{(t)}=\underset{x \in x^{(t-1)}-\mathbb{R}_{+} g}{\arg \min } f(x)
$$

(a) [15pts] Prove that for a general convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, if f is differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$. Recall, if f is differentiable at x, then $\nabla f(x)$ is defined to be the unique vector in \mathbb{R}^{n} so that for all $u \in \mathbb{R}^{n}$,

$$
\frac{d}{d t} f(x+t u)=\langle\nabla f(x), u\rangle
$$

(b) [10pts] Prove by induction that $x^{(t)}=\left(\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{t},\left(\frac{1-\gamma}{\gamma+1}\right)^{t}\right)$ for all $t \geq 0$.

This shows that the subgradient method with exact line-search converges to the origin where $f(0)=0$. On the other hand, f can be made arbitrarily negative by sending $x_{1} \rightarrow-\infty$.
3. [30pts] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-Lipschitz convex function with minimizer x^{\star} and minimum value f^{*}. Suppose that f satisfies the following growth condition parameterized by $\delta>0, \alpha>0$:

$$
f(x)-f^{\star} \leq \delta \quad \Longrightarrow \quad f(x)-f^{*} \geq \alpha\left\|x-x^{\star}\right\|^{2}
$$

Suppose we are given $x_{0} \in \mathbb{R}^{n}$ with $\left\|x_{0}-x^{\star}\right\| \leq R$.
Fill in the missing details (i.e., replace the ?s) in the following restarted subgradient method. Consider the following algorithm:

Algorithm 1 Restarted subgradient method Given: $L, R, \alpha, \delta, x_{0}$

- For each $k=0, \ldots$
- Run the subgradient method with constant stepsizes (see Corollary 7 in the notes) with initial iterate x_{k} for

$$
T_{k}=?
$$

iterations. Let x_{k+1} to be the output of the subgradient method.

By setting $T_{0}=$?, we can ensure the following property:
Lemma 1. It holds that $f\left(x_{1}\right)-f^{\star} \leq \delta$.
Proof. ?
For $k \geq 1$, define $\delta_{k}=\frac{2}{2^{k}} \delta \leq \delta$. By setting $T_{k}=$? for $k \geq 1$, we can ensure the following property:

Lemma 2. It holds that $f\left(x_{k}\right)-f^{\star} \leq \delta_{k}$.

Proof. ?

We conclude that:
Proposition 1. The restarted subgradient method with constant stepsizes and horizons $T_{0}=$? and $T_{k}=$? for all $k \geq 1$ achieves a gap $f(x)-f^{\star} \leq \epsilon$ after at most

$$
O\left(\frac{L^{2} R^{2}}{\delta^{2}}+\frac{L^{2}}{\alpha \epsilon}\right)
$$

total (inner) iterations. Thus for $\epsilon \ll \frac{\delta^{2}}{\alpha R^{2}}$, this convergence rate is $O\left(\frac{L^{2}}{\alpha \epsilon}\right)$.
Compare this rate with Corollary 7 in the notes.
4. [30pts] This problem extends the accelerated gradient descent method for L-smooth convex functions and its analysis to other "smoothly-proxable" convex problems.
Formally, consider a minimization problem of the form

$$
\min _{x \in \Omega} F(x)
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an arbitrary function and $\Omega \subseteq \mathbb{R}^{n}$ is an arbitrary set. We say that

$$
\text { prox }: \mathbb{R}^{n} \rightarrow \Omega
$$

is a smooth prox-oracle for this problem if prox satisfies the following property: Given $y \in \mathbb{R}^{n}$, define $g(y):=L(y-\operatorname{prox}(y))$. Then, for all $z \in \Omega$, it holds that

$$
\begin{equation*}
F(\operatorname{prox}(y)) \leq f(z)+\langle g(y), y-z\rangle-\frac{\|g(y)\|^{2}}{2 L} \tag{1}
\end{equation*}
$$

We will replace the gradient step in accelerated gradient descent with the prox oracle:

```
Algorithm 2 Accelerated gradient descent for smoothly proxable problems
```

Given $x_{0} \in \mathbb{R}^{d}, F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and prox : $\mathbb{R}^{n} \rightarrow \Omega$

- Set $y_{0}=x_{0}$ and $\lambda_{-1}=1$
- For $t=0, \ldots$

$$
\begin{aligned}
\lambda_{t} & =\frac{1+\sqrt{1+4 \lambda_{t-1}^{2}}}{2} \\
\gamma_{t} & =\frac{\lambda_{t-1}-1}{\lambda_{t}} \\
x_{t+1} & =\operatorname{prox}\left(y_{t}\right)=y_{t}-\frac{1}{L} g\left(y_{t}\right) \\
y_{t+1} & =x_{t+1}+\gamma_{t}\left(x_{t+1}-x_{t}\right)
\end{aligned}
$$

(a) [10pts] Modify the analysis of ?? to show that:

Theorem 1. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subseteq \mathbb{R}^{n}$ and suppose prox: $\mathbb{R}^{n} \rightarrow \Omega$ is a smooth prox-oracle for $\min _{x \in \Omega} F(x)$. Furthermore, suppose F has minimizer x^{\star} with minimum value F^{\star}. Then, it holds that

$$
F\left(x_{T}\right)-F^{\star}=O\left(\frac{L\left\|x_{0}-x^{\star}\right\|^{2}+F\left(x_{0}\right)-F\left(x^{\star}\right)}{T^{2}}\right)
$$

(b) [10pts] Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an L-smooth convex function and $\Omega \subseteq \mathbb{R}^{n}$ is nonempty, closed, and convex. Define

$$
\operatorname{prox}(y):=\underset{x \in \Omega}{\arg \min }\left\{F(y)+\langle\nabla F(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}\right\}
$$

Prove that this map is well-defined, is equal to

$$
\operatorname{prox}(y)=\Pi_{\Omega}\left(y-\frac{1}{L} \nabla F(y)\right)
$$

and is a smooth prox-oracle for $\min _{x \in \Omega} F(x)$.
(c) [10pts] Suppose $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are L-smooth convex functions and define

$$
F(x):=\max _{i \in[k]} f_{i}(x)
$$

Define

$$
\operatorname{prox}(y):=\underset{x \in \mathbb{R}^{n}}{\arg \min } \max _{i \in[k]}\left\{f_{i}(y)+\left\langle\nabla f_{i}(y), x-y\right\rangle+\frac{L}{2}\|x-y\|^{2}\right\}
$$

Prove that this map is well-defined and is a smooth prox-oracle for $\min _{x \in \Omega} F(x)$.

