MGMT 690 - Pset 3
Spring 2024
Instructions:

e This pset is due on Sunday, April 21 at 11:59pm.

e Completed psets should be submitted to Gradescope.

o Exercises are for your own review only. They do not need to be submitted

and will not be graded.

¢ Complete all problems 1-3.

1 Exercises

Excercise 1

Lemma 1. Consider f : R?> — R by

f(@) = |z1] + 2 |22] .

Then, 0f(1,0) = {(1,y): |y| <2}. Thus, (1,2) € 9f(1,0) and f((1,0) —

t(1,2)) > f(1,0) for allt >0
Proof. We can write
f(z) = max {x1 + 2x9, —x1 + 222,21 — 229, —x1 — 222} .

Then, by Problem 1,

or,0) = o ({(3) . ()}) = (@m 1w <.

1+t ifo<t<l1
3t—1 else

Next,

f((la 0) - t(la 2))

This is > f(1,0) for all £ > 0.



Problems

Problem 1

Lemma 2. Let f; : R? — R be convex and differentiable fori=1,...,n. Let
F(z) = max; f;(x). Then, for any x € RY,

OF (x) = comv({V fi(a) : filx) = F()}).

Proof. Fix # € R%. For convenience, let Z := {i € [n]: f;(z) = F(Z)}. Also
define

S =conv({Vfi(z): i €I}).

Our goal is to show that 0F(z) = S.

First, suppose g € S. By definition, there exists A; such that >, ., A\; =1,
A; >0forallielX.

Now, consider the convex function

L(z) = Z i fi(z).
ieT
This function satisfies: VL(Z) = g, L(z) = F(z) and L(z) < F(z) everywhere.
To see that the last statement is true:
L(z) =) _Aifi(z) < max f;(z) < max fi(z) = F().
i€l
We deduce that for all 2 € RY,
F(z) > L(z) > L(z) + (VL(Z),z — &) = F(Z) + (9,2 — Z) .

By definition, this means that g € 9F(Z).
Now, suppose g ¢ S and assume for the sake of contradiction that g € OF ().
As S is compact, there exists a v € R? with [jv| = 1 so that

T A
vTg > max (v, Vfi(z)).

Let § :== vTg — max;ez (v, V fi(Z)).
Now, let x, = T + av. As the f; are continuous, it holds that F(z,) =
max;ez fi(xq) for all small enough oo > 0. Now, as g € OF(Z), we have that

F(za) =2 F(Z) 4 (9,0 — T)
=F(z) +a(g,v)
> max (F(z) + alv,Vfi(Z)) +ad
> F(z,) —ola) + ad
> F(zq).
The last two inequalities both hold for all & > 0 small enough. This is a
contradiction. ]



Problem 2
Let v > 1 and consider the following function f : R? — R
Va2 +yas if |za] <o
f(i[') = z1+7|x2] else

ViH

This function is convex and ,/¥-Lipschitz (you do not need to prove this).

Consider the subgradient method with ezact line-search initialized at z(®) =

(7,1), i.e., for t > 1, let g € df(x*~1)) and set

W = argmin f(x)
zex(t-D—R g

We will show that this method behaves poorly. We will need the following
lemma.

Lemma 3. Let f : R™ — R be a convex function. If f is differentiable at x,

then Of(x) = {Vf(x)}.

Proof. As f:R™ — R is convex, the set df(x) is nonempty. Let g € 9f(x). Let
u € R™ and consider the one dimensional function

t— fx+ tu).

Now, for all t > 0

<vf(.%‘)u> = lim fla+tu) — f(x) > lim t{g,u)

t—0 t t—0 t - <g7u> ’

Here, we have used that f(x + tu) > f(x) +t (g, u). We deduce that

(Vf(@),u) = (g,u).
As u was arbitrary, we conclude that g = V f(x). |

For convenience, define

Proposition 1. For allt > 0, it holds that
z® = (v, (—a)").

In particular, for all t > 0, it holds that f(z®) >0, despite inf, f(z) = —oo.



Proof. By definition, z(®) = (v,1) = (ya°, (—a)®). Thus, the claim holds for
t=0.

Now, consider ¢ > 0. For convenience, let y = (=Y. By induction, we have
that

y=(va""" (=)

As v > 1, we have that |ys| < y; so that f is differentiable at y with gradient

__ Y (wm

We can parameterize the ray beginning at y in the direction of —V f(y) as

wo=(Co )

for 5 € Ry. Note that when 5 =1 -«

zp = ((_a)tl(ﬁtv(l ~ a))) N ((Zzt)t) '

Thus, it remains to show that

BV (rat 11 = £)2 + y((—a) 11— 75))?

is minimized at 8 = 1 — «. It suffices to check that term inside the radical
achieves its minimum at § = 1 — a. The derivative in 8 of the term inside the
radical evaluated at § =1 — « is

_ 2(’70475_1)2(1 _ B) _ 2’72Oé2(t_1)(1 _ 'Yﬂ)
—_ 72,}/20121571 4 2’)/20[2t71
=0. |

Problem 3

Let f : R® — R be a L-Lipschitz convex function with minimizer z* and
minimum value f*. Suppose that f satisfies the following growth condition
parameterized by § > 0,a > 0:

f@)—fr<s = fl@)-f >alz-2">.

Suppose we are given xg € R™ with ||zg — 2*|| < R.
Consider the following restarted subgradient method.



Algorithm 1 Restarted subgradient method
Given: L, R, «a, 9, xg

e Foreach k=0,...

— Run the subgradient method with constant stepsizes (see Corollary 7
in the notes) with initial iterate xj for

(L2)°| itk =0

o
Tk - 2L> 1
0452"J else

iterations. Let zi41 to be the output of the subgradient method.

By setting Ty = “%)QJ, we can ensure the following property:
Lemma 4. It holds that f(x1) — f* < 6.
Proof. By Corollary 7 of the notes,

fa)—p<—2B__ LR ___;
VT 1 JI2R2)5?

For k£ > 1, define §, = 2%5 < 4. By setting T}, = {%J for £ > 1, we can
ensure the following property:

Lemma 5. It holds that f(xy) — f* < 0.

Proof. By the previous lemma, we have that f(xz1) — f* < 4.
Now, by induction, suppose that f(xy) — f* < 0. By Corollary 7 of the
notes and the growth property, we have that

flanin) - £ < F =t
< LV () = f*)/
- VT +1
< L (Sk/()t
T VT +1
Ok
2
= Oky1- |

<

‘We conclude that:

Proposition 2. The restarted subgradient method with constant stepsizes and
horizons Ty = {(L(SR)QJ and Ty, = L%:J forallk > 1 achieves a gap f(x)—f* <e



after at most

total (inner) iterations. Thus for e K a‘;—;g, this convergence rate is O (g—i)

o (2]

Note that with this choice of k, it holds that 0, < e and 2F~1 < 2?5
It remains to compute

Proof. Set

L? N L2k gL2
T Tyt T < =5 (204274 4+ 2F) < =—
«

ad e

Problem 4

Consider a minimization problem of the form

w1

where F' : R™ — R is an arbitrary function and 2 C R” is an arbitrary set. We
say that

prox: R" — Q

is a smooth prox-oracle for this problem if prox satisfies the following property:
Given y € R™, define ¢g(y) := L(y — prox(y)). Then, for all z € €, it holds that

lg(y)]*
2L

F(prox(y)) < F(z) +(9(y),y — 2) — (1)

We will replace the gradient step in accelerated gradient descent with the
prox oracle:



Algorithm 2 Accelerated gradient descent for smoothly proxable problems
Given 79 € R?, F : R® — R and prox : R” — Q

e Set yg=xpand A\_; =1
e Fort=0,...

L4+ /1+407
N=—TF————

2
A -1

Ve iy

1
Tip1 = prox(y) = yr — Zg(yt)

Y1 = Teq1 + Ye(Tep1 — x4)

Theorem 1. Suppose F': R™ — R and Q@ CR"™ and suppose proz: R™ — Q is
a smooth prox-oracle for min,cq F(x). Furthermore, suppose F has minimizer
x* with minimum value F*. Then, it holds that

. Lz — a*||> + F(xo) — F*
F(zr) — F :O< 2o xHTQ (z0) )

Proof. Let §; = F(xy) — F*, g: = g(yz), and Ay = yp — a4.
By definition of the prox oracle, we have that for all ¢ > 0 and all z € €,

2
_ gl

F(xe1) < F(2) + (g6, Y — 2) o,

Taking z = x; gives
1 2
Opp1 — 0 < <gt7At> - by ”gt” .
Taking z = x* gives
i1 < (g A+ 0 —2%) — = [lgi]
vy — ') — —
t+1 = (Gt At t oL gt

Now, let us take the first inequality weighted by (A — 1) and add it to the
second inequality to get

A
Aebi1 — (Ae — 1) < (g, MDAy + (2 — 27)) — i lgell®-



We will complete the square on the right hand side to write it as

)

A
(g6 A + (20 = 27)) = 2 el

L A A
- <2 < t9¢ )\tAt + l’t - 37 > H L9t
t

D)

L Ay 2
O ]
By our choice of \; and 7, we have that
A
AtAt‘i»(IEtiz )7%‘%7At(yti‘rt>+xt71' 7)\15( xt—i—l)

=1 =)z — " + My

= (M = (@41 — @) + (T141 — 27)
A1
B Vt+1
= ANt1Q¢p1 + (g1 — 27).

Apy1 + (2441 — 2¥)

Thus,

A1 — (e = DAsd; < L <||>\tAt + (= 2)” = M1 Drsr + (@141 — x*)Hz) :

Note that (A\; — 1)\; = A\?_;. Finally, we may telescope this inequality to get
O =

Lemma 6. Suppose F': R™ — R is an L-smooth convez function and 2 C R™
is nonempty, closed, and convex. Define

proz(y) = arg min {F(y) +(VF(y),r —y) + § |z — yIIQ} :

€N

This map is well-defined, is equal to

proz(y) = Ilo (y - %VF (y)> ;

and is a smooth proz-oracle for min,cq F(x).

Proof. For the first point, note that

prox(y) = arg min {F(y) +(VF(y),r —y) + g |z — y||2}

€N
_ {L VF(z)? }
=argming — |z —y + + constant
e 2 L
. VF(x) ‘
=argmin (|r — Yy + .
zeQ L




As Q is closed and convex, this arg min exists and is unique and is, by definition,
the projection of y — VF(x)/L onto €.
We need to check that for all y, z € Q2 that

F(prox(y)) < F(2) + {gly).y — =) — LA

where ¢(y) := L(y — prox(y)). For convenience, let 3’ := prox(y).
We compute:

F(z) 2 F(y) + (VF(y),z —y)
= F) 4+ {VF@). 2~ + 5 2 —ol* = 5 12— ol

P =Ly
2

L L
> Fy) + (VE(y).y' —y) + 5 Iy —oll" + 5 Iy — =
L s L
ZF(y’)+§||y’—y+y—ZH —§||z—yll2
1
= F(y) + 57 la@)” = (9(w).y = 2).

Here, the second inequality follows from the fact that F(y) + (VF(y),z — y) +

L)z- y|? is L-strongly convex in z with minimizer 3. |
Lemma 7. Suppose f1,..., fr : R = R are L-smooth convex functions and
define

F(z) = max fi(z)

. L
pros(y) = arg min max {my) Vet L y||2} .
xR €[] 2

This map is well-defined and is a smooth proz-oracle for mingeq F(x).

Proof. The objective function in the definition of prox is L-strongly convex, thus
the arg min exists and is unique. This proves that prox is well-defined.

Now, note that the objective function in the definition of prox is L-strongly
convex. Now, let y,z € R™ be arbitrary and for convenience, let ¢y’ = prox(y).
Then,

F(z) > max {fity) + (Vf(w).z—y)}
L L
e { ) + (VI 2 =)+ 5 =l = S - ol
i€ k] 2 2
L L L
> max{ fi(y) + (VW)Y —y)+ = Iy —ul*t + 2y — 21— = Iz — I
i€ [k] 2 2 2
L L
=2 FO)+ 5l —yt+y =" =5 llz—yl
p— F I

W) + 57 oI~ lo(w)oy — 2.



Here, the second inequality follows from the fact that the first half of the second
line is L-strongly convex in z with minimizer 3. |
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