
MGMT 690 - Pset 3
Spring 2024

Instructions:

• This pset is due on Sunday, April 21 at 11:59pm.

• Completed psets should be submitted to Gradescope.

• Exercises are for your own review only. They do not need to be submitted
and will not be graded.

• Complete all problems 1–3.

1 Exercises
Excercise 1
Lemma 1. Consider f : R2 → R by

f(x) = |x1| + 2 |x2| .

Then, ∂f(1, 0) = {(1, y) : |y| ≤ 2}. Thus, (1, 2) ∈ ∂f(1, 0) and f((1, 0) −
t(1, 2)) > f(1, 0) for all t > 0

Proof. We can write

f(x) = max {x1 + 2x2, −x1 + 2x2, x1 − 2x2, −x1 − 2x2} .

Then, by Problem 1,

∂(f(1, 0)) = conv
({(

1
2

)
,

(
1

−2

)})
= {(1, y) : |(| y) ≤ 2} .

Next,

f((1, 0) − t(1, 2)) =
{

1 + t if 0 ≤ t ≤ 1
3t − 1 else

This is > f(1, 0) for all t > 0. ■
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Problems
Problem 1
Lemma 2. Let fi : Rd → R be convex and differentiable for i = 1, . . . , n. Let
F (x) := maxi fi(x). Then, for any x ∈ Rd,

∂F (x) = conv({∇fi(x) : fi(x) = F (x)}).

Proof. Fix x̄ ∈ Rd. For convenience, let I := {i ∈ [n] : fi(x̄) = F (x̄)}. Also
define

S := conv({∇fi(x̄) : i ∈ I}).

Our goal is to show that ∂F (x̄) = S.
First, suppose g ∈ S. By definition, there exists λi such that

∑
i∈I λi = 1,

λi ≥ 0 for all i ∈ I.
Now, consider the convex function

L(x) :=
∑
i∈I

λifi(x).

This function satisfies: ∇L(x̄) = g, L(x̄) = F (x̄) and L(x) ≤ F (x) everywhere.
To see that the last statement is true:

L(x) =
∑
i∈I

λifi(x) ≤ max
i∈I

fi(x) ≤ max
i

fi(x) = F (x).

We deduce that for all x ∈ Rd,

F (x) ≥ L(x) ≥ L(x̄) + ⟨∇L(x̄), x − x̄⟩ = F (x̄) + ⟨g, x − x̄⟩ .

By definition, this means that g ∈ ∂F (x̄).
Now, suppose g /∈ S and assume for the sake of contradiction that g ∈ ∂F (x̄).

As S is compact, there exists a v ∈ Rd with ∥v∥ = 1 so that

v⊺g > max
i∈I

⟨v, ∇fi(x̄)⟩ .

Let δ := v⊺g − maxi∈I ⟨v, ∇fi(x̄)⟩.
Now, let xα := x̄ + αv. As the fi are continuous, it holds that F (xα) =

maxi∈I fi(xα) for all small enough α > 0. Now, as g ∈ ∂F (x̄), we have that

F (xα) ≥ F (x̄) + ⟨g, xα − x̄⟩
= F (x̄) + α ⟨g, v⟩
≥ max

i∈I
(F (x̄) + α ⟨v, ∇fi(x̄)⟩) + αδ

≥ F (xα) − o(α) + αδ

> F (xα).

The last two inequalities both hold for all α > 0 small enough. This is a
contradiction. ■
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Problem 2
Let γ > 1 and consider the following function f : R2 → R

f(x) =
{√

x2
1 + γx2

2 if |x2| ≤ x1
x1+γ|x2|√

1+γ
else

This function is convex and √
γ-Lipschitz (you do not need to prove this).

Consider the subgradient method with exact line-search initialized at x(0) =
(γ, 1), i.e., for t ≥ 1, let g ∈ ∂f(x(t−1)) and set

x(t) = arg min
x∈x(t−1)−R+g

f(x)

We will show that this method behaves poorly. We will need the following
lemma.

Lemma 3. Let f : Rn → R be a convex function. If f is differentiable at x,
then ∂f(x) = {∇f(x)}.

Proof. As f : Rn → R is convex, the set ∂f(x) is nonempty. Let g ∈ ∂f(x). Let
u ∈ Rn and consider the one dimensional function

t 7→ f(x + tu).

Now, for all t > 0

⟨∇f(x), u⟩ = lim
t→0

f(x + tu) − f(x)
t

≥ lim
t→0

t ⟨g, u⟩
t

= ⟨g, u⟩ .

Here, we have used that f(x + tu) ≥ f(x) + t ⟨g, u⟩. We deduce that

⟨∇f(x), u⟩ ≥ ⟨g, u⟩ .

As u was arbitrary, we conclude that g = ∇f(x). ■

For convenience, define

α := γ − 1
γ + 1 .

Proposition 1. For all t ≥ 0, it holds that

x(t) =
(
γαt, (−α)t

)
.

In particular, for all t ≥ 0, it holds that f(x(t)) ≥ 0, despite infx f(x) = −∞.
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Proof. By definition, x(0) = (γ, 1) = (γα0, (−α)0). Thus, the claim holds for
t = 0.

Now, consider t > 0. For convenience, let y = x(t−1). By induction, we have
that

y = (γαt−1, (−α)t−1).

As γ > 1, we have that |y2| < y1 so that f is differentiable at y with gradient

∇f(y) = 1√
y2

1 + γy2
2

(
y1

γy2

)
.

We can parameterize the ray beginning at y in the direction of −∇f(y) as

xβ =
(

γαt−1(1 − β)
(−α)t−1(1 − γβ)

)
for β ∈ R+. Note that when β = 1 − α

xβ =
(

γαt

(−α)t−1(1 − γ(1 − α))

)
=
(

γαt

(−α)t

)
.

Thus, it remains to show that

β 7→
√

(γαt−1(1 − β))2 + γ((−α)t−1(1 − γβ))2

is minimized at β = 1 − α. It suffices to check that term inside the radical
achieves its minimum at β = 1 − α. The derivative in β of the term inside the
radical evaluated at β = 1 − α is

− 2(γαt−1)2(1 − β) − 2γ2α2(t−1)(1 − γβ)
= −2γ2α2t−1 + 2γ2α2t−1

= 0. ■

Problem 3
Let f : Rn → R be a L-Lipschitz convex function with minimizer x⋆ and
minimum value f∗. Suppose that f satisfies the following growth condition
parameterized by δ > 0, α > 0:

f(x) − f⋆ ≤ δ =⇒ f(x) − f∗ ≥ α ∥x − x⋆∥2
.

Suppose we are given x0 ∈ Rn with ∥x0 − x⋆∥ ≤ R.
Consider the following restarted subgradient method.
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Algorithm 1 Restarted subgradient method
Given: L, R, α, δ, x0

• For each k = 0, . . .

– Run the subgradient method with constant stepsizes (see Corollary 7
in the notes) with initial iterate xk for

Tk =


⌊(

LR
δ

)2
⌋

if k = 0⌊
2L2

αδ2k

⌋
else

iterations. Let xk+1 to be the output of the subgradient method.

By setting T0 =
⌊(

LR
δ

)2
⌋
, we can ensure the following property:

Lemma 4. It holds that f(x1) − f⋆ ≤ δ.

Proof. By Corollary 7 of the notes,

f(x1) − f⋆ ≤ LR√
T0 + 1

= LR√
L2R2/δ2

= δ. ■

For k ≥ 1, define δk = 2
2k δ ≤ δ. By setting Tk =

⌊
4L2

αδk

⌋
for k ≥ 1, we can

ensure the following property:

Lemma 5. It holds that f(xk) − f⋆ ≤ δk.

Proof. By the previous lemma, we have that f(x1) − f⋆ ≤ δ1.
Now, by induction, suppose that f(xk) − f⋆ ≤ δk. By Corollary 7 of the

notes and the growth property, we have that

f(xk+1) − f⋆ ≤ L ∥xk − x⋆∥√
Tk + 1

≤
L
√

(f(xk) − f⋆)/α√
Tk + 1

≤
L
√

δk/α√
Tk + 1

≤ δk

2
= δk+1. ■

We conclude that:

Proposition 2. The restarted subgradient method with constant stepsizes and
horizons T0 =

⌊(
LR
δ

)2
⌋

and Tk =
⌊

4L2

αδk

⌋
for all k ≥ 1 achieves a gap f(x)−f⋆ ≤ ϵ
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after at most

O

(
L2R2

δ2 + L2

αϵ

)
total (inner) iterations. Thus for ϵ ≪ δ2

αR2 , this convergence rate is O
(

L2

αϵ

)
.

Proof. Set

k =
⌈

log2

(
2δ

ϵ

)⌉
.

Note that with this choice of k, it holds that δk ≤ ϵ and 2k−1 < 2δ
ϵ .

It remains to compute

T1 + T2 + · · · + Tk ≤ L2

αδ

(
21 + 22 + · · · + 2k

)
≤ L22k+1

αδ
= 8L2

αϵ
. ■

Problem 4
Consider a minimization problem of the form

min
x∈Ω

F (x)

where F : Rn → R is an arbitrary function and Ω ⊆ Rn is an arbitrary set. We
say that

prox : Rn → Ω

is a smooth prox-oracle for this problem if prox satisfies the following property:
Given y ∈ Rn, define g(y) := L(y − prox(y)). Then, for all z ∈ Ω, it holds that

F (prox(y)) ≤ F (z) + ⟨g(y), y − z⟩ − ∥g(y)∥2

2L
. (1)

We will replace the gradient step in accelerated gradient descent with the
prox oracle:
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Algorithm 2 Accelerated gradient descent for smoothly proxable problems
Given x0 ∈ Rd, F : Rn → R and prox : Rn → Ω

• Set y0 = x0 and λ−1 = 1

• For t = 0, . . .

λt =
1 +

√
1 + 4λ2

t−1

2

γt = λt−1 − 1
λt

xt+1 = prox(yt) = yt − 1
L

g(yt)

yt+1 = xt+1 + γt(xt+1 − xt)

Theorem 1. Suppose F : Rn → R and Ω ⊆ Rn and suppose prox : Rn → Ω is
a smooth prox-oracle for minx∈Ω F (x). Furthermore, suppose F has minimizer
x⋆ with minimum value F ⋆. Then, it holds that

F (xT ) − F ⋆ = O

(
L ∥x0 − x⋆∥2 + F (x0) − F ⋆

T 2

)
.

Proof. Let δt = F (xt) − F ⋆, gt = g(yt), and ∆t = yt − xt.
By definition of the prox oracle, we have that for all t ≥ 0 and all z ∈ Ω,

F (xt+1) ≤ F (z) + ⟨gt, yt − z⟩ − ∥gt∥2

2L

Taking z = xt gives

δt+1 − δt ≤ ⟨gt, ∆t⟩ − 1
2L

∥gt∥2
.

Taking z = x⋆ gives

δt+1 ≤ ⟨gt, ∆t + xt − x⋆⟩ − 1
2L

∥gt∥2

Now, let us take the first inequality weighted by (λt − 1) and add it to the
second inequality to get

λtδt+1 − (λt − 1)δt ≤ ⟨gt, λt∆t + (xt − x⋆)⟩ − λt

2L
∥gt∥2

.
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We will complete the square on the right hand side to write it as

⟨gt, λt∆t + (xt − x⋆)⟩ − λt

2L
∥gt∥2

= L

2λt

(
2
〈

λtgt

L
, λt∆t + (xt − x⋆)

〉
−
∥∥∥∥λtgt

L

∥∥∥∥2
)

= L

2λt

(
∥λt∆t + (xt − x⋆)∥2 −

∥∥∥∥λt∆t + (xt − x⋆) − λtgt

L

∥∥∥∥2
)

.

By our choice of λt and γt, we have that

λt∆t + (xt − x⋆) − λtgt

L
= λt(yt − xt) + xt − x⋆ − λt(yt − xt+1)

= (1 − λt)xt − x⋆ + λtxt+1

= (λt − 1)(xt+1 − xt) + (xt+1 − x⋆)

= λt − 1
γt+1

∆t+1 + (xt+1 − x⋆)

= λt+1∆t+1 + (xt+1 − x⋆).

Thus,

λ2
t δt+1 − (λt − 1)λtδt ≤ L

2

(
∥λt∆t + (xt − x⋆)∥2 − ∥λt+1∆t+1 + (xt+1 − x⋆)∥2

)
.

Note that (λt − 1)λt = λ2
t−1. Finally, we may telescope this inequality to get

λ2
T −1δT ≤ L

2 ∥x0 − x⋆∥2 + δ0. ■

Lemma 6. Suppose F : Rn → R is an L-smooth convex function and Ω ⊆ Rn

is nonempty, closed, and convex. Define

prox(y) := arg min
x∈Ω

{
F (y) + ⟨∇F (y), x − y⟩ + L

2 ∥x − y∥2
}

.

This map is well-defined, is equal to

prox(y) = ΠΩ

(
y − 1

L
∇F (y)

)
,

and is a smooth prox-oracle for minx∈Ω F (x).
Proof. For the first point, note that

prox(y) := arg min
x∈Ω

{
F (y) + ⟨∇F (y), x − y⟩ + L

2 ∥x − y∥2
}

= arg min
x∈Ω

{
L

2

∥∥∥∥x − y + ∇F (x)
L

∥∥∥∥2
+ constant

}

= arg min
x∈Ω

∥∥∥∥x − y + ∇F (x)
L

∥∥∥∥ .
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As Ω is closed and convex, this arg min exists and is unique and is, by definition,
the projection of y − ∇F (x)/L onto Ω.

We need to check that for all y, z ∈ Ω that

F (prox(y)) ≤ F (z) + ⟨g(y), y − z⟩ − ∥g(y)∥2

2L
,

where g(y) := L(y − prox(y)). For convenience, let y′ := prox(y).
We compute:

F (z) ≥ F (y) + ⟨∇F (y), z − y⟩

= F (y) + ⟨∇F (y), z − y⟩ + L

2 ∥z − y∥2 − L

2 ∥z − y∥2

≥ F (y) + ⟨∇F (y), y′ − y⟩ + L

2 ∥y′ − y∥2 + L

2 ∥y′ − z∥2 − L

2 ∥z − y∥2

≥ F (y′) + L

2 ∥y′ − y + y − z∥2 − L

2 ∥z − y∥2

= F (y′) + 1
2L

∥g(y)∥2 − ⟨g(y), y − z⟩ .

Here, the second inequality follows from the fact that F (y) + ⟨∇F (y), z − y⟩ +
L
2 ∥z − y∥2 is L-strongly convex in z with minimizer y′. ■

Lemma 7. Suppose f1, . . . , fk : Rn → R are L-smooth convex functions and
define

F (x) := max
i∈[k]

fi(x)

prox(y) := arg min
x∈Rn

max
i∈[k]

{
fi(y) + ⟨∇fi(y), x − y⟩ + L

2 ∥x − y∥2
}

.

This map is well-defined and is a smooth prox-oracle for minx∈Ω F (x).

Proof. The objective function in the definition of prox is L-strongly convex, thus
the arg min exists and is unique. This proves that prox is well-defined.

Now, note that the objective function in the definition of prox is L-strongly
convex. Now, let y, z ∈ Rn be arbitrary and for convenience, let y′ = prox(y).
Then,

F (z) ≥ max
i∈[k]

{fi(y) + ⟨∇f(y), z − y⟩}

= max
i∈[k]

{
fi(y) + ⟨∇f(y), z − y⟩ + L

2 ∥z − y∥2
}

− L

2 ∥z − y∥2

≥ max
i∈[k]

{
fi(y) + ⟨∇f(y), y′ − y⟩ + L

2 ∥y′ − y∥2
}

+ L

2 ∥y′ − z∥2 − L

2 ∥z − y∥2

≥ F (y′) + L

2 ∥y′ − y + y − z∥2 − L

2 ∥z − y∥2

= F (y′) + 1
2L

∥g(y)∥2 − ⟨g(y), y − z⟩ .
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Here, the second inequality follows from the fact that the first half of the second
line is L-strongly convex in z with minimizer y′. ■
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