
MGMT 690 - Pset 4
Spring 2024

Instructions:

• This pset is due on Thursday, May 2 at 11:59pm.

• Completed psets should be submitted to Gradescope.

• Exercises are for your own review only. They do not need to be submitted
and will not be graded.

• Complete all problems 1–3.

Problems
1. Let f, g : Rn → R. The infimal convolution of f and g, denoted f□g, is a

function (f□g) : Rn → [−∞, ∞] defined as

(f□g)(x) := inf
z∈Rn

f(z) + g(y − z).

Lemma 1. If f, g : Rn → R, then

(f□g)∗(y) = f∗(y) + g∗(y) ∀y ∈ Rn.

Proof. By definition,

(f□g)∗(y) = sup
x∈Rn

⟨y, x⟩ − (f□g)(x)

= sup
x∈Rn,z∈Rn

⟨y, (x − z) + z⟩ − f(z) − g(x − z)

= sup
w∈Rn,z∈Rn

⟨y, z⟩ − f(z) + ⟨y, w⟩ − g(w)

= f∗(y) + g∗(y). ■

2. This question derives a mirror descent setup on the simplex with the ℓ1
norm.
Let

∆n :=
{

x ∈ Rn : x ≥ 0
1⊺x ≤ 1

}
.
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Define ω : ∆n → R by

ω(x) =
n∑

i=1
xi log(xi)

with the convention that 0 log(0) = 0. For convenience, define

∆o
n :=

{
x ∈ Rn : x > 0

1⊺x ≤ 1

}
.

Lemma 2. ω is closed and convex and differentiable on dom(∂ω) = ∆o
n.

Proof. Note that x log x is continuous on (0, ∞) and that limx→0 x log x = 0.
Furthermore, for x > 0,

d2

dx2 x log x = 1
x

> 0.

Thus, x 7→ x log x is a convex function on [0, ∞). Thus,
∑

i xi log(xi) is a
real-valued convex function on Rn

+. We deduce that ω is closed and convex
on ∆n.
We have that dom(∂ω) = ∆o

n. On dom(∂ω), the gradient of ω(x) is given
by

∇ω(x) =

1 + log(x1)
...

1 + log(xn)

 . ■

Lemma 3. ω is 1-strongly convex on ∆n.

There are a few different proofs depending on what you may know from
outside this course.

Proof 1. This proof uses only what we learned in this course.
Define

g(x) := ω(x) − 1
2 ∥x∥2

1 =
∑

i

xi log(xi) − 1
2

(∑
i

xi

)2

on Rn
+. Our goal is to check that g is convex on ∆n. As g is continuous

up to its boundary, it suffices to check that g is convex on ∆o
n.

As g(x) is twice differentiable on ∆o
n, it suffices to show that for all x ∈ ∆o

n,
that

∇2g(x) ⪰ 0.
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Let x ∈ ∆o
n and y ∈ Rn. We compute

〈
y, ∇2g(x)y

〉
=
∑

i

y2
i

xi
−

(∑
i

yi

)2

≥
∑

i

y2
i

xi
−

(
2 −

∑
i

xi

)(∑
i

yi

)2

=
∑

i

y2
i

xi
− 2

n∑
i=1

yi

n∑
j=1

yj +
∑

i

xi

(∑
i

yi

)2

=
∑

i

xi

y2
i

x2
i

− 2 yi

xi

n∑
j=1

yj +

 n∑
j=1

yj

2


=
∑

i

xi

 yi

xi
−

n∑
j=1

yj

2

≥ 0. ■

Proof 2. This proof uses what we learned in the course and the Sherman–
Morrison formula.
Define

g(x) := ω(x) − 1
2 ∥x∥2

1 =
∑

i

xi log(xi) − 1
2

(∑
i

xi

)2

on Rn
+. Our goal is to check that g is convex on ∆n. As g is continuous

up to its boundary, it suffices to check that g is convex on

Ω :=
{

x ∈ Rn : x > 0
1⊺x < 1

}
.

As g(x) is twice differentiable on Ω, it suffices to show that for all x ∈ Ω,
that

∇2g(x) ⪰ 0.

Let x ∈ Ω. Let

α = 1
1 − 1⊺x

,

which exists by the assumption x ∈ Ω. We will write the Hessian explicitly
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and recognize the Sherman–Morrison formula:

∇2g(x) = Diag(x)−1 − 11⊺

= Diag(x)−1 − α11⊺

1 + α1⊺x

= Diag(x)−1 − α Diag(x)−1xx⊺ Diag(x)−1

1 + αx⊺ Diag(x)−1x

= (Diag(x) + αxx⊺)−1

≻ 0. ■

Proof 3. This proof uses the fact that a twice-differentiable function f is
1-strongly convex in a norm ∥·∥ if and only if

〈
y, ∇2f(x)y

〉
≥ ∥y∥2 for all

x ∈ dom(f) and y ∈ Rn.
Our goal is to check that ω is 1-strongly convex on ∆n. As ω is continuous
up to its boundary, it suffices to check that ω is 1-strongly convex on ∆o

n.
Note that ω is twice-differentiable on ∆o

n, thus it suffices to check that for
all x ∈ ∆o

n and y ∈ Rn, that
〈
y, ∇2ω(x)y

〉
≥ ∥y∥2. We compute:〈

y, ∇2ω(x)y
〉

=
〈
y, Diag(x)−1y

〉
≥
∑

i

y2
i

xi

∑
i

xi

≥

(∑
i

yi

)2

.

Here, the last line follows by Cauchy-Schwarz. ■

Lemma 4. Let x̂ ∈ (∆n)++, g ∈ Rn, and η > 0. Define

θ = min
(

− log
(∑

i

exp (1 + log(x̂i) − ηgi)
)

, −1
)

, and

x̃ = (exp(1 + log(x̂i) − ηgi + θ))i .

Then, x̃ is the unique minimizer of

min
x∈∆n

{⟨ηg − ∇ω(x̂), x⟩ + ω(x)} .

Proof. For convenience, set ĝ = ηg − ∇ω(x̂). Let θ ∈ R to be fixed
momentarily and define x̃ ∈ Rn

++ by

x̃i = exp(−ĝi) · exp(θ).

Note that
∑

i x̃i = exp(θ) ·
∑

i exp(−ĝi).
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Now, there are two cases. First, suppose exp(−1)
∑

i exp(−ĝi) ≤ 1. Then,
we can set θ = −1 and have x̃ ∈ (∆n)++. Note that

(ĝ + ∇ω(x̃))i = ĝi + 1 + log(x̃i)
= 1 + θ = 0.

We see that x̃ is optimal.
In the second case, exp(−1)

∑
i exp(−ĝi) > 1. Set θ so that

∑
i x̃i = 1.

This is achieved by setting θ = − log(
∑

i exp(−ĝi)) < −1. Now, we have
x̃ ∈ (∆n)++ and it remains to check that

(ĝ + ∇ω(x̃))i = ĝi + 1 + log(x̃i)
= θ + 1.

As ω is convex, we deduce that x̃ is optimal. ■

3. This problem improves the Frank–Wolfe convergence rate by assuming
that the domain is strongly convex and the objective is strongly convex.
Fix an arbitrary norm on Rn. We say that a set Ω ⊆ Rn is µ-strongly
convex if for all x, y ∈ Ω, γ ∈ [0, 1]

B((1 − γ)x + γy, γ(1 − γ)µ

2 ∥x − y∥2) ⊆ Ω.

Here, B(x0, r) = {x ∈ Rn : ∥x0 − x∥ ≤ r}.
Let f : Rn → R be an Lf -smooth µf -strongly convex function w.r.t. ∥·∥.
Let Ω ⊆ Rn be a compact convex set with diameter D. Assume that Ω is
µΩ-strongly convex.
Now, consider the following algorithm

Algorithm 1 Frank–Wolfe for strongly convex sets and objectives
Given: x0 ∈ Ω

• For t = 0, . . . ,

– Set yt ∈ arg miny∈Ω ⟨∇f(xt), yt⟩
– Set xt+1 = (1 − ηt)xt + ηtyt where

ηt =


1 if t = 0
1 if Lf ≤ µΩ

2 ∥∇f(xt)∥∗
µΩ∥∇f(xt)∥∗

2L else
.

Let δt := f(xt) − f⋆.

Lemma 5. It holds that δ1 ≤ LD2

2 .
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Proof. We compute

δ1 := f(x1) − f(x⋆)
= f(y0) − f(x⋆)

≤ ⟨∇f(x0), y0 − x0⟩ + L

2 ∥x0 − y0∥2 − ⟨∇f(x0), x⋆ − x0⟩

≤ LD2

2 .

Here, the second line follows by L-smoothness and convexity, and the last
line follows by the optimality of y0. ■

Lemma 6. For all t ≥ 1, it holds that

⟨∇f(xt), xt − yt⟩ ≥ µΩ

2 ∥xt − yt∥2 ∥∇f(xt)∥∗ .

Proof. Let t ≥ 1.
Let x̃ = (1 − α)xt + αyt + α(1 − α) µ

2 ∥xt − yt∥2
z ∈ Ω where α ∈ [0, 1) and

z ∈ Rn with ∥z∥ ≤ 1 will be chosen momentarily.
Then, by optimality of yt, we have that

⟨∇f(xt), yt⟩ ≤ ⟨∇f(xt), x̃⟩
= (1 − α) ⟨∇f(xt), xt⟩ + α ⟨∇f(xt), yt⟩

+ α(1 − α)µ

2 ∥xt − yt∥2 ⟨∇f(xt), z⟩ .

Subtracting α ⟨∇f(xt), yt⟩ and dividing by (1 − α) > 0 gives

⟨∇f(xt), yt⟩ ≤ ⟨∇f(xt), xt⟩ + α
µ

2 ∥xt − yt∥2 ⟨∇f(xt), z⟩ .

We may now take the infimum of the right hand side over z with ∥z∥ ≤ 1
and α ∈ [0, 1) to get:

⟨∇f(xt), xt − yt⟩ ≥ µ

2 ∥xt − yt∥2 ∥∇f(xt)∥∗ . ■

Lemma 7. For all t ≥ 1, it holds that

⟨∇f(xt), xt − yt⟩ ≥ 1
2δt + µ

4 ∥xt − yt∥2 ∥∇f(xt)∥∗ .

Proof. Recall that

⟨∇f(xt), xt − yt⟩ ≥ f(xt) − f⋆ = δt.

The lemma follows by taking the average of this inequality with the previous
lemma. ■
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Lemma 8. For all t ≥ 1,

δt+1 ≤ max
(

1
2 ,

(
1 −

µ ∥∇f(xt)∥∗
4L

))
· δt.

Proof. Let t ≥ 1. It holds that

δt+1 ≤ δt + ⟨∇f(xt), xt+1 − xt⟩ + L

2 ∥xt − xt+1∥2

= δt − ηt ⟨∇f(xt), xt − yt⟩ + Lη2
t

2 ∥xt − yt∥2

≤
(

1 − ηt

2

)
δt + ∥xt − yt∥2

2

(
Lη2

t − ηtµ

2 ∥∇f(xt)∥∗

)
.

If L ≤ µ
2 ∥∇f(xt)∥∗, then by definition, ηt = 1 so that

δt+1 ≤ δt

2 + (something nonpositive) .

On the other hand, if L > µ
2 ∥∇f(xt)∥∗, then by definition, ηt = µ∥∇f(xt)∥∗

2L
so that

δt+1 ≤
(

1 −
µ ∥∇f(xt)∥∗

4L

)
δt. ■

Lemma 9. Let 0 < ϵ ≪ 1. Then δT ≤ ϵ for

T = O

(
L

µΩ
√

µf
√

ϵ

)
.

Proof. Let ϵ > 0 and consider the sequence

δ0, δ1, . . .

By our previous lemmas, we know that δ1 ≤ LD2

2 and that the δt are
nonincreasing. Let T be the smallest index so that δT ≤ ϵ. For each index
i ∈ [1, T − 2], we will place index i into bin Bk where

LD2

2k+1 < δi ≤ LD2

2k
.

The bins are indexed by k ∈
[
1,
⌊
log2

(
LD2

2ϵ

)⌋]
.

Now, let k ∈
[
1,
⌊
log2

(
LD2

2ϵ

)⌋]
. We will upper bound the number of

indices in Bk. For concreteness, suppose Bk = [ℓ, r]. We say an index
t ∈ [ℓ, r] is “blue” if δt+1 ≤ δt/2. Otherwise, it is “red.” We will count
Bk in three parts: blue indices, the singleton {r}, and the red indices in
[ℓ, r − 1].
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There is at most one blue index in Bk. Indeed, if t ∈ Bk is blue, then

δt+1 ≤ 1
2δt ≤ LD2

2k+1 .

For all red indices t ∈ [ℓ, r − 1], we have that

δt − δt+1 ≥
µΩ ∥∇f(xt)∥∗

4L
δt.

By the µf -strong convexity of f , we may bound

δt ≤ 1
2µf

∥∇f(xt)∥2
∗ .

In particular, every red t ∈ [ℓ, r − 1] satisfies

δt − δt+1 ≥
µΩ

√
µf√

2L
δ

3/2
t ≥

µΩ
√

µf

2
√

2L

(
LD2

2k+1

)3/2

.

The last inequality follows by δt > LD2

2k+1 .
We now sum up these decreases δt − δt+1 over the red indices t ∈ [ℓ, r − 1].
We have that

|{t ∈ [ℓ, r − 1] : red}|
µΩ

√
µf

2
√

2L

(
LD2

2k+1

)3/2

≤
∑

t∈[ℓ,r−1]
red

(δt − δt+1)

≤
∑

t∈[ℓ,r−1]

(δt − δt+1)

= δℓ − δr

≤ LD2

2k+1 .

Combining these bounds gives

|Bk| ≤ 2 +
(

2k+1

LD2

)1/2 2
√

2L

µΩ
√

µf
.

Finally, we count the total number of indices as

T ≤

⌊
log2

(
LD2

2ϵ

)⌋∑
k=1

(
2 +

(
2k+1

LD2

)1/2 2
√

2L

µΩ
√

µf

)

= O

(
log2

(
LD2

2ϵ

))
+ 2

√
2L

µΩ
√

µf

√
LD2

⌊
log2

(
LD2

2ϵ

)⌋∑
k=1

2(k+1)/2

= O

(
log2

(
LD2

2ϵ

))
+ O

(
L

µΩ
√

µf
√

ϵ

)
.
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For all ϵ > 0 small enough, this bound is dominated by the term on the
right. ■
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