MGMT 690 - Pset 4

Spring 2024

Instructions:
o This pset is due on Thursday, May 2 at 11:59pm.
o Completed psets should be submitted to Gradescope.

o Exercises are for your own review only. They do not need to be submitted
and will not be graded.

¢ Complete all problems 1-3.

Problems

1. Let f,g: R™ — R. The infimal convolution of f and g, denoted fUg, is a
function (fOg) : R™ — [—00, 00| defined as

(fOg)(z) = inf f(2) +g(y - 2).
Lemma 1. If f,g: R" — R, then
(fO9)* () =) +9*(y)  VyeR™
Proof. By definition,

(fOg)*(y) = sup (y,z) — (fOg)(z)

:L‘GR?L

= sup (y,(x—2)+2)— f(z)—glx —2)
CERM,zER™

= sup (y,2) — f(2) + (y,w) — g(w)
weR™ zeR™

=f*(y) + 9" W) u

2. This question derives a mirror descent setup on the simplex with the ¢,
norm.

Let

n., >0



Define w : A,, — R by
w(x) = le log(x;)
i=1

with the convention that 0log(0) = 0. For convenience, define

o . n. >0
An.{xER Colte <1 }

Lemma 2. w is closed and convex and differentiable on dom(dw) = A2.

Proof. Note that x log z is continuous on (0, co) and that lim,_,¢ z log x = 0.
Furthermore, for z > 0,

d2

1
S 1 = — .
27 ogx $>O

Thus, z — xlogx is a convex function on [0,00). Thus, Y, z;log(z;) is a
real-valued convex function on R’. We deduce that w is closed and convex
on A,.

We have that dom(dw) = A2. On dom(dw), the gradient of w(z) is given
by
1+ log(x1)
Vw(z) = . |
1+ log(xy)

Lemma 3. w is 1-strongly convex on A,,.

There are a few different proofs depending on what you may know from
outside this course.

Proof 1. This proof uses only what we learned in this course.
Define

2
o) = ) Sl = ootz - (T

on R%}. Our goal is to check that g is convex on A,. As g is continuous
up to its boundary, it suffices to check that g is convex on A?.

As g(z) is twice differentiable on A2, it suffices to show that for all z € A2,
that

V2g(z) = 0.



Let z € A9 and y € R™. We compute
2
2
(v, V2g(z)y) = %’ - <Z y)
i i
2
2
S () (5)
2 n n 2
= Z% - szizyj +Z$i <Zyz>
v i=1  j=1 i i

2

2 . n n

=Y @ %—Q%Zyﬁ- Doy

i ¢ tj=1 j=1

2
=S &_zn:
o X Yi

[ Jj=1

> 0. |

Proof 2. This proof uses what we learned in the course and the Sherman—
Morrison formula.

Define

() = wia) — 5 ol = > i log(a) - (23)

on R’. Our goal is to check that g is convex on A,. As g is continuous
up to its boundary, it suffices to check that g is convex on

. n. >0
Q.{xGR. 1Tm<1}'

As g(z) is twice differentiable on €2, it suffices to show that for all z € Q,
that

Vzg(x) = 0.

Let x € Q. Let

1

T T

which exists by the assumption = € 2. We will write the Hessian explicitly



and recognize the Sherman—Morrison formulas:

V2g(x) = Diag(x) "' — 117

. _ allT
= Diag(e)™ — -
~ Diag(z)~! — aDiag(z) " lzaT Diag(z) !

1+ ax7 Diag(z)~ 'z
= (Diag(x) + azzT) "
= 0. n

Proof 8. This proof uses the fact that a twice-differentiable function f is
1-strongly convex in a norm ||-| if and only if (y, V2f(z)y) > lly||? for all
z € dom(f) and y € R™.

Our goal is to check that w is 1-strongly convex on A,,. As w is continuous
up to its boundary, it suffices to check that w is 1-strongly convex on AS.

Note that w is twice-differentiable on A2, thus it suffices to check that for
all z € A9 and y € R™, that (y, VZw(z)y) > ly|I>. We compute:

(y, V2w(z)y) = (y, Diag(z)'y)

- - xi 1

%

(7).

Here, the last line follows by Cauchy-Schwarz. |

Lemma 4. Let & € (A,)++, g € R™, and n > 0. Define

6 = min (— log <Z exp (1 + log(&;) — 7791)) ,—1) , and
T = (exp(1 + log(#;) — ngi +0)); -

Then, T is the unique minimizer of

nin {{ng — Vw(2),z) + w(z)}.

Proof. For convenience, set § = ng — Vw(Z). Let § € R to be fixed
momentarily and define & € R, by

Z; = exp(—§;) - exp(0).

Note that }°, &; = exp(f) - >, exp(—3;)-



Now, there are two cases. First, suppose exp(—1) >, exp(—g;) < 1. Then,
we can set § = —1 and have & € (A,)4+. Note that

(§+ Vw()), = gi + 1 + log(;)
=1+6=0.

We see that Z is optimal.

In the second case, exp(—1) >, exp(—g;) > 1. Set 6 so that ), & = 1.
This is achieved by setting § = —log(>_, exp(—g;)) < —1. Now, we have
Z € (A,)++ and it remains to check that

(G + Vw(2)), = §i + 1+ log(7;)
=0+ 1.

As w is convex, we deduce that Z is optimal. |

3. This problem improves the Frank—Wolfe convergence rate by assuming
that the domain is strongly convex and the objective is strongly convex.

Fix an arbitrary norm on R". We say that a set 2 C R" is u-strongly
convex if for all z,y € Q, v € [0, 1]

B((1 -7z +79,7(1 =15 lz = yl) € 2.

Here, B(zo,7) = {z € R : |jzg — z| <7}

Let f: R™ — R be an Ls-smooth p¢-strongly convex function w.r.t. ||-||.
Let Q C R™ be a compact convex set with diameter D. Assume that € is
po-strongly convex.

Now, consider the following algorithm

Algorithm 1 Frank—Wolfe for strongly convex sets and objectives
Given: g €
e Fort=0,...,

— Set y; € argmingeq (Vf(21), yr)
— Set i1 = (1 — n)xs + neyr where

1 ift=0
m=141 if Ly < B[V f(z)l, -

pellVf (@)l
o= else

Let 0; == f(xy) — f*.

Lemma 5. It holds that §; < LTDQ.



Proof. We compute
61 = f(x1) — f(z7)
= f(yo) — f(a7)
(Vo). 0 — 20) + = 1z — yoll* — (Vo) 2" — o)

LD?
<=
=2

IN

Here, the second line follows by L-smoothness and convexity, and the last
line follows by the optimality of yq. ]

Lemma 6. For allt > 1, it holds that
(V (ae)we =) 2 5 o= will* [V )],

Proof. Let t > 1.

Let = (1—-a)r; + oy, +a(l —a)b ||z, — yi||? z € Q where a € [0,1) and
z € R™ with ||z|| <1 will be chosen momentarily.

Then, by optimality of y;, we have that

(Vf(@e), ye) < (Vf(2e),7)
= (1—a)(Vf(x),ze) + a(Vf(we),ye)

+a(l =) e =yl (V). ).
Subtracting o (V f(x+),y:) and dividing by (1 — ) > 0 gives

(VI (o)) < (VI (@) an) + e =l (Y (a2), 2)

We may now take the infimum of the right hand side over z with ||z|| <1
and a € [0,1) to get:

(Vi @e)ee =) 2 5 e = wll” [VF (o)

P

Lemma 7. For allt > 1, it holds that

(Vi@oa =) 2 50+ & e — w195,
Proof. Recall that
(V) ze —ye) 2 fla) — f* =0

The lemma follows by taking the average of this inequality with the previous
lemma. |



Lemma 8. Forallt > 1,

1 \Y
o < (1 (1 PITIEL))

Proof. Let t > 1. It holds that
L 2
Oe1 < 0 +(Vf(2e), 2e41 = 20) + 5 loe — e
L 2
= = (Ve we = y) + S o= well

e |z — yt||2 2 Tk
< (1 5) 0 + T (Lm DN va(xt)H*) :

If L < 5|V f(z)|,, then by definition, 7, = 1 so that

1)
Op1 < é + (something nonpositive) .

On the other hand, if L > § ||V f(z;)|,, then by definition, 7, = %

so that
Vi(x
5t+1<<1_“£1(;t)”*>5t. [

Lemma 9. Let 0 < e < 1. Then é7 < € for

L
T:O(>
po/Ir/€
Proof. Let € > 0 and consider the sequence
00,01, - ..

By our previous lemmas, we know that §; < LTDQ and that the §; are
nonincreasing. Let T be the smallest index so that dr < e. For each index
i € [1,T — 2], we will place index i into bin By, where

LD? LD?

gt <0 S o

The bins are indexed by k € [1, LlogQ (L—Dz)ﬂ

2e

Now, let k € [17 LlogQ <L2122>H. We will upper bound the number of

indices in By. For concreteness, suppose By = [¢,r]. We say an index
t € [6,r] is “blue” if d,41 < §;/2. Otherwise, it is “red.” We will count
By, in three parts: blue indices, the singleton {r}, and the red indices in
[¢,r—1].



There is at most one blue index in By. Indeed, if ¢ € By, is blue, then

1 LD?
041 < §5t < oEFL

For all red indices ¢ € [¢,r — 1], we have that

He || v f(l't)H*
— > PRNTI TN s
0t — Ot41 AL O

By the ps-strong convexity of f, we may bound
1 2
0 < o— [V f (o)l -
2py

In particular, every red ¢ € [¢,r — 1] satisfies

N N, (LD?)W
\/§L t - 2\/§L 2k+1 :

The last inequality follows by d; > %.

0t — O¢q1 >

We now sum up these decreases §; — 0,41 over the red indices ¢ € [¢,r — 1].
We have that

3/2
poy/Bf ( LD?
H{t e [t,r —1]: red}] < T < Z (0¢ — 0¢41)
2v2L \2 vt
red

S (6= )
tell,r—1]
=6y — 0y

< LD?
— 2k+1'

IN

Combining these bounds gives

ok+1\ 12 9 /5,
|Bk|§2+( 2) V2L
LD HaN/Ivf

Finally, we count the total number of indices as
Llog2(LTDez)J ka1 1/2
T< > 2+ (2 2) 2v2L
= LD*) oy
[1oe: (487) |

=0 <log (LD2)> + 2v2L g(k+1)/2
2\ 26 po ifVLD?

oo () 0(i )




For all € > 0 small enough, this bound is dominated by the term on the
right. |



