MGMT 690 - Pset 4

Spring 2024

Instructions:

- This pset is due on Thursday, May 2 at $11: 59 \mathrm{pm}$.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1-3.

Exercises

- Recall that a function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is closed if the epigraph

$$
\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq t\right\}
$$

is a closed set.

- Prove that any convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous.
- Prove that any continuous function from $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed.
- Give an example of a convex function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ that is not closed.
- Suppose $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}$ for each $i \in[k]$. Define $g: \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}$ by

$$
g\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} f_{i}\left(x_{i}\right)
$$

Show that $g^{*}\left(y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} f_{i}^{*}\left(y_{i}\right)$.

Problems

1. [15pts] Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The infimal convolution of f and g, denoted $f \square g$, is a function $(f \square g): \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ defined as

$$
(f \square g)(x):=\inf _{z \in \mathbb{R}^{n}} f(z)+g(x-z) .
$$

Prove that if $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then

$$
(f \square g)^{*}(y)=f^{*}(y)+g^{*}(y) \quad \forall y \in \mathbb{R}^{n}
$$

2. [40pts] This question derives a mirror descent setup on the simplex with the ℓ_{1} norm.

Let

$$
\Delta_{n}:=\left\{x \in \mathbb{R}^{n}: \begin{array}{l}
x \geq 0 \\
1^{\top} x \leq 1
\end{array}\right\}
$$

Define $\omega: \Delta_{n} \rightarrow \mathbb{R}$ by

$$
\omega(x)=\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)
$$

with the convention that $0 \log (0)=0$.
(a) [10 pts] Verify that ω is closed and convex and differentiable on $\operatorname{dom}(\partial \omega)$
(b) [15pts] Prove that $\omega(x)$ is 1-strongly convex on Δ_{n} with respect to the ℓ_{1} norm.
Hint: Recall, this is equivalent to saying that $x \mapsto \omega(x)-\frac{1}{2}\|x\|_{1}^{2}$ is convex on the set Δ_{n}. You may use without proving that this function is convex if and only if the Hessian is positive semidefinite on the interior of Δ_{n}.
(c) [15pts] The basic step in mirror descent with this setup is: given $x_{t} \in \operatorname{dom}(\partial \omega), g_{t} \in \partial f\left(x_{t}\right)$ and $\eta_{t}>0$, set

$$
x_{t+1}=\underset{x \in \Delta_{n}}{\arg \min }\left\{\left\langle\eta_{t} g_{t}-\nabla \omega\left(x_{t}\right), x\right\rangle+\omega(x)\right\} .
$$

Give a closed form solution to this problem.
3. [45pts] This problem improves the Frank-Wolfe convergence rate by assuming that the domain is strongly convex and the objective is strongly convex.
Fix an arbitrary norm on \mathbb{R}^{n}. We say that a set $\Omega \subseteq \mathbb{R}^{n}$ is μ-strongly convex if for all $x, y \in \Omega, \gamma \in[0,1]$

$$
\mathbb{B}\left((1-\gamma) x+\gamma y, \gamma(1-\gamma) \frac{\mu}{2}\|x-y\|^{2}\right) \subseteq \Omega
$$

Here, $\mathbb{B}\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n}:\left\|x_{0}-x\right\| \leq r\right\}$.
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an L_{f}-smooth μ_{f}-strongly convex function w.r.t. $\|\cdot\|$. Let $\Omega \subseteq \mathbb{R}^{n}$ be a compact convex set with diameter D. Assume that Ω is μ_{Ω}-strongly convex.

Now, consider the following algorithm

```
Algorithm 1 Frank-Wolfe for strongly convex sets and objectives
Given: \(x_{0} \in \Omega\)
- For \(t=0, \ldots\),
- Set \(y_{t} \in \arg \min _{y \in \Omega}\left\langle\nabla f\left(x_{t}\right), y_{t}\right\rangle\)
- Set \(x_{t+1}=\left(1-\eta_{t}\right) x_{t}+\eta_{t} y_{t}\) where
\[
\eta_{t}= \begin{cases}1 & \text { if } t=0 \\ 1 & \text { if } L_{f} \leq \frac{\mu_{\Omega}}{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*} . \\ \frac{\mu_{\Omega}\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{4 L} & \text { else }\end{cases}
\]
```

Let $\delta_{t}:=f\left(x_{t}\right)-f^{\star}$.
(a) $[0 \mathrm{pts}]$ Recall that $\delta_{1} \leq \frac{L D^{2}}{2}$.
(b) $[15 \mathrm{pts}]$ Prove that for all $t \geq 1$,

$$
\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle \geq \frac{1}{2} \delta_{t}+\frac{\mu}{4}\left\|x_{t}-y_{t}\right\|^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*} .
$$

Hint: First, show that $\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle \geq \frac{\mu_{\Omega}}{2}\left\|x_{t}-y_{t}\right\|^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*}$ using the strong convexity of Ω.
(c) $[15 \mathrm{pts}]$ Prove that for all $t \geq 1$,

$$
\delta_{t+1} \leq \max \left(\frac{1}{2},\left(1-\frac{\mu_{\Omega}\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{8 L_{f}}\right)\right) \cdot \delta_{t}
$$

(d) [15pts] Now, use the fact that f is μ_{f}-strongly convex to show that if $0<\epsilon \ll 1$, then $\delta_{T} \leq \epsilon$ for

$$
T=O\left(\frac{L}{\mu_{\Omega} \sqrt{\mu_{f}} \sqrt{\epsilon}}\right)
$$

Hint 1: Strong convexity allows you to upper bound $\left\|\nabla f\left(x_{t}\right)\right\|_{*}$ in terms of δ_{t}.
Hint 2: Consider the sequence $\delta_{1}, \delta_{2}, \ldots$ Fix $k \geq 1$. For how many indices $t \geq 1$, can it be the case that $\delta_{t} \in\left(\frac{L D^{2}}{2^{k+1}}, \frac{L D^{2}}{2^{k}}\right]$?

