MGMT 690 - Pset 3

Spring 2024

Instructions:

- This pset is due on Sunday, April 21 at 11:59pm.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.

- Complete all problems 1-3.

1 Exercises

Excercise 1

Lemma 1. Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x)=\left|x_{1}\right|+2\left|x_{2}\right|
$$

Then, $\partial f(1,0)=\{(1, y):|y| \leq 2\}$. Thus, $(1,2) \in \partial f(1,0)$ and $f((1,0)-$ $t(1,2))>f(1,0)$ for all $t>0$

Proof. We can write

$$
f(x)=\max \left\{x_{1}+2 x_{2},-x_{1}+2 x_{2}, x_{1}-2 x_{2},-x_{1}-2 x_{2}\right\} .
$$

Then, by Problem 1,

$$
\partial(f(1,0))=\operatorname{conv}\left(\left\{\binom{1}{2},\binom{1}{-2}\right\}\right)=\{(1, y): \mid(\mid y) \leq 2\}
$$

Next,

$$
f((1,0)-t(1,2))= \begin{cases}1+t & \text { if } 0 \leq t \leq 1 \\ 3 t-1 & \text { else }\end{cases}
$$

This is $>f(1,0)$ for all $t>0$.

Problems

Problem 1

Lemma 2. Let $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex and differentiable for $i=1, \ldots, n$. Let $F(x):=\max _{i} f_{i}(x)$. Then, for any $x \in \mathbb{R}^{d}$,

$$
\partial F(x)=\operatorname{conv}\left(\left\{\nabla f_{i}(x): f_{i}(x)=F(x)\right\}\right)
$$

Proof. Fix $\bar{x} \in \mathbb{R}^{d}$. For convenience, let $\mathcal{I}:=\left\{i \in[n]: f_{i}(\bar{x})=F(\bar{x})\right\}$. Also define

$$
\mathcal{S}:=\operatorname{conv}\left(\left\{\nabla f_{i}(\bar{x}): i \in \mathcal{I}\right\}\right) .
$$

Our goal is to show that $\partial F(\bar{x})=\mathcal{S}$.
First, suppose $g \in \mathcal{S}$. By definition, there exists λ_{i} such that $\sum_{i \in \mathcal{I}} \lambda_{i}=1$, $\lambda_{i} \geq 0$ for all $i \in \mathcal{I}$.

Now, consider the convex function

$$
L(x):=\sum_{i \in \mathcal{I}} \lambda_{i} f_{i}(x)
$$

This function satisfies: $\nabla L(\bar{x})=g, L(\bar{x})=F(\bar{x})$ and $L(x) \leq F(x)$ everywhere. To see that the last statement is true:

$$
L(x)=\sum_{i \in \mathcal{I}} \lambda_{i} f_{i}(x) \leq \max _{i \in \mathcal{I}} f_{i}(x) \leq \max _{i} f_{i}(x)=F(x) .
$$

We deduce that for all $x \in \mathbb{R}^{d}$,

$$
F(x) \geq L(x) \geq L(\bar{x})+\langle\nabla L(\bar{x}), x-\bar{x}\rangle=F(\bar{x})+\langle g, x-\bar{x}\rangle .
$$

By definition, this means that $g \in \partial F(\bar{x})$.
Now, suppose $g \notin \mathcal{S}$ and assume for the sake of contradiction that $g \in \partial F(\bar{x})$. As \mathcal{S} is compact, there exists a $v \in \mathbb{R}^{d}$ with $\|v\|=1$ so that

$$
v^{\top} g>\max _{i \in \mathcal{I}}\left\langle v, \nabla f_{i}(\bar{x})\right\rangle .
$$

Let $\delta:=v^{\boldsymbol{\top}} g-\max _{i \in \mathcal{I}}\left\langle v, \nabla f_{i}(\bar{x})\right\rangle$.
Now, let $x_{\alpha}:=\bar{x}+\alpha v$. As the f_{i} are continuous, it holds that $F\left(x_{\alpha}\right)=$ $\max _{i \in \mathcal{I}} f_{i}\left(x_{\alpha}\right)$ for all small enough $\alpha>0$. Now, as $g \in \partial F(\bar{x})$, we have that

$$
\begin{aligned}
F\left(x_{\alpha}\right) & \geq F(\bar{x})+\left\langle g, x_{\alpha}-\bar{x}\right\rangle \\
& =F(\bar{x})+\alpha\langle g, v\rangle \\
& \geq \max _{i \in \mathcal{I}}\left(F(\bar{x})+\alpha\left\langle v, \nabla f_{i}(\bar{x})\right\rangle\right)+\alpha \delta \\
& \geq F\left(x_{\alpha}\right)-o(\alpha)+\alpha \delta \\
& >F\left(x_{\alpha}\right) .
\end{aligned}
$$

The last two inequalities both hold for all $\alpha>0$ small enough. This is a contradiction.

Problem 2

Let $\gamma>1$ and consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}\sqrt{x_{1}^{2}+\gamma x_{2}^{2}} & \text { if }\left|x_{2}\right| \leq x_{1} \\ \frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}} & \text { else }\end{cases}
$$

This function is convex and $\sqrt{\gamma}$-Lipschitz (you do not need to prove this).
Consider the subgradient method with exact line-search initialized at $x^{(0)}=$ $(\gamma, 1)$, i.e., for $t \geq 1$, let $g \in \partial f\left(x^{(t-1)}\right)$ and set

$$
x^{(t)}=\underset{x \in x^{(t-1)}-\mathbb{R}_{+} g}{\arg \min } f(x)
$$

We will show that this method behaves poorly. We will need the following lemma.

Lemma 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. If f is differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$.

Proof. As $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, the set $\partial f(x)$ is nonempty. Let $g \in \partial f(x)$. Let $u \in \mathbb{R}^{n}$ and consider the one dimensional function

$$
t \mapsto f(x+t u) .
$$

Now, for all $t>0$

$$
\langle\nabla f(x), u\rangle=\lim _{t \rightarrow 0} \frac{f(x+t u)-f(x)}{t} \geq \lim _{t \rightarrow 0} \frac{t\langle g, u\rangle}{t}=\langle g, u\rangle .
$$

Here, we have used that $f(x+t u) \geq f(x)+t\langle g, u\rangle$. We deduce that

$$
\langle\nabla f(x), u\rangle \geq\langle g, u\rangle .
$$

As u was arbitrary, we conclude that $g=\nabla f(x)$.
For convenience, define

$$
\alpha:=\frac{\gamma-1}{\gamma+1} .
$$

Proposition 1. For all $t \geq 0$, it holds that

$$
x^{(t)}=\left(\gamma \alpha^{t},(-\alpha)^{t}\right) .
$$

In particular, for all $t \geq 0$, it holds that $f\left(x^{(t)}\right) \geq 0$, despite $\inf _{x} f(x)=-\infty$.

Proof. By definition, $x^{(0)}=(\gamma, 1)=\left(\gamma \alpha^{0},(-\alpha)^{0}\right)$. Thus, the claim holds for $t=0$.

Now, consider $t>0$. For convenience, let $y=x^{(t-1)}$. By induction, we have that

$$
y=\left(\gamma \alpha^{t-1},(-\alpha)^{t-1}\right)
$$

As $\gamma>1$, we have that $\left|y_{2}\right|<y_{1}$ so that f is differentiable at y with gradient

$$
\nabla f(y)=\frac{1}{\sqrt{y_{1}^{2}+\gamma y_{2}^{2}}}\binom{y_{1}}{\gamma y_{2}}
$$

We can parameterize the ray beginning at y in the direction of $-\nabla f(y)$ as

$$
x_{\beta}=\binom{\gamma \alpha^{t-1}(1-\beta)}{(-\alpha)^{t-1}(1-\gamma \beta)}
$$

for $\beta \in \mathbb{R}_{+}$. Note that when $\beta=1-\alpha$

$$
x_{\beta}=\binom{\gamma \alpha^{t}}{(-\alpha)^{t-1}(1-\gamma(1-\alpha))}=\binom{\gamma \alpha^{t}}{(-\alpha)^{t}}
$$

Thus, it remains to show that

$$
\beta \mapsto \sqrt{\left(\gamma \alpha^{t-1}(1-\beta)\right)^{2}+\gamma\left((-\alpha)^{t-1}(1-\gamma \beta)\right)^{2}}
$$

is minimized at $\beta=1-\alpha$. It suffices to check that term inside the radical achieves its minimum at $\beta=1-\alpha$. The derivative in β of the term inside the radical evaluated at $\beta=1-\alpha$ is

$$
\begin{aligned}
& -2\left(\gamma \alpha^{t-1}\right)^{2}(1-\beta)-2 \gamma^{2} \alpha^{2(t-1)}(1-\gamma \beta) \\
& \quad=-2 \gamma^{2} \alpha^{2 t-1}+2 \gamma^{2} \alpha^{2 t-1} \\
& \quad=0
\end{aligned}
$$

Problem 3

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-Lipschitz convex function with minimizer x^{\star} and minimum value f^{*}. Suppose that f satisfies the following growth condition parameterized by $\delta>0, \alpha>0$:

$$
f(x)-f^{\star} \leq \delta \quad \Longrightarrow \quad f(x)-f^{*} \geq \alpha\left\|x-x^{\star}\right\|^{2}
$$

Suppose we are given $x_{0} \in \mathbb{R}^{n}$ with $\left\|x_{0}-x^{\star}\right\| \leq R$.
Consider the following restarted subgradient method.

```
Algorithm 1 Restarted subgradient method
Given: \(L, R, \alpha, \delta, x_{0}\)
```

- For each $k=0, \ldots$
- Run the subgradient method with constant stepsizes (see Corollary 7 in the notes) with initial iterate x_{k} for

$$
T_{k}= \begin{cases}\left\lfloor\left(\frac{L R}{\delta}\right)^{2}\right\rfloor & \text { if } k=0 \\ \left\lfloor\frac{2 L^{2}}{\alpha \delta 2^{k}}\right\rfloor & \text { else }\end{cases}
$$

iterations. Let x_{k+1} to be the output of the subgradient method.

By setting $T_{0}=\left\lfloor\left(\frac{L R}{\delta}\right)^{2}\right\rfloor$, we can ensure the following property:
Lemma 4. It holds that $f\left(x_{1}\right)-f^{\star} \leq \delta$.
Proof. By Corollary 7 of the notes,

$$
f\left(x_{1}\right)-f^{\star} \leq \frac{L R}{\sqrt{T_{0}+1}}=\frac{L R}{\sqrt{L^{2} R^{2} / \delta^{2}}}=\delta
$$

For $k \geq 1$, define $\delta_{k}=\frac{2}{2^{k}} \delta \leq \delta$. By setting $T_{k}=\left\lfloor\frac{4 L^{2}}{\alpha \delta_{k}}\right\rfloor$ for $k \geq 1$, we can ensure the following property:

Lemma 5. It holds that $f\left(x_{k}\right)-f^{\star} \leq \delta_{k}$.
Proof. By the previous lemma, we have that $f\left(x_{1}\right)-f^{\star} \leq \delta_{1}$.
Now, by induction, suppose that $f\left(x_{k}\right)-f^{\star} \leq \delta_{k}$. By Corollary 7 of the notes and the growth property, we have that

$$
\begin{aligned}
f\left(x_{k+1}\right)-f^{\star} & \leq \frac{L\left\|x_{k}-x^{\star}\right\|}{\sqrt{T_{k}+1}} \\
& \leq \frac{L \sqrt{\left(f\left(x_{k}\right)-f^{\star}\right) / \alpha}}{\sqrt{T_{k}+1}} \\
& \leq \frac{L \sqrt{\delta_{k} / \alpha}}{\sqrt{T_{k}+1}} \\
& \leq \frac{\delta_{k}}{2} \\
& =\delta_{k+1}
\end{aligned}
$$

We conclude that:
Proposition 2. The restarted subgradient method with constant stepsizes and horizons $T_{0}=\left\lfloor\left(\frac{L R}{\delta}\right)^{2}\right\rfloor$ and $T_{k}=\left\lfloor\frac{4 L^{2}}{\alpha \delta_{k}}\right\rfloor$ for all $k \geq 1$ achieves a gap $f(x)-f^{\star} \leq \epsilon$
after at most

$$
O\left(\frac{L^{2} R^{2}}{\delta^{2}}+\frac{L^{2}}{\alpha \epsilon}\right)
$$

total (inner) iterations. Thus for $\epsilon \ll \frac{\delta^{2}}{\alpha R^{2}}$, this convergence rate is $O\left(\frac{L^{2}}{\alpha \epsilon}\right)$.
Proof. Set

$$
k=\left\lceil\log _{2}\left(\frac{2 \delta}{\epsilon}\right)\right\rceil .
$$

Note that with this choice of k, it holds that $\delta_{k} \leq \epsilon$ and $2^{k-1}<\frac{2 \delta}{\epsilon}$.
It remains to compute

$$
T_{1}+T_{2}+\cdots+T_{k} \leq \frac{L^{2}}{\alpha \delta}\left(2^{1}+2^{2}+\cdots+2^{k}\right) \leq \frac{L^{2} 2^{k+1}}{\alpha \delta}=\frac{8 L^{2}}{\alpha \epsilon}
$$

Problem 4

Consider a minimization problem of the form

$$
\min _{x \in \Omega} F(x)
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an arbitrary function and $\Omega \subseteq \mathbb{R}^{n}$ is an arbitrary set. We say that

$$
\text { prox }: \mathbb{R}^{n} \rightarrow \Omega
$$

is a smooth prox-oracle for this problem if prox satisfies the following property: Given $y \in \mathbb{R}^{n}$, define $g(y):=L(y-\operatorname{prox}(y))$. Then, for all $z \in \Omega$, it holds that

$$
\begin{equation*}
F(\operatorname{prox}(y)) \leq F(z)+\langle g(y), y-z\rangle-\frac{\|g(y)\|^{2}}{2 L} \tag{1}
\end{equation*}
$$

We will replace the gradient step in accelerated gradient descent with the prox oracle:

```
Algorithm 2 Accelerated gradient descent for smoothly proxable problems
```

Given $x_{0} \in \mathbb{R}^{d}, F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and prox $: \mathbb{R}^{n} \rightarrow \Omega$

- Set $y_{0}=x_{0}$ and $\lambda_{-1}=1$
- For $t=0, \ldots$

$$
\begin{aligned}
\lambda_{t} & =\frac{1+\sqrt{1+4 \lambda_{t-1}^{2}}}{2} \\
\gamma_{t} & =\frac{\lambda_{t-1}-1}{\lambda_{t}} \\
x_{t+1} & =\operatorname{prox}\left(y_{t}\right)=y_{t}-\frac{1}{L} g\left(y_{t}\right) \\
y_{t+1} & =x_{t+1}+\gamma_{t}\left(x_{t+1}-x_{t}\right)
\end{aligned}
$$

Theorem 1. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subseteq \mathbb{R}^{n}$ and suppose prox: $\mathbb{R}^{n} \rightarrow \Omega$ is a smooth prox-oracle for $\min _{x \in \Omega} F(x)$. Furthermore, suppose F has minimizer x^{\star} with minimum value F^{\star}. Then, it holds that

$$
F\left(x_{T}\right)-F^{\star}=O\left(\frac{L\left\|x_{0}-x^{\star}\right\|^{2}+F\left(x_{0}\right)-F^{\star}}{T^{2}}\right)
$$

Proof. Let $\delta_{t}=F\left(x_{t}\right)-F^{\star}, g_{t}=g\left(y_{t}\right)$, and $\Delta_{t}=y_{t}-x_{t}$.
By definition of the prox oracle, we have that for all $t \geq 0$ and all $z \in \Omega$,

$$
F\left(x_{t+1}\right) \leq F(z)+\left\langle g_{t}, y_{t}-z\right\rangle-\frac{\left\|g_{t}\right\|^{2}}{2 L}
$$

Taking $z=x_{t}$ gives

$$
\delta_{t+1}-\delta_{t} \leq\left\langle g_{t}, \Delta_{t}\right\rangle-\frac{1}{2 L}\left\|g_{t}\right\|^{2} .
$$

Taking $z=x^{\star}$ gives

$$
\delta_{t+1} \leq\left\langle g_{t}, \Delta_{t}+x_{t}-x^{\star}\right\rangle-\frac{1}{2 L}\left\|g_{t}\right\|^{2}
$$

Now, let us take the first inequality weighted by $\left(\lambda_{t}-1\right)$ and add it to the second inequality to get

$$
\lambda_{t} \delta_{t+1}-\left(\lambda_{t}-1\right) \delta_{t} \leq\left\langle g_{t}, \lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)\right\rangle-\frac{\lambda_{t}}{2 L}\left\|g_{t}\right\|^{2}
$$

We will complete the square on the right hand side to write it as

$$
\begin{aligned}
& \left\langle g_{t}, \lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)\right\rangle-\frac{\lambda_{t}}{2 L}\left\|g_{t}\right\|^{2} \\
& \quad=\frac{L}{2 \lambda_{t}}\left(2\left\langle\frac{\lambda_{t} g_{t}}{L}, \lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)\right\rangle-\left\|\frac{\lambda_{t} g_{t}}{L}\right\|^{2}\right) \\
& \quad=\frac{L}{2 \lambda_{t}}\left(\left\|\lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)\right\|^{2}-\left\|\lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)-\frac{\lambda_{t} g_{t}}{L}\right\|^{2}\right)
\end{aligned}
$$

By our choice of λ_{t} and γ_{t}, we have that

$$
\begin{aligned}
\lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)-\frac{\lambda_{t} g_{t}}{L} & =\lambda_{t}\left(y_{t}-x_{t}\right)+x_{t}-x^{\star}-\lambda_{t}\left(y_{t}-x_{t+1}\right) \\
& =\left(1-\lambda_{t}\right) x_{t}-x^{\star}+\lambda_{t} x_{t+1} \\
& =\left(\lambda_{t}-1\right)\left(x_{t+1}-x_{t}\right)+\left(x_{t+1}-x^{\star}\right) \\
& =\frac{\lambda_{t}-1}{\gamma_{t+1}} \Delta_{t+1}+\left(x_{t+1}-x^{\star}\right) \\
& =\lambda_{t+1} \Delta_{t+1}+\left(x_{t+1}-x^{\star}\right)
\end{aligned}
$$

Thus,
$\lambda_{t}^{2} \delta_{t+1}-\left(\lambda_{t}-1\right) \lambda_{t} \delta_{t} \leq \frac{L}{2}\left(\left\|\lambda_{t} \Delta_{t}+\left(x_{t}-x^{\star}\right)\right\|^{2}-\left\|\lambda_{t+1} \Delta_{t+1}+\left(x_{t+1}-x^{\star}\right)\right\|^{2}\right)$.
Note that $\left(\lambda_{t}-1\right) \lambda_{t}=\lambda_{t-1}^{2}$. Finally, we may telescope this inequality to get

$$
\lambda_{T-1}^{2} \delta_{T} \leq \frac{L}{2}\left\|x_{0}-x^{\star}\right\|^{2}+\delta_{0}
$$

Lemma 6. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an L-smooth convex function and $\Omega \subseteq \mathbb{R}^{n}$ is nonempty, closed, and convex. Define

$$
\operatorname{prox}(y):=\underset{x \in \Omega}{\arg \min }\left\{F(y)+\langle\nabla F(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}\right\} .
$$

This map is well-defined, is equal to

$$
\operatorname{prox}(y)=\Pi_{\Omega}\left(y-\frac{1}{L} \nabla F(y)\right)
$$

and is a smooth prox-oracle for $\min _{x \in \Omega} F(x)$.
Proof. For the first point, note that

$$
\begin{aligned}
\operatorname{prox}(y) & :=\underset{x \in \Omega}{\arg \min }\left\{F(y)+\langle\nabla F(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}\right\} \\
& =\underset{x \in \Omega}{\arg \min }\left\{\frac{L}{2}\left\|x-y+\frac{\nabla F(x)}{L}\right\|^{2}+\text { constant }\right\} \\
& =\underset{x \in \Omega}{\arg \min }\left\|x-y+\frac{\nabla F(x)}{L}\right\| .
\end{aligned}
$$

As Ω is closed and convex, this arg min exists and is unique and is, by definition, the projection of $y-\nabla F(x) / L$ onto Ω.

We need to check that for all $y, z \in \Omega$ that

$$
F(\operatorname{prox}(y)) \leq F(z)+\langle g(y), y-z\rangle-\frac{\|g(y)\|^{2}}{2 L}
$$

where $g(y):=L(y-\operatorname{prox}(y))$. For convenience, let $y^{\prime}:=\operatorname{prox}(y)$.
We compute:

$$
\begin{aligned}
F(z) & \geq F(y)+\langle\nabla F(y), z-y\rangle \\
& =F(y)+\langle\nabla F(y), z-y\rangle+\frac{L}{2}\|z-y\|^{2}-\frac{L}{2}\|z-y\|^{2} \\
& \geq F(y)+\left\langle\nabla F(y), y^{\prime}-y\right\rangle+\frac{L}{2}\left\|y^{\prime}-y\right\|^{2}+\frac{L}{2}\left\|y^{\prime}-z\right\|^{2}-\frac{L}{2}\|z-y\|^{2} \\
& \geq F\left(y^{\prime}\right)+\frac{L}{2}\left\|y^{\prime}-y+y-z\right\|^{2}-\frac{L}{2}\|z-y\|^{2} \\
& =F\left(y^{\prime}\right)+\frac{1}{2 L}\|g(y)\|^{2}-\langle g(y), y-z\rangle .
\end{aligned}
$$

Here, the second inequality follows from the fact that $F(y)+\langle\nabla F(y), z-y\rangle+$ $\frac{L}{2}\|z-y\|^{2}$ is L-strongly convex in z with minimizer y^{\prime}.

Lemma 7. Suppose $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are L-smooth convex functions and define

$$
\begin{gathered}
F(x):=\max _{i \in[k]} f_{i}(x) \\
\operatorname{prox}(y):=\underset{x \in \mathbb{R}^{n}}{\arg \min } \max _{i \in[k]}\left\{f_{i}(y)+\left\langle\nabla f_{i}(y), x-y\right\rangle+\frac{L}{2}\|x-y\|^{2}\right\} .
\end{gathered}
$$

This map is well-defined and is a smooth prox-oracle for $\min _{x \in \Omega} F(x)$.
Proof. The objective function in the definition of prox is L-strongly convex, thus the arg min exists and is unique. This proves that prox is well-defined.

Now, note that the objective function in the definition of prox is L-strongly convex. Now, let $y, z \in \mathbb{R}^{n}$ be arbitrary and for convenience, let $y^{\prime}=\operatorname{prox}(y)$. Then,

$$
\begin{aligned}
F(z) & \geq \max _{i \in[k]}\left\{f_{i}(y)+\langle\nabla f(y), z-y\rangle\right\} \\
& =\max _{i \in[k]}\left\{f_{i}(y)+\langle\nabla f(y), z-y\rangle+\frac{L}{2}\|z-y\|^{2}\right\}-\frac{L}{2}\|z-y\|^{2} \\
& \geq \max _{i \in[k]}\left\{f_{i}(y)+\left\langle\nabla f(y), y^{\prime}-y\right\rangle+\frac{L}{2}\left\|y^{\prime}-y\right\|^{2}\right\}+\frac{L}{2}\left\|y^{\prime}-z\right\|^{2}-\frac{L}{2}\|z-y\|^{2} \\
& \geq F\left(y^{\prime}\right)+\frac{L}{2}\left\|y^{\prime}-y+y-z\right\|^{2}-\frac{L}{2}\|z-y\|^{2} \\
& =F\left(y^{\prime}\right)+\frac{1}{2 L}\|g(y)\|^{2}-\langle g(y), y-z\rangle
\end{aligned}
$$

Here, the second inequality follows from the fact that the first half of the second line is L-strongly convex in z with minimizer y^{\prime}.

