MGMT 690 - Pset 4

Spring 2024

Instructions:

- This pset is due on **Thursday**, **May 2** at 11:59pm.
- Completed psets should be submitted to Gradescope.
- **Exercises** are for your own review only. They do not need to be submitted and will not be graded.
- Complete all problems 1–3.

Problems

1. Let $f, g: \mathbb{R}^n \to \mathbb{R}$. The infimal convolution of f and g, denoted $f \Box g$, is a function $(f \Box g): \mathbb{R}^n \to [-\infty, \infty]$ defined as

$$(f\Box g)(x) \coloneqq \inf_{z \in \mathbb{R}^n} f(z) + g(y - z).$$

Lemma 1. If $f, g : \mathbb{R}^n \to \mathbb{R}$, then

$$(f\Box g)^*(y) = f^*(y) + g^*(y) \qquad \forall y \in \mathbb{R}^n.$$

Proof. By definition,

$$(f \Box g)^*(y) = \sup_{x \in \mathbb{R}^n} \langle y, x \rangle - (f \Box g)(x)$$

= $\sup_{x \in \mathbb{R}^n, z \in \mathbb{R}^n} \langle y, (x - z) + z \rangle - f(z) - g(x - z)$
= $\sup_{w \in \mathbb{R}^n, z \in \mathbb{R}^n} \langle y, z \rangle - f(z) + \langle y, w \rangle - g(w)$
= $f^*(y) + g^*(y).$

2. This question derives a mirror descent setup on the simplex with the ℓ_1 norm.

Let

$$\Delta_n \coloneqq \left\{ x \in \mathbb{R}^n : \begin{array}{c} x \ge 0 \\ 1^\mathsf{T} x \le 1 \end{array} \right\}.$$

Define $\omega : \Delta_n \to \mathbb{R}$ by

$$\omega(x) = \sum_{i=1}^{n} x_i \log(x_i)$$

with the convention that $0 \log(0) = 0$. For convenience, define

$$\Delta_n^o \coloneqq \left\{ x \in \mathbb{R}^n : \begin{array}{cc} x > 0 \\ 1^{\mathsf{T}} x \le 1 \end{array} \right\}.$$

Lemma 2. ω is closed and convex and differentiable on dom $(\partial \omega) = \Delta_n^o$.

Proof. Note that $x \log x$ is continuous on $(0, \infty)$ and that $\lim_{x\to 0} x \log x = 0$. Furthermore, for x > 0,

$$\frac{d^2}{dx^2}x\log x = \frac{1}{x} > 0.$$

Thus, $x \mapsto x \log x$ is a convex function on $[0, \infty)$. Thus, $\sum_i x_i \log(x_i)$ is a real-valued convex function on \mathbb{R}^n_+ . We deduce that ω is closed and convex on Δ_n .

We have that dom $(\partial \omega) = \Delta_n^o$. On dom $(\partial \omega)$, the gradient of $\omega(x)$ is given by

$$\nabla \omega(x) = \begin{pmatrix} 1 + \log(x_1) \\ \vdots \\ 1 + \log(x_n) \end{pmatrix}.$$

Lemma 3. ω is 1-strongly convex on Δ_n .

There are a few different proofs depending on what you may know from outside this course.

Proof 1. This proof uses only what we learned in this course.

Define

$$g(x) \coloneqq \omega(x) - \frac{1}{2} \|x\|_1^2 = \sum_i x_i \log(x_i) - \frac{1}{2} \left(\sum_i x_i\right)^2$$

on \mathbb{R}^n_+ . Our goal is to check that g is convex on Δ_n . As g is continuous up to its boundary, it suffices to check that g is convex on Δ_n^o .

As g(x) is twice differentiable on Δ_n^o , it suffices to show that for all $x \in \Delta_n^o$, that

$$\nabla^2 g(x) \succeq 0.$$

Let $x \in \Delta_n^o$ and $y \in \mathbb{R}^n$. We compute

$$\begin{split} \left\langle y, \nabla^2 g(x) y \right\rangle &= \sum_i \frac{y_i^2}{x_i} - \left(\sum_i y_i\right)^2 \\ &\geq \sum_i \frac{y_i^2}{x_i} - \left(2 - \sum_i x_i\right) \left(\sum_i y_i\right)^2 \\ &= \sum_i \frac{y_i^2}{x_i} - 2\sum_{i=1}^n y_i \sum_{j=1}^n y_j + \sum_i x_i \left(\sum_i y_i\right)^2 \\ &= \sum_i x_i \left(\frac{y_i^2}{x_i^2} - 2\frac{y_i}{x_i} \sum_{j=1}^n y_j + \left(\sum_{j=1}^n y_j\right)^2\right) \\ &= \sum_i x_i \left(\frac{y_i}{x_i} - \sum_{j=1}^n y_j\right)^2 \\ &\geq 0. \end{split}$$

Proof 2. This proof uses what we learned in the course and the Sherman–Morrison formula.

Define

$$g(x) \coloneqq \omega(x) - \frac{1}{2} \|x\|_1^2 = \sum_i x_i \log(x_i) - \frac{1}{2} \left(\sum_i x_i\right)^2$$

on \mathbb{R}^n_+ . Our goal is to check that g is convex on Δ_n . As g is continuous up to its boundary, it suffices to check that g is convex on

$$\Omega \coloneqq \left\{ x \in \mathbb{R}^n : \begin{array}{c} x > 0 \\ 1^{\mathsf{T}} x < 1 \end{array} \right\}.$$

As g(x) is twice differentiable on Ω , it suffices to show that for all $x \in \Omega$, that

$$\nabla^2 g(x) \succeq 0.$$

Let $x \in \Omega$. Let

$$\alpha = \frac{1}{1 - 1^{\intercal} x},$$

which exists by the assumption $x \in \Omega$. We will write the Hessian explicitly

and recognize the Sherman–Morrison formula:

$$\nabla^2 g(x) = \operatorname{Diag}(x)^{-1} - \mathbf{11}^{\mathsf{T}}$$

= $\operatorname{Diag}(x)^{-1} - \frac{\alpha \mathbf{11}^{\mathsf{T}}}{1 + \alpha \mathbf{1}^{\mathsf{T}} x}$
= $\operatorname{Diag}(x)^{-1} - \frac{\alpha \operatorname{Diag}(x)^{-1} x x^{\mathsf{T}} \operatorname{Diag}(x)^{-1}}{1 + \alpha x^{\mathsf{T}} \operatorname{Diag}(x)^{-1} x}$
= $(\operatorname{Diag}(x) + \alpha x x^{\mathsf{T}})^{-1}$
> 0.

Proof 3. This proof uses the fact that a twice-differentiable function f is 1-strongly convex in a norm $\|\cdot\|$ if and only if $\langle y, \nabla^2 f(x)y \rangle \ge \|y\|^2$ for all $x \in \text{dom}(f)$ and $y \in \mathbb{R}^n$.

Our goal is to check that ω is 1-strongly convex on Δ_n . As ω is continuous up to its boundary, it suffices to check that ω is 1-strongly convex on Δ_n^o . Note that ω is twice-differentiable on Δ_n^o , thus it suffices to check that for all $x \in \Delta_n^o$ and $y \in \mathbb{R}^n$, that $\langle y, \nabla^2 \omega(x) y \rangle \geq ||y||^2$. We compute:

$$\begin{split} \left\langle y, \nabla^2 \omega(x) y \right\rangle &= \left\langle y, \operatorname{Diag}(x)^{-1} y \right\rangle \\ &\geq \sum_i \frac{y_i^2}{x_i} \sum_i x_i \\ &\geq \left(\sum_i y_i\right)^2. \end{split}$$

Here, the last line follows by Cauchy-Schwarz.

Lemma 4. Let $\hat{x} \in (\Delta_n)_{++}$, $g \in \mathbb{R}^n$, and $\eta > 0$. Define

$$\theta = \min\left(-\log\left(\sum_{i} \exp\left(1 + \log(\hat{x}_{i}) - \eta g_{i}\right)\right), -1\right), \quad and$$
$$\tilde{x} = \left(\exp(1 + \log(\hat{x}_{i}) - \eta g_{i} + \theta)\right)_{i}.$$

Then, \tilde{x} is the unique minimizer of

$$\min_{x \in \Delta_n} \left\{ \langle \eta g - \nabla \omega(\hat{x}), x \rangle + \omega(x) \right\}.$$

Proof. For convenience, set $\hat{g} = \eta g - \nabla \omega(\hat{x})$. Let $\theta \in \mathbb{R}$ to be fixed momentarily and define $\tilde{x} \in \mathbb{R}^n_{++}$ by

$$\tilde{x}_i = \exp(-\hat{g}_i) \cdot \exp(\theta).$$

Note that $\sum_i \tilde{x}_i = \exp(\theta) \cdot \sum_i \exp(-\hat{g}_i)$.

Now, there are two cases. First, suppose $\exp(-1)\sum_i \exp(-\hat{g}_i) \leq 1$. Then, we can set $\theta = -1$ and have $\tilde{x} \in (\Delta_n)_{++}$. Note that

$$(\hat{g} + \nabla \omega(\tilde{x}))_i = \hat{g}_i + 1 + \log(\tilde{x}_i)$$
$$= 1 + \theta = 0.$$

We see that \tilde{x} is optimal.

In the second case, $\exp(-1)\sum_i \exp(-\hat{g}_i) > 1$. Set θ so that $\sum_i \tilde{x}_i = 1$. This is achieved by setting $\theta = -\log(\sum_i \exp(-\hat{g}_i)) < -1$. Now, we have $\tilde{x} \in (\Delta_n)_{++}$ and it remains to check that

$$(\hat{g} + \nabla \omega(\tilde{x}))_i = \hat{g}_i + 1 + \log(\tilde{x}_i)$$
$$= \theta + 1.$$

As ω is convex, we deduce that \tilde{x} is optimal.

3. This problem improves the Frank–Wolfe convergence rate by assuming that the domain is strongly convex and the objective is strongly convex.

Fix an arbitrary norm on \mathbb{R}^n . We say that a set $\Omega \subseteq \mathbb{R}^n$ is μ -strongly convex if for all $x, y \in \Omega, \gamma \in [0, 1]$

$$\mathbb{B}((1-\gamma)x+\gamma y,\gamma(1-\gamma)\frac{\mu}{2} \|x-y\|^2) \subseteq \Omega.$$

Here, $\mathbb{B}(x_0, r) = \{x \in \mathbb{R}^n : ||x_0 - x|| \le r\}.$

Let $f : \mathbb{R}^n \to \mathbb{R}$ be an L_f -smooth μ_f -strongly convex function w.r.t. $\|\cdot\|$. Let $\Omega \subseteq \mathbb{R}^n$ be a compact convex set with diameter D. Assume that Ω is μ_{Ω} -strongly convex.

Now, consider the following algorithm

Algorithm 1 Frank–Wolfe for strongly convex sets and objectives

Given: $x_0 \in \Omega$

- For t = 0, ...,
 - Set $y_t \in \arg\min_{y \in \Omega} \langle \nabla f(x_t), y_t \rangle$ - Set $x_{t+1} = (1 - \eta_t) x_t + \eta_t y_t$ where

$$\eta_t = \begin{cases} 1 & \text{if } t = 0\\ 1 & \text{if } L_f \leq \frac{\mu_\Omega}{2} \|\nabla f(x_t)\|_*\\ \frac{\mu_\Omega \|\nabla f(x_t)\|_*}{2L} & \text{else} \end{cases}$$

Let $\delta_t \coloneqq f(x_t) - f^*$.

Lemma 5. It holds that $\delta_1 \leq \frac{LD^2}{2}$.

Proof. We compute

$$\delta_{1} \coloneqq f(x_{1}) - f(x^{\star})$$

$$= f(y_{0}) - f(x^{\star})$$

$$\leq \langle \nabla f(x_{0}), y_{0} - x_{0} \rangle + \frac{L}{2} ||x_{0} - y_{0}||^{2} - \langle \nabla f(x_{0}), x^{\star} - x_{0} \rangle$$

$$\leq \frac{LD^{2}}{2}.$$

Here, the second line follows by *L*-smoothness and convexity, and the last line follows by the optimality of y_0 .

Lemma 6. For all $t \ge 1$, it holds that

$$\langle \nabla f(x_t), x_t - y_t \rangle \ge \frac{\mu_{\Omega}}{2} \left\| x_t - y_t \right\|^2 \left\| \nabla f(x_t) \right\|_*$$

Proof. Let $t \geq 1$.

Let $\tilde{x} = (1 - \alpha)x_t + \alpha y_t + \alpha (1 - \alpha)\frac{\mu}{2} \|x_t - y_t\|^2 z \in \Omega$ where $\alpha \in [0, 1)$ and $z \in \mathbb{R}^n$ with $\|z\| \leq 1$ will be chosen momentarily.

Then, by optimality of y_t , we have that

$$\begin{split} \langle \nabla f(x_t), y_t \rangle &\leq \langle \nabla f(x_t), \tilde{x} \rangle \\ &= (1 - \alpha) \left\langle \nabla f(x_t), x_t \right\rangle + \alpha \left\langle \nabla f(x_t), y_t \right\rangle \\ &+ \alpha (1 - \alpha) \frac{\mu}{2} \left\| x_t - y_t \right\|^2 \left\langle \nabla f(x_t), z \right\rangle. \end{split}$$

Subtracting $\alpha \langle \nabla f(x_t), y_t \rangle$ and dividing by $(1 - \alpha) > 0$ gives

$$\langle \nabla f(x_t), y_t \rangle \leq \langle \nabla f(x_t), x_t \rangle + \alpha \frac{\mu}{2} \|x_t - y_t\|^2 \langle \nabla f(x_t), z \rangle.$$

We may now take the infimum of the right hand side over z with $\|z\|\leq 1$ and $\alpha\in[0,1)$ to get:

$$\langle \nabla f(x_t), x_t - y_t \rangle \ge \frac{\mu}{2} \|x_t - y_t\|^2 \|\nabla f(x_t)\|_*.$$

Lemma 7. For all $t \ge 1$, it holds that

$$\langle \nabla f(x_t), x_t - y_t \rangle \ge \frac{1}{2} \delta_t + \frac{\mu}{4} \|x_t - y_t\|^2 \|\nabla f(x_t)\|_*.$$

Proof. Recall that

$$\langle \nabla f(x_t), x_t - y_t \rangle \ge f(x_t) - f^* = \delta_t.$$

The lemma follows by taking the average of this inequality with the previous lemma. $\hfill\blacksquare$

Lemma 8. For all $t \geq 1$,

$$\delta_{t+1} \le \max\left(\frac{1}{2}, \left(1 - \frac{\mu \left\|\nabla f(x_t)\right\|_*}{4L}\right)\right) \cdot \delta_t.$$

Proof. Let $t \ge 1$. It holds that

$$\begin{split} \delta_{t+1} &\leq \delta_t + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{L}{2} \| x_t - x_{t+1} \|^2 \\ &= \delta_t - \eta_t \left\langle \nabla f(x_t), x_t - y_t \right\rangle + \frac{L \eta_t^2}{2} \| x_t - y_t \|^2 \\ &\leq \left(1 - \frac{\eta_t}{2} \right) \delta_t + \frac{\| x_t - y_t \|^2}{2} \left(L \eta_t^2 - \frac{\eta_t \mu}{2} \| \nabla f(x_t) \|_* \right). \end{split}$$

If $L \leq \frac{\mu}{2} \|\nabla f(x_t)\|_*$, then by definition, $\eta_t = 1$ so that

$$\delta_{t+1} \leq \frac{\delta_t}{2} + (\text{something nonpositive}).$$

On the other hand, if $L > \frac{\mu}{2} \|\nabla f(x_t)\|_*$, then by definition, $\eta_t = \frac{\mu \|\nabla f(x_t)\|_*}{2L}$ so that

$$\delta_{t+1} \le \left(1 - \frac{\mu \left\|\nabla f(x_t)\right\|_*}{4L}\right) \delta_t.$$

Lemma 9. Let $0 < \epsilon \ll 1$. Then $\delta_T \leq \epsilon$ for

$$T = O\left(\frac{L}{\mu_\Omega \sqrt{\mu_f} \sqrt{\epsilon}}\right).$$

Proof. Let $\epsilon > 0$ and consider the sequence

$$\delta_0, \delta_1, \ldots$$

By our previous lemmas, we know that $\delta_1 \leq \frac{LD^2}{2}$ and that the δ_t are nonincreasing. Let T be the smallest index so that $\delta_T \leq \epsilon$. For each index $i \in [1, T-2]$, we will place index i into bin \mathcal{B}_k where

$$\frac{LD^2}{2^{k+1}} < \delta_i \le \frac{LD^2}{2^k}.$$

The bins are indexed by $k \in \left[1, \left\lfloor \log_2\left(\frac{LD^2}{2\epsilon}\right)\right\rfloor\right]$. Now, let $k \in \left[1, \left\lfloor \log_2\left(\frac{LD^2}{2\epsilon}\right)\right\rfloor\right]$. We will upper bound the number of indices in \mathcal{B}_k . For concreteness, suppose $\mathcal{B}_k = [\ell, r]$. We say an index $t \in [\ell, r]$ is "blue" if $\delta_{t+1} \leq \delta_t/2$. Otherwise, it is "red." We will count \mathcal{B}_k in three parts: blue indices, the singleton $\{r\}$, and the red indices in $[\ell, r-1]$. There is at most one blue index in \mathcal{B}_k . Indeed, if $t \in \mathcal{B}_k$ is blue, then

$$\delta_{t+1} \le \frac{1}{2}\delta_t \le \frac{LD^2}{2^{k+1}}$$

For all red indices $t \in [\ell, r-1]$, we have that

$$\delta_t - \delta_{t+1} \ge \frac{\mu_\Omega \left\| \nabla f(x_t) \right\|_*}{4L} \delta_t.$$

By the μ_f -strong convexity of f, we may bound

$$\delta_t \le \frac{1}{2\mu_f} \left\| \nabla f(x_t) \right\|_*^2$$

In particular, every red $t \in [\ell, r-1]$ satisfies

$$\delta_t - \delta_{t+1} \ge \frac{\mu_\Omega \sqrt{\mu_f}}{\sqrt{2}L} \delta_t^{3/2} \ge \frac{\mu_\Omega \sqrt{\mu_f}}{2\sqrt{2}L} \left(\frac{LD^2}{2^{k+1}}\right)^{3/2}$$

The last inequality follows by $\delta_t > \frac{LD^2}{2^{k+1}}$. We now sum up these decreases $\delta_t - \delta_{t+1}$ over the red indices $t \in [\ell, r-1]$. We have that

$$\begin{aligned} |\{t \in [\ell, r-1] : \operatorname{red}\}| \frac{\mu_{\Omega}\sqrt{\mu_f}}{2\sqrt{2}L} \left(\frac{LD^2}{2^{k+1}}\right)^{3/2} &\leq \sum_{\substack{t \in [\ell, r-1] \\ \operatorname{red}}} (\delta_t - \delta_{t+1}) \\ &\leq \sum_{\substack{t \in [\ell, r-1] \\ red}} (\delta_t - \delta_{t+1}) \\ &= \delta_\ell - \delta_r \\ &\leq \frac{LD^2}{2^{k+1}}. \end{aligned}$$

Combining these bounds gives

$$|\mathcal{B}_k| \le 2 + \left(\frac{2^{k+1}}{LD^2}\right)^{1/2} \frac{2\sqrt{2}L}{\mu_\Omega \sqrt{\mu_f}}.$$

Finally, we count the total number of indices as

$$T \leq \sum_{k=1}^{\left\lfloor \log_2\left(\frac{LD^2}{2\epsilon}\right) \right\rfloor} \left(2 + \left(\frac{2^{k+1}}{LD^2}\right)^{1/2} \frac{2\sqrt{2}L}{\mu_\Omega\sqrt{\mu_f}} \right)$$
$$= O\left(\log_2\left(\frac{LD^2}{2\epsilon}\right) \right) + \frac{2\sqrt{2}L}{\mu_\Omega\sqrt{\mu_f}\sqrt{LD^2}} \sum_{k=1}^{\left\lfloor \log_2\left(\frac{LD^2}{2\epsilon}\right) \right\rfloor} 2^{(k+1)/2}$$
$$= O\left(\log_2\left(\frac{LD^2}{2\epsilon}\right) \right) + O\left(\frac{L}{\mu_\Omega\sqrt{\mu_f}\sqrt{\epsilon}}\right).$$

For all $\epsilon>0$ small enough, this bound is dominated by the term on the right. $\hfill\blacksquare$