MGMT 690 - Pset 4

Spring 2024

Instructions:

- This pset is due on Thursday, May 2 at $11: 59 \mathrm{pm}$.
- Completed psets should be submitted to Gradescope.
- Exercises are for your own review only. They do not need to be submitted and will not be graded.

- Complete all problems 1-3.

Problems

1. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The infimal convolution of f and g, denoted $f \square g$, is a function $(f \square g): \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ defined as

$$
(f \square g)(x):=\inf _{z \in \mathbb{R}^{n}} f(z)+g(y-z)
$$

Lemma 1. If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then

$$
(f \square g)^{*}(y)=f^{*}(y)+g^{*}(y) \quad \forall y \in \mathbb{R}^{n}
$$

Proof. By definition,

$$
\begin{aligned}
(f \square g)^{*}(y) & =\sup _{x \in \mathbb{R}^{n}}\langle y, x\rangle-(f \square g)(x) \\
& =\sup _{x \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}}\langle y,(x-z)+z\rangle-f(z)-g(x-z) \\
& =\sup _{w \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}}\langle y, z\rangle-f(z)+\langle y, w\rangle-g(w) \\
& =f^{*}(y)+g^{*}(y) .
\end{aligned}
$$

2. This question derives a mirror descent setup on the simplex with the ℓ_{1} norm.

Let

$$
\Delta_{n}:=\left\{x \in \mathbb{R}^{n}: \begin{array}{l}
x \geq 0 \\
1^{\top} x \leq 1
\end{array}\right\} .
$$

Define $\omega: \Delta_{n} \rightarrow \mathbb{R}$ by

$$
\omega(x)=\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)
$$

with the convention that $0 \log (0)=0$. For convenience, define

$$
\Delta_{n}^{o}:=\left\{x \in \mathbb{R}^{n}: \begin{array}{l}
x>0 \\
1^{\top} x \leq 1
\end{array}\right\}
$$

Lemma 2. ω is closed and convex and differentiable on $\operatorname{dom}(\partial \omega)=\Delta_{n}^{o}$.
Proof. Note that $x \log x$ is continuous on $(0, \infty)$ and that $\lim _{x \rightarrow 0} x \log x=0$. Furthermore, for $x>0$,

$$
\frac{d^{2}}{d x^{2}} x \log x=\frac{1}{x}>0
$$

Thus, $x \mapsto x \log x$ is a convex function on $[0, \infty)$. Thus, $\sum_{i} x_{i} \log \left(x_{i}\right)$ is a real-valued convex function on \mathbb{R}_{+}^{n}. We deduce that ω is closed and convex on Δ_{n}.
We have that $\operatorname{dom}(\partial \omega)=\Delta_{n}^{o}$. On $\operatorname{dom}(\partial \omega)$, the gradient of $\omega(x)$ is given by

$$
\nabla \omega(x)=\left(\begin{array}{c}
1+\log \left(x_{1}\right) \\
\vdots \\
1+\log \left(x_{n}\right)
\end{array}\right)
$$

Lemma 3. ω is 1-strongly convex on Δ_{n}.
There are a few different proofs depending on what you may know from outside this course.

Proof 1. This proof uses only what we learned in this course.
Define

$$
g(x):=\omega(x)-\frac{1}{2}\|x\|_{1}^{2}=\sum_{i} x_{i} \log \left(x_{i}\right)-\frac{1}{2}\left(\sum_{i} x_{i}\right)^{2}
$$

on \mathbb{R}_{+}^{n}. Our goal is to check that g is convex on Δ_{n}. As g is continuous up to its boundary, it suffices to check that g is convex on Δ_{n}^{o}.
As $g(x)$ is twice differentiable on Δ_{n}^{o}, it suffices to show that for all $x \in \Delta_{n}^{o}$, that

$$
\nabla^{2} g(x) \succeq 0
$$

Let $x \in \Delta_{n}^{o}$ and $y \in \mathbb{R}^{n}$. We compute

$$
\begin{aligned}
\left\langle y, \nabla^{2} g(x) y\right\rangle & =\sum_{i} \frac{y_{i}^{2}}{x_{i}}-\left(\sum_{i} y_{i}\right)^{2} \\
& \geq \sum_{i} \frac{y_{i}^{2}}{x_{i}}-\left(2-\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)^{2} \\
& =\sum_{i} \frac{y_{i}^{2}}{x_{i}}-2 \sum_{i=1}^{n} y_{i} \sum_{j=1}^{n} y_{j}+\sum_{i} x_{i}\left(\sum_{i} y_{i}\right)^{2} \\
& =\sum_{i} x_{i}\left(\frac{y_{i}^{2}}{x_{i}^{2}}-2 \frac{y_{i}}{x_{i}} \sum_{j=1}^{n} y_{j}+\left(\sum_{j=1}^{n} y_{j}\right)^{2}\right) \\
& =\sum_{i} x_{i}\left(\frac{y_{i}}{x_{i}}-\sum_{j=1}^{n} y_{j}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

Proof 2. This proof uses what we learned in the course and the ShermanMorrison formula.

Define

$$
g(x):=\omega(x)-\frac{1}{2}\|x\|_{1}^{2}=\sum_{i} x_{i} \log \left(x_{i}\right)-\frac{1}{2}\left(\sum_{i} x_{i}\right)^{2}
$$

on \mathbb{R}_{+}^{n}. Our goal is to check that g is convex on Δ_{n}. As g is continuous up to its boundary, it suffices to check that g is convex on

$$
\Omega:=\left\{x \in \mathbb{R}^{n}: \begin{array}{l}
x>0 \\
1^{\top} x<1
\end{array}\right\} .
$$

As $g(x)$ is twice differentiable on Ω, it suffices to show that for all $x \in \Omega$, that

$$
\nabla^{2} g(x) \succeq 0
$$

Let $x \in \Omega$. Let

$$
\alpha=\frac{1}{1-1^{\top} x}
$$

which exists by the assumption $x \in \Omega$. We will write the Hessian explicitly
and recognize the Sherman-Morrison formula:

$$
\begin{aligned}
\nabla^{2} g(x) & =\operatorname{Diag}(x)^{-1}-\mathbf{1 1}^{\top} \\
& =\operatorname{Diag}(x)^{-1}-\frac{\alpha \mathbf{1 1} \mathbf{1}^{\top}}{1+\alpha 1^{\top} x} \\
& =\operatorname{Diag}(x)^{-1}-\frac{\alpha \operatorname{Diag}(x)^{-1} x x^{\top} \operatorname{Diag}(x)^{-1}}{1+\alpha x^{\top} \operatorname{Diag}(x)^{-1} x} \\
& =\left(\operatorname{Diag}(x)+\alpha x x^{\boldsymbol{\top}}\right)^{-1} \\
& \succ 0
\end{aligned}
$$

Proof 3. This proof uses the fact that a twice-differentiable function f is 1-strongly convex in a norm $\|\cdot\|$ if and only if $\left\langle y, \nabla^{2} f(x) y\right\rangle \geq\|y\|^{2}$ for all $x \in \operatorname{dom}(f)$ and $y \in \mathbb{R}^{n}$.
Our goal is to check that ω is 1 -strongly convex on Δ_{n}. As ω is continuous up to its boundary, it suffices to check that ω is 1-strongly convex on Δ_{n}^{o}.
Note that ω is twice-differentiable on Δ_{n}^{o}, thus it suffices to check that for all $x \in \Delta_{n}^{o}$ and $y \in \mathbb{R}^{n}$, that $\left\langle y, \nabla^{2} \omega(x) y\right\rangle \geq\|y\|^{2}$. We compute:

$$
\begin{aligned}
\left\langle y, \nabla^{2} \omega(x) y\right\rangle & =\left\langle y, \operatorname{Diag}(x)^{-1} y\right\rangle \\
& \geq \sum_{i} \frac{y_{i}^{2}}{x_{i}} \sum_{i} x_{i} \\
& \geq\left(\sum_{i} y_{i}\right)^{2}
\end{aligned}
$$

Here, the last line follows by Cauchy-Schwarz.
Lemma 4. Let $\hat{x} \in\left(\Delta_{n}\right)_{++}, g \in \mathbb{R}^{n}$, and $\eta>0$. Define

$$
\begin{gathered}
\theta=\min \left(-\log \left(\sum_{i} \exp \left(1+\log \left(\hat{x}_{i}\right)-\eta g_{i}\right)\right),-1\right), \quad \text { and } \\
\tilde{x}=\left(\exp \left(1+\log \left(\hat{x}_{i}\right)-\eta g_{i}+\theta\right)\right)_{i}
\end{gathered}
$$

Then, \tilde{x} is the unique minimizer of

$$
\min _{x \in \Delta_{n}}\{\langle\eta g-\nabla \omega(\hat{x}), x\rangle+\omega(x)\}
$$

Proof. For convenience, set $\hat{g}=\eta g-\nabla \omega(\hat{x})$. Let $\theta \in \mathbb{R}$ to be fixed momentarily and define $\tilde{x} \in \mathbb{R}_{++}^{n}$ by

$$
\tilde{x}_{i}=\exp \left(-\hat{g}_{i}\right) \cdot \exp (\theta)
$$

Note that $\sum_{i} \tilde{x}_{i}=\exp (\theta) \cdot \sum_{i} \exp \left(-\hat{g}_{i}\right)$.

Now, there are two cases. First, suppose $\exp (-1) \sum_{i} \exp \left(-\hat{g}_{i}\right) \leq 1$. Then, we can set $\theta=-1$ and have $\tilde{x} \in\left(\Delta_{n}\right)_{++}$. Note that

$$
\begin{aligned}
(\hat{g}+\nabla \omega(\tilde{x}))_{i} & =\hat{g}_{i}+1+\log \left(\tilde{x}_{i}\right) \\
& =1+\theta=0 .
\end{aligned}
$$

We see that \tilde{x} is optimal.
In the second case, $\exp (-1) \sum_{i} \exp \left(-\hat{g}_{i}\right)>1$. Set θ so that $\sum_{i} \tilde{x}_{i}=1$. This is achieved by setting $\theta=-\log \left(\sum_{i} \exp \left(-\hat{g}_{i}\right)\right)<-1$. Now, we have $\tilde{x} \in\left(\Delta_{n}\right)_{++}$and it remains to check that

$$
\begin{aligned}
(\hat{g}+\nabla \omega(\tilde{x}))_{i} & =\hat{g}_{i}+1+\log \left(\tilde{x}_{i}\right) \\
& =\theta+1 .
\end{aligned}
$$

As ω is convex, we deduce that \tilde{x} is optimal.
3. This problem improves the Frank-Wolfe convergence rate by assuming that the domain is strongly convex and the objective is strongly convex.
Fix an arbitrary norm on \mathbb{R}^{n}. We say that a set $\Omega \subseteq \mathbb{R}^{n}$ is μ-strongly convex if for all $x, y \in \Omega, \gamma \in[0,1]$

$$
\mathbb{B}\left((1-\gamma) x+\gamma y, \gamma(1-\gamma) \frac{\mu}{2}\|x-y\|^{2}\right) \subseteq \Omega
$$

Here, $\mathbb{B}\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n}:\left\|x_{0}-x\right\| \leq r\right\}$.
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an L_{f}-smooth μ_{f}-strongly convex function w.r.t. $\|\cdot\|$. Let $\Omega \subseteq \mathbb{R}^{n}$ be a compact convex set with diameter D. Assume that Ω is μ_{Ω}-strongly convex.
Now, consider the following algorithm

```
Algorithm 1 Frank-Wolfe for strongly convex sets and objectives
Given: \(x_{0} \in \Omega\)
- For \(t=0, \ldots\),
- Set \(y_{t} \in \arg \min _{y \in \Omega}\left\langle\nabla f\left(x_{t}\right), y_{t}\right\rangle\)
- Set \(x_{t+1}=\left(1-\eta_{t}\right) x_{t}+\eta_{t} y_{t}\) where
\[
\eta_{t}= \begin{cases}1 & \text { if } t=0 \\ 1 & \text { if } L_{f} \leq \frac{\mu_{\Omega}}{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*} \\ \frac{\mu_{\Omega}\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{2 L} & \text { else }\end{cases}
\]
```

Let $\delta_{t}:=f\left(x_{t}\right)-f^{\star}$.
Lemma 5. It holds that $\delta_{1} \leq \frac{L D^{2}}{2}$.

Proof. We compute

$$
\begin{aligned}
\delta_{1} & :=f\left(x_{1}\right)-f\left(x^{\star}\right) \\
& =f\left(y_{0}\right)-f\left(x^{\star}\right) \\
& \leq\left\langle\nabla f\left(x_{0}\right), y_{0}-x_{0}\right\rangle+\frac{L}{2}\left\|x_{0}-y_{0}\right\|^{2}-\left\langle\nabla f\left(x_{0}\right), x^{\star}-x_{0}\right\rangle \\
& \leq \frac{L D^{2}}{2} .
\end{aligned}
$$

Here, the second line follows by L-smoothness and convexity, and the last line follows by the optimality of y_{0}.

Lemma 6. For all $t \geq 1$, it holds that

$$
\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle \geq \frac{\mu_{\Omega}}{2}\left\|x_{t}-y_{t}\right\|^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*} .
$$

Proof. Let $t \geq 1$.
Let $\tilde{x}=(1-\alpha) x_{t}+\alpha y_{t}+\alpha(1-\alpha) \frac{\mu}{2}\left\|x_{t}-y_{t}\right\|^{2} z \in \Omega$ where $\alpha \in[0,1)$ and $z \in \mathbb{R}^{n}$ with $\|z\| \leq 1$ will be chosen momentarily.
Then, by optimality of y_{t}, we have that

$$
\begin{aligned}
\left\langle\nabla f\left(x_{t}\right), y_{t}\right\rangle \leq & \left\langle\nabla f\left(x_{t}\right), \tilde{x}\right\rangle \\
= & (1-\alpha)\left\langle\nabla f\left(x_{t}\right), x_{t}\right\rangle+\alpha\left\langle\nabla f\left(x_{t}\right), y_{t}\right\rangle \\
& +\alpha(1-\alpha) \frac{\mu}{2}\left\|x_{t}-y_{t}\right\|^{2}\left\langle\nabla f\left(x_{t}\right), z\right\rangle .
\end{aligned}
$$

Subtracting $\alpha\left\langle\nabla f\left(x_{t}\right), y_{t}\right\rangle$ and dividing by $(1-\alpha)>0$ gives

$$
\left\langle\nabla f\left(x_{t}\right), y_{t}\right\rangle \leq\left\langle\nabla f\left(x_{t}\right), x_{t}\right\rangle+\alpha \frac{\mu}{2}\left\|x_{t}-y_{t}\right\|^{2}\left\langle\nabla f\left(x_{t}\right), z\right\rangle .
$$

We may now take the infimum of the right hand side over z with $\|z\| \leq 1$ and $\alpha \in[0,1)$ to get:

$$
\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle \geq \frac{\mu}{2}\left\|x_{t}-y_{t}\right\|^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*}
$$

Lemma 7. For all $t \geq 1$, it holds that

$$
\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle \geq \frac{1}{2} \delta_{t}+\frac{\mu}{4}\left\|x_{t}-y_{t}\right\|^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*}
$$

Proof. Recall that

$$
\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle \geq f\left(x_{t}\right)-f^{\star}=\delta_{t} .
$$

The lemma follows by taking the average of this inequality with the previous lemma.

Lemma 8. For all $t \geq 1$,

$$
\delta_{t+1} \leq \max \left(\frac{1}{2},\left(1-\frac{\mu\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{4 L}\right)\right) \cdot \delta_{t}
$$

Proof. Let $t \geq 1$. It holds that

$$
\begin{aligned}
\delta_{t+1} & \leq \delta_{t}+\left\langle\nabla f\left(x_{t}\right), x_{t+1}-x_{t}\right\rangle+\frac{L}{2}\left\|x_{t}-x_{t+1}\right\|^{2} \\
& =\delta_{t}-\eta_{t}\left\langle\nabla f\left(x_{t}\right), x_{t}-y_{t}\right\rangle+\frac{L \eta_{t}^{2}}{2}\left\|x_{t}-y_{t}\right\|^{2} \\
& \leq\left(1-\frac{\eta_{t}}{2}\right) \delta_{t}+\frac{\left\|x_{t}-y_{t}\right\|^{2}}{2}\left(L \eta_{t}^{2}-\frac{\eta_{t} \mu}{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*}\right)
\end{aligned}
$$

If $L \leq \frac{\mu}{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*}$, then by definition, $\eta_{t}=1$ so that

$$
\delta_{t+1} \leq \frac{\delta_{t}}{2}+(\text { something nonpositive })
$$

On the other hand, if $L>\frac{\mu}{2}\left\|\nabla f\left(x_{t}\right)\right\|_{*}$, then by definition, $\eta_{t}=\frac{\mu\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{2 L}$ so that

$$
\delta_{t+1} \leq\left(1-\frac{\mu\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{4 L}\right) \delta_{t}
$$

Lemma 9. Let $0<\epsilon \ll 1$. Then $\delta_{T} \leq \epsilon$ for

$$
T=O\left(\frac{L}{\mu_{\Omega} \sqrt{\mu_{f}} \sqrt{\epsilon}}\right)
$$

Proof. Let $\epsilon>0$ and consider the sequence

$$
\delta_{0}, \delta_{1}, \ldots
$$

By our previous lemmas, we know that $\delta_{1} \leq \frac{L D^{2}}{2}$ and that the δ_{t} are nonincreasing. Let T be the smallest index so that $\delta_{T} \leq \epsilon$. For each index $i \in[1, T-2]$, we will place index i into bin \mathcal{B}_{k} where

$$
\frac{L D^{2}}{2^{k+1}}<\delta_{i} \leq \frac{L D^{2}}{2^{k}}
$$

The bins are indexed by $k \in\left[1,\left\lfloor\log _{2}\left(\frac{L D^{2}}{2 \epsilon}\right)\right]\right]$.
Now, let $k \in\left[1,\left\lfloor\log _{2}\left(\frac{L D^{2}}{2 \epsilon}\right)\right\rfloor\right]$. We will upper bound the number of indices in \mathcal{B}_{k}. For concreteness, suppose $\mathcal{B}_{k}=[\ell, r]$. We say an index $t \in[\ell, r]$ is "blue" if $\delta_{t+1} \leq \delta_{t} / 2$. Otherwise, it is "red." We will count \mathcal{B}_{k} in three parts: blue indices, the singleton $\{r\}$, and the red indices in $[\ell, r-1]$.

There is at most one blue index in \mathcal{B}_{k}. Indeed, if $t \in \mathcal{B}_{k}$ is blue, then

$$
\delta_{t+1} \leq \frac{1}{2} \delta_{t} \leq \frac{L D^{2}}{2^{k+1}} .
$$

For all red indices $t \in[\ell, r-1]$, we have that

$$
\delta_{t}-\delta_{t+1} \geq \frac{\mu_{\Omega}\left\|\nabla f\left(x_{t}\right)\right\|_{*}}{4 L} \delta_{t} .
$$

By the μ_{f}-strong convexity of f, we may bound

$$
\delta_{t} \leq \frac{1}{2 \mu_{f}}\left\|\nabla f\left(x_{t}\right)\right\|_{*}^{2}
$$

In particular, every red $t \in[\ell, r-1]$ satisfies

$$
\delta_{t}-\delta_{t+1} \geq \frac{\mu_{\Omega} \sqrt{\mu_{f}}}{\sqrt{2} L} \delta_{t}^{3 / 2} \geq \frac{\mu_{\Omega} \sqrt{\mu_{f}}}{2 \sqrt{2} L}\left(\frac{L D^{2}}{2^{k+1}}\right)^{3 / 2}
$$

The last inequality follows by $\delta_{t}>\frac{L D^{2}}{2^{k+1}}$.
We now sum up these decreases $\delta_{t}-\delta_{t+1}$ over the red indices $t \in[\ell, r-1]$. We have that

$$
\begin{aligned}
|\{t \in[\ell, r-1]: \operatorname{red}\}| \frac{\mu_{\Omega} \sqrt{\mu_{f}}}{2 \sqrt{2} L}\left(\frac{L D^{2}}{2^{k+1}}\right)^{3 / 2} & \leq \sum_{t \in[\ell, r-1]}\left(\delta_{t}-\delta_{t+1}\right) \\
& \leq \sum_{t \in[\ell, r-1]}^{\text {red }} \\
& =\delta_{\ell}-\delta_{r} \\
& \leq \frac{L D^{2}}{2^{k+1}}
\end{aligned}
$$

Combining these bounds gives

$$
\left|\mathcal{B}_{k}\right| \leq 2+\left(\frac{2^{k+1}}{L D^{2}}\right)^{1 / 2} \frac{2 \sqrt{2} L}{\mu_{\Omega} \sqrt{\mu_{f}}}
$$

Finally, we count the total number of indices as

$$
\begin{aligned}
T & \leq \sum_{k=1}^{\left\lfloor\log _{2}\left(\frac{L D^{2}}{2 \epsilon}\right)\right\rfloor}\left(2+\left(\frac{2^{k+1}}{L D^{2}}\right)^{1 / 2} \frac{2 \sqrt{2} L}{\mu_{\Omega} \sqrt{\mu_{f}}}\right) \\
& =O\left(\log _{2}\left(\frac{L D^{2}}{2 \epsilon}\right)\right)+\frac{2 \sqrt{2} L}{\mu_{\Omega} \sqrt{\mu_{f}} \sqrt{L D^{2}}} \sum_{k=1}^{\left\lfloor\log _{2}\left(\frac{L D^{2}}{2 \epsilon}\right)\right\rfloor} 2^{(k+1) / 2} \\
& =O\left(\log _{2}\left(\frac{L D^{2}}{2 \epsilon}\right)\right)+O\left(\frac{L}{\mu_{\Omega} \sqrt{\mu_{f}} \sqrt{\epsilon}}\right) .
\end{aligned}
$$

For all $\epsilon>0$ small enough, this bound is dominated by the term on the right.

