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Abstract

This paper proposes estimating parameters in higher-order spatial autoregressive mod-

els, where the error term also follows a spatial autoregression and its innovations are het-

eroskedastic, by matching the simple ordinary least squares estimator with its analytical

approximate expectation, following the principle of indirect inference. The resulting es-

timator is shown to be consistent, asymptotically normal, simulation-free, and robust to

unknown heteroskedasticity. Monte Carlo simulations demonstrate its good finite-sample

properties in comparison with existing estimators. An empirical study of Airbnb rental

prices in the city of Asheville illustrates that the structure of spatial correlation and effects

of various factors at the early stage of the COVID-19 pandemic are quite different from

those during the second summer. Notably, during the pandemic, safety is valued more and

on-line reviews are valued much less.
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1. Introduction

Correlation in space has attracted lots of attention in various disciplines of the social sciences.

It arises naturally due to aggregation, competition, copycatting, externality, capacity constraint,

among others. The spatial autoregressive (SAR) model and its various extensions have been used

in many areas, including economics and finance, real estate, criminology, political science, and

sociology. In terms of estimation and inference, there are mainly two approaches in the literature.

One is based on the principle of (quasi) maximum likelihood ((Q)ML), see, for example, Anselin

(1988) and Lee (2004). The other is based on the principle of instrumental variables (IVs) or

moment conditions, see, inter alia, Kelejian and Prucha (1998, 2010), Lee and Liu (2010), Lin

and Lee (2010), and Jin and Lee (2019).

The (Q)ML approach typically relies on some stringent assumptions on the data generating

process (DGP). Under error heteroskedasticity, the (Q)ML estimator is inconsistent. Instead,

the generalized spatial 2-stage least squares (GS2SLS) estimator of Kelejian and Prucha (1998,

2010), also see Badinger and Egger (2011), and the generalized method of moments (GMM)

estimator of Jin and Lee (2019) can be used, which are robust to unknown heteroskedasticity.

Very recently, a third approach emerged in the literature, started by Kyriacou et al. (2017)

that focused on the pure first-order spatial autoregressive (SAR(1)) model. The idea is to derive

the analytical approximate expectation of the simple and yet inconsistent ordinary least squares

(OLS) estimator of the SAR parameter. Note that the analytical expression involves the true

parameter. Then one can solve for the SAR parameter by matching the OLS estimator with

its analytical expectation. Kyriacou et al. (2017) named their approach the indirect inference

(II), even though they used analytical approximation instead of simulations as in the original

works of Gouriéroux et al. (1993) and Smith Jr. (1993). This new approach is straightforward to

implement, simulation-free, and does not rely on the choice of IV or moment conditions associated

with the error term. Kyriacou et al. (2021) extended their earlier work on SAR(1) to include

exogenous regressors and allow for error heteroskedasticity. The analytical approximation in

Kyriacou et al. (2017, 2021) is based on the approximate moment result of Lieberman (1994)

on a ratio of quadratic forms by taking expectations of both the numerator and denominator

of the ratio that defines the OLS estimator of the SAR parameter. Bao et al. (2020) also

considered the SAR(1) model with exogenous regressors and possible heteroskedastic errors,
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but they approximated the ratio by taking expectation of the numerator only.1 The latter

approximation makes it much easier to derive the asymptotic distribution of the recentered OLS

estimator and the resulting II estimator.

Note that Kyriacou et al. (2017, 2021) and Bao et al. (2020) focused on SAR(1), where the

error process does not have spatial correlation. In this case, one needs to solve for a scalar

binding function, whether random or deterministic, to estimate the SAR parameter. Kyriacou

et al. (2021) suggested possible extensions to higher-order SAR or a SAR with spatially correlated

errors by adding more II conditions via suitable binding functions, but fell short of mentioning

how to construct these additional binding functions. Bao and Liu (2021) took this endeavor to

extend the II approach to a spatial autoregressive model with autoregressive error (SARAR),

where the orders of spatial autoregressions in the outcome and error equations are both 1,

namely, SARAR(1,1). They recognized that the OLS estimator of the SAR parameter in the

outcome equation has (approximate) expectation that depends on, in addition to itself, the SAR

parameter in the error process and thus a single sample binding function is not enough for one to

solve for two unknown SAR parameters. Bao and Liu (2021) tackled this difficulty by designing

a second sample binding function that is based on the OLS estimator of the SAR parameter in

the error process using a consistent residual vector. So in the end, given the sample data, they

used a system of two equations to solve for two unknown SAR parameters.

In practice, one may be faced with many choices of spatial weight matrices that characterize

cross-sectional correlations possibly arising from geographic, social, economic, and demographic

factors. For example, in studying housing prices in 377 metropolitan statistical areas (MSAs)

in the US, Yang (2021) tried with distance measures based on geographic distance, migration

flow, and bilateral house price correlation in a SAR(1) framework. In principle, she could have

used a higher-order model to include three spatial weight matrices based on the three distance

measures. Dall’erba et al. (2009) studied productivity growth in service industry in European

regions. Recognizing that economic interactions decrease very substantially when a national

border is passed, they included two spatial weight matrices, one based on nearest within-nation

neighbors and the other based on nearest neighbors in the bordering nations. On many occasions,

even if a single measure of spatial correlation is used, it may still be an open question what

threshold value of the measure should be used to define neighbors and thus higher-order models,

1The function in Bao et al. (2020) that is used to solve for the SAR parameter is thus a sample binding
function, which is random. Its probability limit is known as the binding function, which is used in Kyriacou et al.
(2017, 2021).
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based on different threshold values, need to be experimented with. A SAR(1) or SARAR(1,1)

specification may fail to capture the full spectrum of cross-sectional correlation. For instance,

instead of using a coarse 10-mile distance ring, Gupta and Robinson (2015) reduced the radius

of distance rings to 1 mile and included in total ten 1-mile distance rings in studying the level of

venture capital funding in the US biotechnology industry. After trying with a higher-order model

with ten spatial lags, Gupta and Robinson (2015) suggested that only the first two spatial lags

matter and thus spatial dependence is restricted to a smaller radius. Similarly, in the example

of Airbnb prices in Section 5, a SAR(1) specification using a spatial weight matrix constructed

from the 20-nearest neighbors would be strongly rejected based on a Moran-type statistic (to

be introduced in Section 3) for the 2020 data. Spatial correlation spreads as far as 100-nearest

neighbors. A lump-sum spatial weight matrix using 100-nearest neighbors might give rise to a

simple SAR(1), but it fails to reveal the different degrees of correlation arising from neighbors of

different distances. Using finer neighborhood rings, Section 5 shows that closer neighbors have

higher impact than neighbors that are farther away. Higher-order models are more appropriate

and appealing to accommodate this kind of correlation pattern.

This paper aims to fill this gap by studying the II method of estimation for the more general

SARAR(p, q), where the finite integers p and q denote the orders of spatial autoregressions in

the outcome and error equations, respectively. Since there are multiple parameters, one may be

tempted to write the OLS estimator (of the parameter vector in the outcome equation) using

the familiar matrix inverse formula. However, a generalization of Lieberman (1994) to the mul-

tivariate case is not available and thus one may not be able to employ the approach of Kyriacou

et al. (2017, 2021) to come up with a system of deterministic binding functions. It seems more

appealing to use instead the approach based on random sample binding functions as in Bao et al.

(2020) and Bao and Liu (2021) that takes the inverse part in the OLS formula as given and eval-

uates only the expectation of the “numerator” part. Still, as in the SARAR(1,1) case, the OLS

estimator of the p SAR parameters in the outcome equation depends on, in addition to them-

selves, the q SAR parameters in the error process. Similarly, the OLS estimator of the q SAR

parameters in the error process depends on both sets of SAR parameters. Therefore, one needs

to find a practicable way of expressing these relationships as a system of p + q equations given

the observable sample data. In the SARAR(1,1) case, each sample binding function is related to

an approximate expectation of a scalar estimator. For the general SARAR(p, q), seeking a scalar

expression and thus a corresponding approximate expectation for each element from the OLS
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matrix formula, even if one uses only the “numerator” part, is not an easy extension, since in

general these elements are correlated with and nonlinear functions of each other and taking ap-

proximate expectation one by one is extremely difficult, if not impossible. If one takes a different

route to approximate the whole matrix, it can become very complicated as the approximation

will eventually involve matrix inverses. So even though conceptually extending the II approach

from SARAR(1,1) to SARAR(p, q) may be straightforward, its practical implementation is not.

The strategy in this paper is to take a conditional approach by working out analytical approx-

imate expectation of each element of the OLS estimator of the SAR parameters in the outcome

equation conditional on all the other SAR parameters in the model, whereas for each element

of the OLS estimator, based on a properly defined residual vector, of the parameters in the

error process, its analytical approximate expectation is conditional on all the SAR parameters.

Thus, one arrives at a system of p+ q sample binding functions that can be used to solve for the

two sets of SAR parameters. Once the SAR parameters are consistently estimated, estimation

of the parameter vector associated with the exogenous regressors follows from the usual OLS

procedure.

As in the set-up of Bao and Liu (2021), the error innovations in this paper are possibly

heteroskedastic. The motivation of using II approach again is to avoid the choice of IV and/or

moment conditions. It may also possess some degree of numerical advantage relative to the

GMM approach of Jin and Lee (2019) since it searches for parameters over a (p+ q)-dimensional

parameter space, whereas the GMM approach searches over a (p+q+kx)-dimensional parameter

space, where kx is the number of exogenous regressors.2 The GS2SLS approach of Kelejian

and Prucha (2010) estimates the outcome equation parameters first by 2SLS, totally ignoring

the correlation in the error process, and then using the resulting residuals to estimate the SAR

parameters in the error process by GMM. In contrast, the II approach in this paper estimates first

both sets of SAR parameters jointly and then estimates the remaining parameters associated with

exogenous regressors in the outcome equation. Lee (2007) and Yang (2015) emphasized that the

spatial coefficients are the main source of bias in model estimation and the main cause of difficulty

in bias correction in SAR models. One would expect that ignoring the spatial correlation in the

error process when estimating parameters in the outcome equation by the GS2SLS approach

could lead to some undesirable results. If one brushes aside the complexity of the optimal weight

2Examples of high-dimensional parameter space include, among others, Helbich et al. (2014) and Rico-Juan
and Taltavull de La Paz (2021), where 23 and 47 (non-constant) covariates are used respectively in their hedonic
pricing models.
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matrices in the GMM objective functions in Jin and Lee (2019) and (the second step of) Kelejian

and Prucha (2010), the numerical cost, in terms of parameter dimension, of the II procedure lies

between those of GMM and GS2SLS. This paper also offers insights into how the sample binding

functions are related to the best moment conditions of the GMM estimator as discussed in Liu

et al. (2010).

This paper is organized as follows. The next section introduces notation and assumptions

on SARAR(p, q) models. Section 3 provides the main results regarding the II estimator. In

particular, it shows that the II estimator is consistent, asymptotically normal, and robust to

heteroskedasticity in error innovations. Section 4 contains Monte Carlo results by comparing the

II estimator with the GMM and GS2SLS estimators. Section 5 provides an empirical study of

Airbnb rental prices using two data sets from the city of Asheville, North Carolina. It is found

that the correlation structure and marginal effects of various factors at the early stage of the

COVID-19 pandemic are very different from those during the second summer. The last section

concludes. Technical details and proofs are collected in the Appendix. Additional results are

contained in a supplementary appendix.

2. Model Specification

Consider the following SARAR(p, q) model

yn =Xnβ +

p∑
i=1

λiWinyn + un, un =

q∑
j=1

ρjMjnun + vn, (1)

where n is the sample size, yn is an n× 1 vector of observations on the outcome variable, Xn is

an n×kx matrix of observations on kx exogenous deterministic regressors with coefficient vector

β, W in and M jn are n × n nonstochastic spatial weight matrices, λi and ρj are scalar spatial

dependence parameters, and vn is an n× 1 vector of innovation terms.

2.1. Notation

To ease notation burden, the subscript n is dropped (in yn, W in, M jn, vn, and other terms

to follow) with the understanding that, for example, y = yn in fact denotes a triangular array.

lim, →, and sup are with respect to n going to infinity.
a.s.→ and

d→ denote convergences almost

surely and in distribution, respectively. Matrix/vector dimension subscripts are also dropped
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when the dimensions can be read from the context. A parameter with subscript 0 is used to

signify the parameter’s true value. When a matrix/vector is presented without its argument(s),

it means that it is evaluated at the true parameter value(s). (Sometimes the argument(s) may

be added explicitly to emphasize the dependency.) For a vector a and a square matrix A,

Dg(a) denotes a square diagonal matrix with the vector a spanning the main diagonal, dg(A)

is a column vector that collects in order the diagonal elements of A, Dg(A) = Dg(dg(A)),

and A ≻ 0 denotes A being positive definite. tr and ⊙ denote matrix trace and Hadamard

(element by element) product operators, respectively. For any matrixA, ||A||∞ and ||A||1 denote

maximum absolute row sum norm and maximum absolute column sum norm, respectively, and

A⋆ = A + A′. When there is no confusion, a typical element of A (or a) is denoted by aij

(or ai). Throughout, λ = (λ1, · · · , λp)′, λ(−i) = (λ1, · · · , λi−1, λi+1, · · · , λp)′, ρ = (ρ1, · · · , ρq)′,

ρ(−j) = (ρ1, · · · , ρj−1, ρj+1, · · · , ρq)′, γ = (λ′,ρ′)′, and

S(λ) = I −
p∑

i=1

λiWi, S(−i)(λ) = S(λ(−i)) = S(λ) + λiWi, Gi(λ) =WiS
−1(λ),

R(ρ) = I −
q∑

j=1

ρjMj , R(−j)(ρ) = R(ρ(−j)) = R(ρ) + ρjMj , Fj(ρ) =MjR
−1(ρ),

H(ρ) = I −R(ρ)X(X ′R′(ρ)R(ρ)X)−1X ′R′(ρ),

Di(γ) = Dg[H(ρ)R(ρ)Gi(λ)R
−1(ρ)], Ei(γ) =H(ρ)R(ρ)Gi(λ)R

−1(ρ)−Di(γ),

Kj(ρ) = Dg[F j(ρ)], Lj(ρ) = F j(ρ)−Kj(ρ),

where I is the identity matrix. The parameter vector is θ = (γ′,β′)′ and the total number of

parameters to be estimated is k = p+ q + kx.

2.2. Assumptions

The following assumptions are made throughout.

Assumption 1 ∀i = 1, · · · , p and ∀j = 1, · · · , q, (i) ||W i||1 <∞, ||W i||∞ <∞, ||M j ||1 <∞,

and ||M j ||∞ <∞; (ii) the diagonal elements of W i and M j are all zero.

Assumption 2 (i) S−1 and R−1 exist. (ii) ||S−1||1 < ∞, ||S−1||∞ < ∞, ||R−1||1 < ∞, and

||R−1||∞ <∞.

Assumption 3 The innovation terms are independent of each other with E(v) = 0, Var(v) =

Σ = Dg(σ2
1 , · · · , σ2

n), and E(|vi|4+η) <∞, i = 1, · · · , n, for some positive constant η.
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Assumption 4 (i) γ0 is contained in a compact parameter space Γ. (ii) For any γ = (λ′,ρ′)′ ∈

Γ in a neighborhood of γ0, ||S−1(λ)||1 <∞, ||S−1(λ)||∞ <∞, ||R−1(ρ)||1 <∞, and ||R−1(ρ)||∞ <

∞.

Assumption 5 (i) All the elements of X are uniformly bounded. (ii) The following limits

exist and are non-singular/non-zero: limn−1X ′X, limn−1β′
0X

′G′
iR

′RGiXβ0 (when β0 ̸= 0),

i = 1, · · · , p, and limn−1β′
0X

′R′HF ′
jF jHRXβ0 (when β0 ̸= 0), j = 1, · · · , q.

Assumption 1.(ii) can be regarded as a normalization rule and it excludes the so-called

“self influence.” Assumption 1.(i) and Assumption 2 are originated by Kelejian and Prucha

(1998) that aim to limit the degree of spatial dependence. A sufficient condition for S−1 to be

bounded in || · ||∞ in Assumption 2 is
∑p

i=1 |λ0i| < 1/maxi(||W i||∞), so for row-normalized

W matrices, this amounts to
∑p

i=1 |λ0i| < 1, see Lee and Liu (2010) and Badinger and Egger

(2011).3 Assumptions 1 and 2 together imply that S−1(λ) and R−1(ρ) have bounded norms in

a neighborhood of γ0, see Lee (2004). It is listed explicitly as Assumption 4.(ii) for convenience.

Assumption 3 is the same as in Kelejian and Prucha (2010) and Jin and Lee (2019), allowing

the independent error innovations to be heteroskedastic. When q = 0, the first two limits in

Assumption 5.(ii) are similar to those in Lee (2002) that are related to an identification condition

for estimation in the least squares and IV frameworks and rule out possible multicollinearities

among X and RGiXβ0 for large n. When q ̸= 0, an additional condition (the third limit in

Assumption 5.(ii)) is needed so that possible multicollinearities are ruled out in residual equations

that involve the parameter vector ρ. Under Assumptions 1 and 2, the equilibrium solution of

the outcome variable is y = S−1Xβ0 + S
−1R−1v. (Accordingly, Wiy = GiXβ0 +GiR

−1v.)

Note that nothing has been said about the degrees of denseness of the spatial weight matrices,

except that implied by Assumption 1. Consider a scenario where under a particular spatial

weight specification, the number of neighboring units for each member increases, though at a

slower rate, as the sample size increases. It means, for the specific spatial weight matrix, when

normalized, its elements are O(h−1
n ) such that hn → ∞ and hn/n→ 0 as n→ ∞. The appendix

provides a general discussion of this case. In particular, such a modification does not affect the

estimation procedure presented in this paper, nor will it affect the resulting inference procedure,

as one can still construct the t-ratio, for example, without any information on the degrees of

denseness of the weight matrices. It may affect the convergence rate of the II estimator of the

SAR parameters in the error process. In particular, it may become more difficult to estimate

3However, Elhorst et al. (2012) pointed out that this constraint may be too restrictive.
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precisely some elements of ρ0 in finite samples when their corresponding weight matrices become

denser.4

3. Main Results

Given the notation and assumptions in the previous section, this section provides the main

results. First it shows how to approximate the bias of each of the estimated SAR parameters

under heteroskedastic error innovations. When it is properly recentered, the OLS estimator is

in fact consistent and asymptotically normal. Based on this, a set of p+ q binding functions is

designed and the II estimator, together with its asymptotic distribution, is developed. Section 3.2

outlines a model specification testing procedure to detect possible left-over spatial correlation.

Section 3.3 discusses how the II method is related to the best GMM of Liu et al. (2010).

3.1. The II Estimator

The II estimator, as discussed in the introduction, is based on matching the OLS estimator of

each of the SAR parameters with its analytical approximate expectation. Suppose ρ and λ(−i)

are known (equal to their true values), (1) becomes RS(−i)y = RXβ + λiRW iy + v, which

makes its possible to apply the OLS formula to the i-th SAR parameter in the outcome equation.

Let ri = y
′W ′

iR
′Hv and di = y

′W ′
iR

′HRW iy. Then

λ̂i =
y′W ′

iR
′HRS(−i)y

y′W ′
iR

′HRW iy
= λ0i +

ri
di

(2)

gives the OLS estimator of λ0i. Note that λ̂i = λ̂i(λ0,(−i),ρ0), depending on the known values

of λ(−i) and ρ. If p = 1 as considered in Bao and Liu (2021), then one needs to set S(−i) = I in

(2), and if further q = 0 as considered in Bao et al. (2020), then one needs to set R = I in (2).

In general, for SARAR(p, q), given the observable sample data y and X (which appears in the

matrix H), the OLS estimator of each SAR parameter in the outcome equation is a function of

all the other SAR parameters in the outcome equation and all the SAR parameters in the error

process. As can be expected, λ̂i is generally correlated with λ̂i′ for any i ̸= i′, and the associated

4When the GMM and GS2SLS estimators use moment conditions that are based on these dense weight
matrices, the magnitudes of various quadratic terms that appear in the moment conditions and the associated
derivatives will similarly depend on the degrees of denseness of the spatial weight matrices. One would expect
the convergence rates of the resulting estimators may also be affected. Kelejian and Prucha (2010) and Jin and
Lee (2019) did not consider explicitly the case of dense weight matrices. A rigorous treatment of this issue in the
frameworks of GMM and GS2SLS is beyond the scope of this paper.
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random binding functions to be introduced later are also correlated with each other.

Substituting RW iy = RGiXβ0 +RGiR
−1v into ri and di, one has

ri = β
′
0X

′G′
iR

′Hv + v′HRGiR
−1v,

di = β
′
0X

′G′
iR

′HRGiXβ0 + v
′R−1′G′

iR
′HRGiR

−1v + 2β′
0X

′G′
iR

′HRGiR
−1v,

where β′
0X

′G′
iR

′Hv = Op(n
1/2), v′HRGiR

−1v = Op(n), β
′
0X

′G′
iR

′HRGiR
−1v = Op(n

1/2),

v′R−1′G′
iR

′HRGiR
−1v = Op(n), and β′

0X
′G′

iR
′HRGiXβ0 = O(n). (These orders can

be verified in view of Lemma A.2 in the appendix.) As such, this estimator of λ0i is bi-

ased and inconsistent. One possible way to achieve consistency is to recenter λ̂i − λ0i by

E(ri)/di = tr(ΣHRGiR
−1)/y′W ′

iR
′HRWiy.

5 Unfortunately, this recentering term involves

the nuisance covariance matrix Σ. If λ and ρ are known (equal to their true values), a consistent

estimator of β0 is β̃ = β̃(λ0,ρ0) = (X ′R′RX)−1X ′R′RSy and the resulting residual vector

is ṽ = ṽ(λ0,ρ0) = HRSy. It is obvious that tr(ΣHRGiR
−1) = E(v′Div). (Recall that

Di = Dg(HRGiR
−1).) If tr(ΣHRGiR

−1) is replaced with ṽ′Diṽ = y′S′R′HDiHRSy,

then λ̂i−λ0i is linked to y′S′R′HDiHRSy/y
′W ′

iR
′HRWiy, indicating that, given the sam-

ple data y and X, the OLS estimator λ̂i is approximately a function of λ0 (appearing in S and

Di) and ρ0 (appearing in R, H, and Di).

Lemma 1 Let λ̂ = (λ̂1, · · · , λ̂p)′, bλ = (bλ1
, · · · , bλp

)′, sλ = (sλ1
, · · · , sλp

)′ , where

bλi
=
y′S′R′HDiHRSy

y′W ′
iR

′HRWiy
,

sλi
=
v′Eiv + β′

0X
′G′

iR
′Hv

E(di)
,

E(di) = tr(ΣR−1′G′
iR

′HRGiR
−1) + β′

0X
′G′

iR
′HRGiXβ0.

Under Assumptions 1 to 5, if Ξλ ≻ 0, then

√
nΞ

−1/2
λ (λ̂− λ0 − bλ) =

√
nΞ

−1/2
λ sλ + op(1)

d→ N(0, Ip), (3)

5One may be tempted to use the non-random E(ri)/E(di) as the recentering term by following the traditional

notion of bias correction, see Kyriacou et al. (2017, 2021). While both λ̂i − E(ri)/di and λ̂i − E(ri)/E(di)
are consistent, one can show that the latter has a more complicated asymptotic variance in the sense that it
involves the variances of y′W ′

iR
′Hv and y′W ′

iR
′HRW iy as well as their covariance. Moreover, using the

latter complicates further the variance of the resulting II estimator to be introduced. See discussions in Bao et al.
(2020) and Bao and Liu (2021) for the case of p = 1.
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where Ξλ has

ξλ,ij = Cov(sλi
, sλj

) = E(sλi
sλj

) =
n[tr(ΣEiΣE

⋆
j ) + β

′
0X

′G′
iR

′HΣHRGjXβ0]

E(di)E(dj)
(4)

in its (i, j)-th position, i, j = 1, · · · , p.

The recentering vector bλ in Lemma 1 depends on both λ0 and ρ0. If one knows the true

value of ρ, or if there is no spatial correlation in the error process, then by properly recentering

the simple OLS estimator, one can correct its inconsistency. Of course, the traditional plug-in

approach of bias correction will not work, since one cannot directly estimate the recentering

term consistently. The II approach tackles this by treating λ̂−λ0 − bλ as a system of functions

and then solving for the unknown parameters. When ρ is unknown, one needs to come up with

a second system of equations for ρ. If the error vector u is observable, then one should be able

to arrive at a similar result provided by Lemma 1 regarding the OLS estimator of ρ0 based on

the known u. With the unknown error vector u, one needs to use a proper residual vector so

that it can be used to define the OLS estimator of ρ0.

Given (the infeasible) ṽ, define ũ = R−1ṽ = R−1HRSy and suppose that one estimates

ρ0j based on this residual vector, namely,

ρ̂j = ρ̂j(λ0,ρ0) =
ũ′R′

(−j)M jũ

ũ′M ′
jM jũ

=
y′S′R′HR−1′R′

(−j)F jHRSy

y′S′R′HF ′
jF jHRSy

. (5)

In contrast to the case of λ̂i − λ0i, a proper recentering term for ρ̂j − ρ0j is not obvious. Note

that

ũ− u = R−1HRSy −R−1v = R−1(H − I)v,

where all the elements of H − I are O(n−1). One can see that, in light of Lemma A.2 in the

appendix,

(ũ− u)′R′
(−j)M j(ũ− u) = v′(H − I)′R−1′R′

(−j)M jR
−1(H − I)v = Op(1)

and

u′R′
(−j)M j(ũ− u) = v′R−1′R′

(−j)M jR
−1(H − I)v = Op(1).

11



So

ũ′R′
(−j)M jũ = (u+ ũ− u)′R′

(−j)M j(u+ ũ− u)

= u′R′
(−j)M ju+ (ũ− u)′R′

(−j)M j(ũ− u) + 2u′R′
(−j)M j(ũ− u)

= u′R′
(−j)M ju+Op(1)

and similarly ũ′M ′
jM jũ = u′M ′

jM ju+Op(1). Then

ρ̂j =
u′R′

(−j)M ju

u′M ′
jM ju

+Op(n
−1)

= ρ0j +
u′M ′

jv

u′M ′
jM ju

+Op(n
−1)

= ρ0j +
v′F jv

v′F ′
jF jv

+Op(n
−1).

Now tr(ΣF j)/y
′S′R′HF ′

jF jHRSy is a natural choice to recenter ρ̂j − ρ0j . As before, one

needs to take care of the nuisance covariance matrix Σ in the recentering term. The strategy is to

use ṽ′nDg(F j)ṽn = y′S′R′HKjHRSy instead of tr(ΣF j) = E(v′Dg(F j)v) in the recentering

term. This links ρ̂j − ρ0j to y′S′R′HKjHRSy/y
′S′R′HF ′

jF jHRSy (recall that Kj =

Dg(F j)), indicating that, given the sample data y andX, the OLS estimator ρ̂j is approximately

a function of λ0 (appearing in S ) and ρ0 (appearing in R, H, and Ki).

Lemma 2 Let ρ̂ = (ρ̂1, · · · , ρ̂q)′, bρ = (bρ1
, · · · , bρq

)′, and sρ = (sρ1
, · · · , sρq

)′, where

bρj
=

y′S′R′HKjHRSy

y′S′R′HF ′
jF jHRSy

, sρj =
v′Ljv

tr(ΣF ′
jF j)

.

Under Assumptions 1–5, if Ξρ ≻ 0, then

√
nΞρ

−1/2(ρ̂− ρ0 − bρ) =
√
nΞρ

−1/2sρ + op(1)
d→ N(0, Iq), (6)

where Ξρ has

ξρ,ij = Cov(sρi
, sρj

) = E(sρi
sρj

) =
ntr(ΣLiΣL

⋆
j )

tr(ΣF ′
iF i)tr(ΣF

′
jF j)

(7)

in its (i, j)-th position, i, j = 1, · · · , q.

With λ̂−λ0−bλ = sλ+op(n
−1/2) and ρ̂n−ρ0−bρ = sρ+op(n

−1/2) from Lemmas 1 and 2,
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respectively, where both sλ and sρ are linear and quadratic forms in v, their joint asymptotic

distribution follows straightforwardly.

Lemma 3 Let γ̂ = (λ̂
′
, ρ̂′)′, b = (b′λ, b

′
ρ)

′, and Ξ = ((Ξ′
λ,Ξλρ)

′, (Ξ′
λρ,Ξ

′
ρ)

′), where Ξλρ has

ξλρ,ij = Cov(sλi
, sρj

) = E(sλi
sρj

) =
ntr(ΣEiΣL

⋆
j )

E(di)tr(ΣF
′
jF j)

(8)

in its (i, j)-th position, i = 1, · · · , p, j = 1, · · · , q. Under Assumptions 1 to 5, if Ξ ≻ 0, then

√
nΞ−1/2(γ̂ − γ0 − b)

d→ N(0, Ip+q). (9)

The asymptotic distribution result (9) can be used to design an estimator of γ0 in the spirit

of indirect inference by matching γ̂ with its (approximate) expectation γ0 + b. Keep in mind

that γ̂ and b depend on γ0. So the II estimator of γ0 is the root of the vector-valued function

ψ(γ) = γ̂(γ)−γ−b(γ) = (ψ1(γ), · · · , ψp(γ), ψp+1(γ), · · · , ψp+q(γ))
′, where the first p elements

are

ψi(γ) = ψλi
(γ)

=
y′W ′

iR
′(ρ)H(ρ)R(ρ)S(−i)(λ)y

y′W ′
iR

′(ρ)H(ρ)R(ρ)W iy
− λi −

y′S′(λ)R′(ρ)H(ρ)Di(γ)H(ρ)R(ρ)S(λ)y

y′W ′
iR

′(ρ)H(ρ)R(ρ)W iy
,

i = 1, · · · , p, and the second q elements are

ψp+j(γ) = ψρj
(γ)

=
y′S′(λ)R′(ρ)H(ρ)R−1′(ρ)R′

(−j)(ρ)F j(ρ)H(ρ)R(ρ)S(λ)y

y′S′(λ)R′(ρ)H(ρ)F ′
j(ρ)F j(ρ)H(ρ)R(ρ)S(λ)y

− ρj

− y′S′(λ)R′(ρ)H(ρ)Kj(ρ)H(ρ)R(ρ)S(λ)y

y′S′(λ)R′(ρ)H(ρ)F ′
j(ρ)F j(ρ)H(ρ)R(ρ)S(λ)y

,

j = 1, · · · , q. Succinctly, the II procedure is equivalent to solving

ψ(γ) = 0. (10)

Assumption 6 For γ ∈ Γ, (i) Pr(limψ(γ) = 0) = 1 at γ = γ0 and Pr(limψ(γ) ̸= 0) = 1 for

any γ ̸= γ0, and (ii) the Jacobian Ψ(γ) = ∂ψ(γ)/∂γ′ is nonsingular almost surely.

Essentially, Assumption 6 ensures the existence and uniqueness of the root of the sample
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binding function ψ(γ), at least in large samples. It would be desirable to set up some primitive

conditions that lead to the existence and uniqueness of the root for any given sample. These

conditions will depend on the structure of the data matrix, the characteristics of the weight

matrices, and the parameter space. For a given sample, however, one may check the Jacobian’s

determinant, condition number, or inverse error bound, over a grid of values of γ to verify

numerically validity of this assumption.6 Assumption 6 is also needed for deriving the asymptotic

distribution of the resulting II estimator.

Theorem 1 Let V γ = Ψ−1ΞΨ−1′ = ((V ′
λ,V λρ)

′, (V ′
λρ,V

′
ρ)

′), partitioned in accordance with

λ and ρ. Under Assumptions 1 to 6, if V γ ≻ 0, the asymptotic distribution of the II estimator

of γ0 that solves (10) is
√
nV −1/2

γ (γ̂II − γ0)
d→ N(0, Ip+q). (11)

Once γ0 is estimated by γ̂, one can estimate β0 by the usual OLS procedure, namely,

β̂II = β̂II(γ̂II) = (X ′R′(ρ̂II)R(ρ̂II)X)−1X ′R′(ρ̂II)R(ρ̂II)S(λ̂II)y. (12)

Given that λ̂II and ρ̂II are consistent, β̂II defined as such is necessarily consistent. Let Ψ−1 =

((Ψ
(−1)′
λ ,Ψ

(−1)
λρ )′, (Ψ

(−1)′
λρ ,Ψ(−1)′

ρ )′), partitioned in accordance with λ and ρ. The following

theorem gives the joint distribution of γ̂II and β̂II .

Theorem 2 Let V = ((V ′
γ ,V γβ)

′, (V ′
γβ,V

′
β)

′), where

V β = n(X ′R′RX)−1X ′R′ΣRX(X ′R′RX)−1 + J1VλJ
′
1 − nJ1Ψ

(−1)
λ J ′

2 − nJ2Ψ
(−1)′
λ J ′

1

and V γβ = (V ′
λβ,V

′
ρβ)

′, in which

V λβ = nΨ
(−1)
λ J ′

2 − V λJ
′
1, V ρβ = n(Ψ

(−1)
ρλ J ′

2 − V ρλJ
′
1),

J1 = [(X ′R′RX)−1X ′R′RG1Xβ0, · · · , (X ′R′RX)−1X ′R′RGpXβ0],

J2 =

[
(X ′R′RX)−1X ′R′ΣHRG1Xβ0

E(d1)
, · · · , (X

′R′RX)−1X ′R′ΣHRGpXβ0

E(dp)

]
.

6Note that matrix determinant may not be a good indicator for assessing how close a matrix is to being
singular. The condition number is a more reliable measure. However, there is no agreed rule on how large the
condition number should be to regard a matrix as an ill-conditioned one. A more useful measure in practice is
the matrix inverse relative error bound ε = ε(Ψ−1(γ)), see Wilkinson (1961). It measures the upper bound of
the error in the computed inverse relative to the exact inverse.
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Under Assumptions 1 to 6, if V ≻ 0, the asymptotic distribution of θ̂II = (γ̂′
II , β̂

′
II)

′ is

√
nV −1/2(θ̂II − θ0)

d→ N(0, Ik). (13)

The first part of V β is the usual variance formula of the OLS estimator of β0 under het-

eroskedasticity in the case of known values of λ and ρ. The remaining terms are due to the

estimation uncertainty associated with λ̂II .
7 Note that V = V (y,X,θ0,Σ). In practice, one

can estimate V by V̂ = V (y,X, θ̂II ,Dg(v̂2)), where v̂ =H(ρ̂II)R(ρ̂II)S(λ̂II)y ≡ ĤR̂Ŝy.

3.2. A Moran-Type Test

After estimation, one may follow Kelejian and Prucha (2001) and Robinson (2008), also see Kyr-

iacou et al. (2021), to check whether there is still left-over spatial correlation in the error process.

Under the null of correct model specification, v from (1) should have a diagonal variance struc-

ture, namely, E(vv′) = Σ. For this purpose, a Moran-type statistic based on v̂′Av̂ can be used,

where A is a matrix that signals possible spatial correlation and also satisfies Assumption 1.8

By substituting v̂ = (H + Ĥ −H)(R+ R̂−R)(S+ Ŝ−S)y into v̂′Av̂ and expanding, one has

v̂′Av̂ = ṽ′Aṽ + 2ṽ′AHR(Ŝ − S)y + 2ṽ′AH(R̂−R)Sy + 2ṽ′A(Ĥ −H)RSy + op(n
−1/2),

where recall that ṽ = ṽ(λ0,ρ0) = HRSy. By another round of substitution of ṽ = v +

(H − I)v, Ŝ − S = −
∑p

i=1(λ̂II,i − λ0i)W i, R̂ − R = −
∑q

j=1(ρ̂II,j − ρ0j)M j , Ĥ − H =

RX(X ′R′RX)−1X ′R′ − R̂X(X ′R̂′R̂X)−1X ′R̂′, and (see the proof of Theorem 2 in the

appendix),

(X ′R̂′R̂X)−1 = (X ′R′RX)−1

+

q∑
j=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′(RM j)

⋆X(X ′R′RX)−1 + op(n
−3/2),

7From the expansion in the proof of Theorem 2 in the Appendix, one sees that the estimation uncertainty of
ρ̂II does not contribute to the variance of β̂II .

8The following discussion is based on all the spatial matrices (W ′s, M ’s, and A) being sparse. Otherwise,
while the first equality in equation (14) to be introduced still holds, t1 and t2 in (14) may need to have different
scaling factors in their definitions in the remaining equalities (so that their limits can be properly defined) and
the three terms in the last equality may have different magnitudes.
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one can write

1√
n
v̂′Av̂

=
1√
n
v′Av − 2√

n

p∑
i=1

(λ̂II,i − λ0i)v
′AHRGi(Xβ0 +R

−1v)

− 2√
n

q∑
j=1

(ρ̂II,j − ρ0j)v
′AH(M jXβ0 + F jv) + op(1)

+
2√
n

q∑
j=1

(ρ̂II,j − ρ0j)v
′A
[
M jX(X ′R′RX)−1X ′R′]⋆ (RXβ0 + v) + op(1)

=
1√
n
v′Av − 2t′1

√
n(λ̂II − λ0)− 2t′2

√
n(ρ̂II − ρ0) + op(1)

=
1√
n
v′Av − 2t′1

√
n(Ψ

(−1)
λ sλ +Ψ

(−1)
λρ sρ)− 2t′2

√
n(Ψ(−1)

ρ sρ +Ψ
(−1)
ρλ sλ) + op(1)

=

(
1 −2(t′1Ψ

(−1)
λ + t′2Ψ

(−1)
ρλ ) −2(t′1Ψ

(−1)
λρ + t′2Ψ

(−1)
ρ )

)
1√
n
v′Av

√
nsλ

√
nsρ

+ op(1), (14)

where t′1 horizontally stacks n−1tr(ΣAHRGiR
−1), i = 1, · · · , p, and t′2 horizontally stacks

n−1tr
(
ΣA

(
HF j −

[
M jX(X ′R′RX)−1X ′R′]⋆)), j = 1, · · · , q. It follows that

1√
n
v̂′Av̂

d→ N(0, z2), (15)

where

z2 = lim
1

n
tr(ΣAΣA⋆) + 4 lim( t′1 t′2 )V γ( t′1 t′2 )′

− 4 lim( t′1Ψ
(−1)
λ + t′2Ψ

(−1)
ρλ t′1Ψ

(−1)
λρ + t′2Ψ

(−1)
ρ

)c,

and c = (c1, · · · , cp+q)
′, ci = lim tr(ΣEiΣA

⋆)/E(di), cp+j = lim tr(ΣLjΣA
⋆)/tr(ΣF ′

jF j),

i = 1, · · · , p, j = 1, · · · , q. By using the sample analogues and the II estimator, the variance z2

can be estimated. Denote such an estimator by ẑ2. Then a Moran-type statistic is

I =
(v̂′Av̂)2

nẑ2
, (16)

which converges to a chi-squared distribution with one degree of freedom under the null of correct

model specification.
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3.3. In Relation to GMM

From Section 3.1, one can write

γ̂(γ0)− γ0 − b(γ0) =



β′
0X

′G′
1R

′Hv+v′HRG1R
−1v−v′HD1Hv

y′W ′
1R

′HRW 1y

...

β′
0X

′G′
pR

′Hv+v′HRGpR
−1v−v′HDpHv

y′W ′
pR

′HRW py

v′F 1v−v′HK1Hv
y′S′R′HF ′

1F 1HRSy

...

v′F qv−v′HKqHv
y′S′R′HF ′

qF qHRSy


+Op(n

−1)

=



β′
0X

′G′
1R

′Hv+v′E1v
y′W ′

1R
′HRW 1y

...

β′
0X

′G′
pR

′Hv+v′Epv

y′W ′
pR

′HRW py

v′L1v
y′S′R′HF ′

1F 1HRSy

...

v′Lqv
y′S′R′HF ′

qF qHRSy


+Op(n

−1). (17)

Given y′W ′
iR

′HRW iy and y′S′R′HF ′
jF jHRS are nonzero in large samples (see Assump-

tion 5) and are both of order Op(n), (17) can be written as

1

n



β′
0X

′G′
1R

′Hv + v′E1v

...

β′
0X

′G′
pR

′Hv + v′Epv

v′L1v

...

v′Lqv


× n

Op(n)
+Op(n

−1)

=
1

n



v′E1v

...

v′Epv

v′L1v

...

v′Lqv


× n

Op(n)
+Op(n

−1/2) +Op(n
−1) = 0+Op(n

−1/2) +Op(n
−1), (18)
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where the Op(n
−1/2) term includes the omitted n−1β′

0X
′G′

iR
′Hv when one uses only the

quadratic terms collected in m(γ0) = n−1(v′E1v, · · · ,v′Epv,v
′L1v, · · · ,v′Lqv)

′, up to some

scaling constant, to solve for the II estimator. This set of p+ q conditions is conditional on the

parameter vector β0, since v = RSy−RXβ0. The II procedure replaces v withHRSy in (18),

where H concentrates out β0. However, the matrix Ξ, whose probability limit is related to the

asymptotic variance of the II estimator of γ0, involves H and thus does take into account the

effects of this concentration. The effects of the omitted n−1β′
0X

′G′
iR

′Hv terms in the moment

conditions for λ0i enter directly the top-left block of Ξ that pertains to λ0, see (4), as well as

the top-right and lower-left blocks, see (8). This set of p+ q conditions alone is not enough for

one to construct a GMM-type estimator of θ0. For one to be able to estimate jointly the whole

parameter vector θ0, they can be augmented with moment conditions related to β0 so that

g(θ0) =
1

n
(X ′R′v,β′

0X
′G′

1R
′v, · · · ,β′

0X
′G′

pR
′v,v′E1v, · · · ,v′Epv,v

′L1v, · · · ,v′Lqv)
′, (19)

whereX ′R′v follows from the exogeneity ofX, β′
0X

′G′
iR

′v follows from the part β′
0X

′G′
iR

′Hv

(withH replaced by I since β0 is not concentrated out and is estimated jointly) that is not used

directly in the II estimation procedure, and Ei in v′Eiv is RGiR
−1 − Dg(RGiR

−1) (where

again H is replaced by I in the original definition of Ei).

When vi is normal and independent and identically distributed (i.i.d.), Liu et al. (2010)

showed that the above set of moment conditions is the best in the sense that the resulting GMM

estimator is as efficient as the ML estimator. In the presence of heteroskedasticity, the best

moment conditions involve the unknown matrix Σ and using the best moment conditions with

estimated Σ may make them no longer the best.9 In the first-order SAR framework, Lin and Lee

(2010) recommended using the estimated moment conditions n−1(X ′v,X ′Ĝv,v′(Ĝ−Dg(Ĝ))v)′.

Similarly, Liu et al. (2010) recommended using some initially consistently estimated Ĝi, Êi, R̂j ,

and L̂j and they showed that this does not affect the asymptotic efficiency of the best GMM

estimator under homoskedasticity.

Setting aside the effects of Σ, one can see the differences between the II and best GMM esti-

mators. First, the II procedure estimates γ0 and then β0 in the second step and in estimating γ0

the moment conditions β′
0X

′G′
iR

′Hv are not taken into account directly. In contrast, the best

GMM considers a broader set of moment conditions. When there is no X, the two approaches

9Suppose one defines λ̂i = y′W ′
iR

′Σ−1/2HΣ−1/2RS(−i)y/y
′W ′

iR
′Σ−1/2HΣ−1/2RW iy, where H = I −

Σ−1/2RX(X′R′Σ−1RX)−1X′R′Σ−1/2 and ρ̂j = u′Σ−1/2R′
(−j)

MjΣ
−1/2u/u′Σ−1/2M ′

jMjΣ
−1/2u as the

“best” OLS estimators, then the same procedure as in Section 3.1 will lead to a set of moment conditions that
involves Σ.
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are essentially based on the same set of moment conditions under normality.10 Second, the II

procedure estimates γ0 without any initial consistently estimated Ĝi, Êi, R̂j , and L̂j , but the

best GMM estimator usually uses these estimates in constructing the moment conditions, as

recommended by Lin and Lee (2010) and Liu et al. (2010).

If the II estimator had used simply the set of moment conditions m(γ0) that is based on

only the numerator parts of λ̂−λ0 − bλ and ρ̂−ρ0 − bρ, when there is no X, one can see that,

by comparing (11) and (25) in the appendix and modifying the Jacobian function accordingly,

the II estimator could be as efficient as the best GMM estimator under the assumptions in Liu

et al. (2010).

4. Monte Carlo Results

To assess the performance of the II estimator proposed in this paper, this section provides some

Monte Carlo evidence. For comparison, the best robust GMM estimator (based on (19)) of Jin

and Lee (2019) with Gi, Ei, Rj , and Lj estimated and the GS2SLS estimator of Kelejian and

Prucha (2010) are included.11

In Table 1, four data generating processes are considered, denoted by DGPs 1–4, respectively,

corresponding to SARAR(2,2) with various degrees of spatial correlation in the outcome variable

and error term. Specifically, DGP 1 has λ0 = (0.15, 0.1)′ and ρ0 = (0.5, 0.4)′; DGP 2 has

λ0 = (0.5, 0.4)′ and ρ0 = (0.15, 0.1)′; DGP 3 has λ0 = (0.15, 0.1)′ and ρ0 = (0.05, 0.02)′; DGP

4 has λ0 = (0.5, 0.4)′ and ρ0 = (0.3, 0.2)′. Similar to the experimental design in Kyriacou et al.

(2021), the exogenous regressors include a constant term and two independent uniform random

variables on the interval [0, 1]. The parameter vector β0 is fixed at (0.2, 0.1,−0.3)′. Throughout,

error innovations are simulated as vi = σiϵi, where σi is drawn from a χ2 distribution with 5

degrees of freedom and ϵi is i.i.d. following a student-t distribution with 5 degrees of freedom. W 1

10When error innovations are i.i.d. and non-normal, the best moment conditions involve the skewness and
kurtosis of error innovations. When both non-normality and heteroskedasticity are present, it is expected that
the best moment conditions are to involve the possible heterogeneous third and fourth moments. But then in
practice, how to arrive at a feasible version of the best moment conditions is a challenge.

11Additional experiments are conducted when Gi, Ei, Rj , and Lj are treated as functions of the pa-
rameter vector and/or when the variance matrix Σ, either estimated or of the true value, is used to
scale these matrices. The resulting best GMM estimates perform no better. A robust GMM with mo-
ment conditions n−1[v′Q,v′W 1v, · · · ,v′W pv,v′(W 2

1 − Dg(W 2
1))v, · · · ,v′(W 2

p − Dg(W 2
p))], where Q =

[X,W 1X∗, ...,W pX∗,W 2
1X∗, ...,W 2

pX∗] with X∗ denoting the part of X excluding the constant term, is
also tried and its bias and RMSE performances are comparable with the best robust GMM, but its size per-
formance is much worse. To save space, these results are not reported but are available upon request. For the
GS2SLS estimator of Kelejian and Prucha (2010), the matrix of instrumental variables is Q in the first step and
n−1[v′P 1v,v′P 2v], where P 1 = [M1, · · · ,Mq ] and P 2 consists of M ′

jM i −Dg(M ′
jM i) for j ≤ i ≤ q, is used

as the set of moment conditions in the second step.
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in the outcome equation is a distance-based matrix with its (i, j)-th entry defined as exp(−|li −

lj |)1(|li − lj | < log(n)), where the locations l1, · · · , ln are n random numbers from a uniform

distribution on the interval [0, n]. The resulting matrix is then normalized by its || · ||∞ norm.

W 2 is constructed as a random symmetric matrix of zeros and ones with the number of ones

restricted to be 10% of the total entries. It is then row normalized. The two matrices in the error

process are generated as first-order and second-order contiguity matrices, respectively. Namely,

M1 has its (i, j)-th entry equal to 1 if |i − j| = 1 and zero otherwise; M2 has its (i, j)-th

entry equal to 1 if |i − j| = 2 and zero otherwise. Both are then row-normalized. Under these

configurations, Assumption 2 and Assumption 4.(ii) are satisfied for the four DGPs.

Insert Table 1 here.

The bias, root mean squared error (RMSE), and empirical rejection probability of the two-

sided 5% t-test of the specific parameter equal to its true value, denoted by P (5%) in Table 1,

are based on 1000 simulations. To save space, only results related to the spatial parameters are

reported. The following observations can be made. First, the GMM and II methods estimate

the SAR parameters with little bias. No one seems to universally dominate the other. The

GS2SLS estimator substantially overestimates λ01 across all DGPs. Second, in terms of RMSE,

the II procedure delivers the smallest values in all cases, whereas the GS2SLS method gives

the highest values in many cases. However, under DGPs 2 and 3, when the spatial correlation

in the error process is mild, the GMM method reports the highest RMSE in estimating ρ0.

Third, in terms of hypothesis testing, the II method has the best size performance, with its

empirical size close to the nominal size, especially when n = 200. GMM also performs as well

as II when n = 200, though there are significant size distortions when n is relatively small. The

GS2SLS, however, can have serious size distortions under DGPs 1 and 4, where the degree of

spatial correlation in the error term is relatively strong. Recall that in the first step of GS2SLS,

the moment conditions do not necessarily take into account the spatial correlation in the error

process. This kind of disconnection between its first and second steps may help explain its poor

performances in these situations. Under DGPs 2 and 3 when the degree of spatial correlation in

the error term is relatively weak, the GS2SLS-based t-test has reasonable size performance when

n = 100, 200 for testing λ02, ρ01, and ρ02, but it has trouble with testing λ01. The supplementary

appendix contains more simulation results, where the scenarios of strong exogenous regressors,

many covariates, and a dense W 2 matrix are considered. The superb performance of the II

estimator is again documented across different situations.
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As discussed in the previous section, the II procedure relies on a key assumption for identifi-

cation, namely, Assumption 6. For a given sample, one may numerically verify that the sample

binding function is invertible by checking the sample Jacobian. Figure 1 plots under each DGP

and n, the cumulative distribution function (CDF) across 1000 simulations of the maximum

(over the parameter space of γ) inverse error bound of Ψ(γ), denoted by max ε(Ψ−1(γ)).12 It

evidently reveals that there is no problem of numerically inverting the sample binding function

under each n-DGP combination, up to 6 to 9 decimal digits of accuracy. This helps explain that

the II method does not encounter numerical failure in the simulations that lead to Table 1.

Insert Figure 1 here.

Recall that the GMM method searches over a (p + q + kx)-dimensional parameter space,

whereas the II approach searches over a (p + q)-dimensional space. So in terms of numeri-

cal cost, the GMM estimator may be preferred in situations of large n and small kx, but the

II approach may be preferred in cases of moderate n but large kx. Figure 2 plots the av-

erage (out of 1000 simulations) ratio of computation time from best robust GMM over that

from II across the four DGPs with kx = 2, 3, · · · , 31 and n = 50, 100, 200. Figure 3 plots

the average time ratio when n = 200, 400, 600, · · · , 2000 while kx = 3, 5, 7.13 All the non-

constant covariates are simulated as independent uniform random variables on the interval

[0, 1] and β0 = (0.2, 0.1,−0.3, 0.1,−0.3, · · · )′. (So for example, β0 = (0.2, 0.1)′ when kx = 2,

(0.2, 0.1,−0.3)′ when kx = 3, (0.2, 0.1,−0.3, 0.1)′ when kx = 4, and so on.) They indicate clearly

the strength, in terms of computation time, of the II approach relative to the GMMmethod when

the number of covariates in the outcome equation increases. When the sample size is relatively

large (and kx is small), the GMM approach may start to have some advantage relative to the

II method. With kx = 7, however, even under n = 2000, the GMM approach still takes longer

than II. It is interesting to observe from Figure 3 that when n is not too large (≤ 400), the time

ratio of GMM relative to II actually goes up as n increases. This suggests the extra nonlinearity

in parameters appearing in the matrices in the quadratic forms that form the sample binding

functions from II may not be of a practical concern in such cases. The GMM method is still

12 The search over the parameter space is conducted by a 4-round adaptive grid search with |λ1| +
|λ2| < 1 and |ρ1| + |ρ2| < 1 imposed. For each element (λ1, λ2, ρ1, and ρ2), the initial grid is
[−0.99,−0.98,−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9, 0.98, 0.99], consisting of 11 grid points with search interval of 1.98.
In the first round of finer grid search, the search interval is halved. After 4 rounds, the search interval is
1.98/24 = 0.12375 with 11 grid points of grid length 0.012375.

13All the simulation results in this section and the Supplementary Appendix reported in various tables and
Figure 1 are based on parallel computation (parfor over 1000 simulations) in Matlab 2021b. To precisely capture
computation time per simulated sample for each estimator, sequential computation (for over 1000 simulations)
is used to produce Figures 2 and 3.
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nonlinear in nature, in spite of using estimates of these matrices in forming the sample quadratic

moment conditions. The nonlinearity, compounded with extra computational burden (due to

the extra search over the kx beta parameters) from GMM, may increase in n at a faster rate

compared with II when n is not too large.

Insert Figure 2 here.

Insert Figure 3 here.

5. An Empirical Study

This section provides an empirical study by fitting SARAR models to Airbnb log prices in

Asheville, North Carolina in the United States. Bao and Liu (2021) used a data set collected on

March 21, 2020, consisting of 2247 observations, to estimate a SARAR(1,1) and concluded that

the SAR parameter is very significant in the outcome equation but the SAR parameter in the

error process is not.

The study of Bao and Liu (2021) is not issue-free, however. First, the variable indicating free

parking has an estimated coefficient with a negative sign. When one is to conduct a one-tailed

test of a value of zero against the alternative of a negative value for this coefficient, the evidence

is to reject the null at 5%. The calculated marginal effects also indicate a rejection of the null.

This is quite counter-intuitive. Second, historical data at Acuweather.com reveal that on March

20, the high temperature was 79F (and 73F on March 19). A typical guest was more likely to

pay a price premium for a room/house with air conditioning (AC) when searching around in

advance. This AC variable was not included in their study. Third, out of the 2247 listings, only

30 did not provide Wi-Fi. Given that a constant term was included in the set of exogenous

regressors, this would create a high degree of multicollinearity.

This study tries to address these issues. Note that free parking on premises and free street

parking were categorized as a single free parking variable in Bao and Liu (2021). Usually,

street parking indicates non-existence of dedicated parking space and there is a risk of car

theft or vandalism at night, whereas parking on premises, either in garage or inside some gated

community, is generally considered safer. Out of the 2247 listings, only 73 did not provide free

parking. It is not clear from the data source whether this indicates parking was not free or there

was simply no parking available. Thus, a dummy variable “PremisePk” is created in this study

for free parking on premises to capture possible price premium of reserved parking space relative
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to either street parking or no parking. This study includes an AC dummy variable and excludes

the 30 observations with no Wi-Fi, leading to in total 2217 observations.

Moreover, instead of a single spatial weight matrix in terms of the number (20, 50, or 100)

of nearest neighbors (for instance, a J-nearest neighbor weight matrix is constructed such that

for a unit, the J nearest units, in terms of geographic distances, are considered as this unit’s

neighbors), five possible distance rings are used to better trace and quantify the effects of neigh-

bors of different distances. More specifically, a (J1, J2]-nearest weight matrix, J1 < J2, denoted

by W (J1,J2] is defined such that for a unit, if some other units are considered as its J2-nearest

neighbors but not its J1-nearest neighbors, then the corresponding entries in this matrix are

non-zero. This kind of weight matrix classification based on distance / neighborhood rings is

used in Kolympiris et al. (2011) and Gupta and Robinson (2015). By definition, the resulting

weight matrices do not overlap, which is recommended by Elhorst et al. (2012) in consideration of

stationary parameter region in the estimation of higher-order models. In total 36 SARAR(p, q)

models are tried, p = 0, · · · , 5, q = 0, · · · , 5, where W 1 = W (J0,J1], · · · , W p = W (Jp−1,Jp],

J0 = 0, J1 = 20, J2 = 50, J3 = 100, J4 = 200, and J5 = 300, are used in the outcome equation

and the same matrices are used as M ’s in the error process. (When p = q = 0, it is a simple

linear regression model and the OLS estimator is used.) Therefore, for example, W (20,50]y in

the outcome equation corresponds to the spatially lagged dependent variable collecting neighbors

that are from 21-nearest to 50-nearest distances. One could have included more distance rings.

Nevertheless, it is quite reasonable that when a consumer or host is searching around, he/she is

unlikely to compare more than 300 listings that are nearby.

The date of March 21, 2020 was about two weeks after COVID-19 was declared as a national

emergency. The State of North Carolina identified the first case of COVID-19 on March 3 and

the governor issued an executive order declaring a state of emergency on March 10 and two

days later, the county of Buncombe, where Asheville is the county seat, declared a local state of

emergency. The data on March 21, 2020 were collected at the early stage of the pandemic and

travelers and hosts might not have taken into full consideration the pandemic. To investigate

the possible effects of this pandemic on the Airbnb economy, a new data set was collected on

July 10, 2021, when the nation evolved into the second year of the pandemic and the highly

contagious Delta variant was surging. With 8 listings of shared room and 16 listings of no Wi-Fi

removed, this new data set comprises 2102 observations.

Insert Table 2 here.
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Table 2 reports the sample statistics of both data sets.14 Notably, the listing price on average

has been going up, largely in line with the somewhat high inflation rate during the pandemic.

Host count jumps substantially, which may be explained by the eviction moratorium set up by the

Centers for Disease Control and Prevention (CDC).15 So does the proportion of listings of entire

home/house, and consequently variables like the numbers of people that can be accommodated,

bedrooms, and bathrooms also go up. The proportions of listings with AC (which typically

does not circulate fresh air from outside) and breakfast both go down, together with that of

instant bookable rentals. This may suggest that in the second year of the pandemic people are

more aware of the severity of COVID-19 and become more cautious. On the other hand, more

rental properties provide TV and the number of minimum nights goes up. This suggests that

once guests are admitted, hosts may prefer that they stay more inside and longer, hopefully to

reduce the chance of exposure to COVID. Finally, while the average review score stays about

the same, the number of reviews goes up substantially with much more variation, coinciding

with the observed phenomena of various kinds of misinformation and disinformation during the

pandemic.

There are possibly 36 SARAR(p, q) specifications for each data set. For a model with a

general variance structure, Shi and Tsai (2002) suggested using the so-called residual information

criterion (RIC) for the purpose of model selection. In the framework of SARAR, since RSy =

RXβ+v, where Var(v) = Σ = σ2Σ0 by defining σ2 = n−1
∑n

i=1 σ
2
i , the RIC of a SARAR(p, q)

estimated by II is

RIC = (n− kx) log(σ̃
2) + log |Σ̂0|+ kx log(n)− kx +

4

n− kx − 2
,

where σ̃2 = n−1
∑n

i=1 û
′R̂

′
i◦R̂i◦û, û = S(λ̂II)y−Xβ̂II , Σ̂0 = Dg(û′R̂

′
1◦R̂1◦û, · · · , û′R̂

′
n◦R̂n◦û)/σ̃

2,

and R̂ = R(ρ̂II) with its i-th row denoted by R̂i◦.
16 Based on RIC, SARAR(3, 0) is initially

14They are retrieved from a third-party website http://insideairbnb.com/ that provides data collected from
publicly available information at https://www.airbnb.com. Note that review scores in the data set of July 10,
2021 were recorded on a 5-pioint scale and they are converted to scores on a 100-point scale, to be consistent
with those from the data set of March 21, 2020.

15The eviction moratorium does not explicitly apply to Airbnb rentals. Court rulings in several states like
California and New York treat Airbnb hosts as landlords. Rosendahl (2017) argued that Airbnb hosts should be
treated like innkeepers but not landlords. Airbnb announced on June 15, 2021 that from July 1 it would ban
landlords from listing on its site if they evict a nonpaying tenant. On June 24, 2021, the CDC extended the
eviction moratorium that was scheduled to expire on June 30, 2021 to July 31, 2021.

16Another measure for model comparison may be constructed from the predictor vector in Kelejian and Piras
(2011), which can be calculated as ŷ = S−1(λ̂II)Xβ̂II . Then the root mean squared prediction error (RMSPE) is√

(y − ŷ)′(y − ŷ)/n. Note that this measure does not directly take into consideration possible spatial dependence
in the error process and the number of exogenous regressors. A rigorous treatment of model selection in the spatial
framework is beyond the scope of this paper.
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chosen for the data of March 21, 2020 and SARAR(2, 2) for July 10, 2021 when the II method

is used to estimate SARAR(p, q) models, out of the 36 (p, q) combinations.17

Table 3 presents the estimation results for the 2020 data, together with the marginal effects

of the covariates. (The absolute values of t-ratios are inside brackets.) The estimated effects

of error innovations on the dependent variable are also reported. (See the appendix for more

details on calculation of the average direct impact (ADI), average indirect impact (AII), and

average total impact (ATI) and the associated standard errors.)

Insert Table 3 here.

The SARAR(3,0), or SAR(3), fitted to the data of March 21, 2020 suggests that there exists

spatial correlation between the listing price of a unit and those of its 20-nearest neighbors as

well as those of its (50, 100]-nearest neighbors, but the correlation between it and those from the

(20, 50] ring is very weak and negative.18 This kind of correlation pattern cannot be revealed

by a single distance ring specification as in Bao and Liu (2021). The Moran-type statistic (16)

reports a p-value of 0.84166 (0.74625) when W (100,200] (W (200,300]) is used as the test matrix,

suggesting that this SAR(3) specification appears to be enough to capture spatial correlation

embedded in the data. Given that the estimate of W (20,50]y is very insignificant, a SAR(2)

model is also used to fit the data by using W (0,50] and W (50,100] as two distance-ring based

weight matrices. Under this specification, the p-values from the Moran-type statistic (16) are

0.83424 and 0.94412, corresponding to A = W (100,200] and A = W (200,300], respectively. So

this also gives support of adequacy of this seemingly different specification. The estimated SAR

parameters are somewhat different, but the estimated marginal effects of the various covariates,

which are of ultimate interests, are largely consistent across the two specifications. Important

factors include the property type, number of bathrooms, and availability of TV, which were also

found in Bao and Liu (2021) to have very significant effects. Free parking on premises has a

marginally positive effect, standing in contrast to the somewhat negative effect of a lump-sum

free parking variable in Bao and Liu (2021). Moreover, the AC dummy variable has a very strong

17The best robust GMM estimation results are quite sensitive to how the relevant matrices in the quadratic
forms are estimated for the Airbnb data. The robust GMM and GS2SLS (see Footnote 11) select SAR(3) for
the 2020 data. For the 2021 data, GS2LS selects SARAR(1,2) and GMM selects SARAR(5,5), which reports
some counter-intuitive results. The Supplementary Appendix provides estimation results from SAR(3) for the
2020 data and SARAR(1,2) for the 2021 data for comparison purpose. One can see that GMM reports somewhat
strange results for the 2021 data, including positive impact of distance to city center and huge error indirect and
total impacts with small t-ratios.

18For the interpretation of a negative spatial coefficient, see Griffith and Arbia (2010), Elhorst et al. (2012),
Kao and Bera (2016), and Griffith (2019). Basically, it demonstrates dissimilarity, typically a kind of competition
or backwash effect or rebellious behavior.
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effect and now it ranks the second, above the bathroom variable, suggesting the importance of

taking the weather information into consideration when deciding which factors may affect rental

prices.

When time moves to the second year of the pandemic, the data provide a somewhat differ-

ent picture of the correlation structure and the effects of various factors. The initially chosen

SARAR(2,2) gives no evidence of left-over correlation based on the Moran-type statistic (16).

The estimated coefficient ofW (20,50]y is very insignificant in the outcome equation and the esti-

mated coefficient of M (20,50]u in the error process is only marginally significant. So in Tables 4

and 5 three other specifications are also reported: a SARAR(1,1) usingW (0,20]y andM (0,20]u, a

second SARAR(1,1) usingW (0,50]y andM (0,50]u, and a SARAR(1,2) usingW (0,20]y,M (0,20]u,

and M (20,50]u. Again, in spite of the somewhat different spatial parameter estimates, the esti-

mated marginal effects are similar across the four specifications. They indicated that the corre-

lation structure is not completely captured by the observable outcome variable and there exists

significant correlation in the error process. While the property type, number of bathrooms, and

availability of TV are still important factors, two other important factors also emerge, namely,

free parking on premises and the number of bedrooms. These two variables may signal some sort

of security and safety during the pandemic and thus travelers are willing to pay more. The AC

variable, while still has a positive and statistically important effect, does not witness an attached

price premium as high as that on March 21, 2020. This is not surprising, given that the second

data set was collected during the summer season and that people may not value it that much

due to concerns over internal air circulation during the pandemic. Interestingly, the number of

reviews has an estimated coefficient that is only marginally negative, so does the review score,

standing in stark contrast to findings based on the data of March 21, 2020. This may suggest

that during the pandemic (and also after the 2020 presidential election), many people might

have lost their trust in on-line reviews.

Moreover, there exists a striking difference across the estimated SARAR models fitted to the

two data sets, one at the early stage and one during the summer surge of the second year, in

terms of the direct impacts and indirect or spillover effects of the covariates on the price variable.

For the earlier data, the direct and spillover effects are of similar magnitudes and about the same

levels of significance. For the later data, the ADI is typically larger than the AII for a given

covariate. For example, the earlier data suggest that a unit having AC would on average push

up its listing price by about 21% and the price of neighboring units by about 25%, resulting in a
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total impact of more than 45%. But from the later data, on average an AC-equipped unit would

hike its price by about 7%, which is statistically significant, and that of its neighbors by about

only 2%, leading to a total impact around 9%.

Lastly, the marginal effects of error innovations reveal that for both data sets, listing prices

can be affected substantially, both directly and indirectly, by the unobservable embodied in the

error process. For the early-stage data, both the explanatory variables and error innovations

produce sizable spillover effects, but they are dominantly from the unobservable during the

second year, evidenced by the very high value of the estimated AII(v). This implies that when

the economy is deep into the pandemic, the interaction in Airbnb listing prices is much more

complicated, far beyond that captured in the observed prices. The market may have behaved

more unpredictably at the later stage, given the chaos, frustration, uncertainty, and all kinds of

information of different natures regarding the pandemic.

Insert Table 4 here.

Insert Table 5 here.

Figure S.1 in the supplementary appendix reports under each model specification for the two

data sets, the cumulative distributions of the inverse error bound of Ψ(γ) around its maximum

value in the relevant parameter space.19 They indicate that Assumption 6, up to at least 9

decimal digits of accuracy, are evidently satisfied in this empirical study.

6. Concluding Remarks

This paper has proposed a new estimator that is based on the principle of indirect inference

by matching the simple OLS estimator of the SAR parameters in both the outcome and error

equations in SARAR(p, q) models with its analytical approximate expectation. This is possible

when one writes down a set of sample binding functions that arise from, for each parameter

in the outcome equation, an OLS regression conditional on all the other SAR parameters. For

each parameter in the error equation, one can use an OLS regression conditional on all the

SAR parameters. The resulting II estimator is shown to be consistent, asymptotically normal,

simulation-free, and robust to unknown heteroskedasticity in error innovations. With the full

set of SAR parameters estimated in SARAR(p, q), a Moran-type specification testing procedure,

19An adaptive grid search as in Footnote 12 is used to search for the maximum value.
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based on the residual vector, for possible left-over spatial correlation is also proposed. Further-

more, this paper discusses how the sample binding functions are related to the best moment

conditions of the GMM estimator. The II method treats the relevant matrices in the system

of sample binding functions as functions of model parameters, but the GMM method usually

estimates these matrices first and then formulates the best moment conditions. The relevant

matrices in the sample binding functions are nonlinear in model parameters. Thus, one would

expect that the GMM estimator, when using the best moment conditions with the matrices

in them estimated first, may be preferred in situations when the sample size is huge but the

number of exogenous regressors is small, whereas the II estimator may be preferred in cases of

moderate sample sizes and a lot of exogenous regressors. Simulation results demonstrate the II

estimator’s good finite-sample properties, relative to the GMM and GS2SLS estimators. They

also highlight its relative strength/weakness relative to GMM when one takes into account the

number of covariates and sample size under study.

Note that Liu and Yang (2015) proposed a modified QML (MQML) estimation method for

SAR(1) that is robust against unknown heteroskedasticity by correcting the score function of

the QML under heteroskedasticity. Monte Carlo evidence in Bao et al. (2020) showed that the

MQML of Liu and Yang (2015) tends to deliver substantially under-sized t-test regarding the

SAR parameter when its value is relatively high in SAR(1). Liu and Yang (2015) also outlined

the MQML approach for SAR(1) when the error is also SAR(1), namely, SARAR(1,1). However,

the associated inference procedure is not problem-free. The author has conducted Monte Carlo

experiments and found that the estimated variance matrix (of the MQML estimator) is not

guaranteed to be positive definite. Checking Section 5 of Liu and Yang (2015), one can see that

this problematic variance estimator can happen largely due to two reasons: (i) the numerical

outer-product of gradient (OPG) to approximate the variance of estimated SAR parameters, and

(ii) the estimated third moment of the error term based on the sample residuals for the estimated

parameter vector pertaining to the exogenous regressors. The latter could be really unreliable.

Using the sample residuals (raised to power 3) could not even guarantee the estimated variance

to be consistent, unlike the White-type estimator that was used for SAR(1) in Liu and Yang

(2015). This was also pointed out by Liu and Yang (2015) in their paper. They proposed OPG

because the analytical variance (of SAR parameters part) involves (again) the third and fourth

error moments. The MQML has yet to be extended to higher-order models and one would expect

the same issues will arise when conducting inference. The II estimator proposed in this paper
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avoids the two complications completely.

The new estimation procedure is used to study Airbnb rental prices in the city of Asheville on

two different dates, one at the early stage of the COVID pandemic and one in the second summer.

It finds empirically different spatial patterns across the two data sets and reveals that during the

pandemic people value more safety and much less on-line reviews and the spillover effects from

the unobservable are more prominent. Note that no attempt has been made in the empirical

study to identify possible factors that appear in the error innovations and potential channels that

make their spillover effects more substantial than those from the observable covariates. One can

think of factors like people’s attitude toward the pandemic, hygiene habits, and trust in different

sources of information, which may have changed substantially during the second year of the

pandemic, as potential terms that can create spillover effects but are hard to observe and/or

measure. It would be worthwhile in a future empirical study to consider how to incorporate

these factors.

A second possible direction of future research is to combine the different consistent estimators

for SARAR(p, q) models. Under heteroskedasticity and non-normality, the best optimal GMM

moment conditions are unknown. The popular choice of moment conditions in applied works

appears to be those based on linear and quadratic forms in v, where the matrices inside the

linear quadratic forms are typically functions of the non-stochastic weight matrices, but not

functions of model parameters. The II estimator in this paper involves quadratic forms in v

and the matrices inside them are functions of model parameters. For GS2SLS, the first-step IV

moment conditions and the quadratic moment conditions in the second step can be collected

together as a vector of linear and quadratic forms in v. Thus, a linear combination, out of any

two, or all, of the three estimators may be constructed and the asymptotic distribution of the

combined estimator can be straightforwardly derived. For example,

θ̌ = (1− ω)θ̂II + ωθ̂1, (20)

where θ̂1 is the GMM or GS2SLS estimator. Suppose
√
nV

−1/2
1 (θ̂1−θ0)

d→ N(0, I). Obviously,

√
n[(1−ω)2V +ω2V 1+ω(1−ω)(C1+C

′
1)]

−1/2(θ̌−θ0)
d→ N(0, I), where C1 = Cov(θ̂II, θ̂1) =

Cov(θ̂II − θ0, θ̂1 − θ0). Given that θ̂II − θ0 and θ̂1 − θ0 can be written in terms of linear and

quadratic terms in v (see (23) in the appendix for θ̂II − θ0), it is straightforward to derive C1.

Suppose one is interested in finding a value of ω such that it minimizes the global asymptotic
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MSE (AMSE), namely,

ω̌ = argmin
ω
nE[(θ̌ − θ0)′(θ̌ − θ0)] =

v − c1
v +m1 − 2c1

, (21)

where m1 = E[(θ̂1−θ0)′(θ̂1−θ0)], c1 = E[(θ̂II−θ0)′(θ̂1−θ0)], and v = E[(θ̂II−θ0)′(θ̂II−θ0)].

In practice, this optimal weight may be estimated by tr(V̂ −Ĉ1)/tr(V̂ + V̂ 1−2Ĉ1). However, it

is well known in the forecasting literature that once the combination weight is estimated, it could

in fact make the combined forecasting worse in finite samples, given the uncertainty introduced

by the estimated weight. How to take this into account is still an open question and it can be

much complicated in the spatial framework.

The spatial weight matrices are assumed to be given in this paper. In stead of higher-

order models, Zhang and Yu (2018) and Lam and Souza (2020) proposed combining spatial

weight matrices in recognition of different choices of the weight matrices. Zhang and Yu (2018)

suggested averaging across a set of candidate models based on different weight matrices. They

used the Mallows Cp criterion to estimate the averaging weight vector, where the Cp criterion

is constructed from the estimated candidate models and each candidate model is estimated by

either ML (under homoskedasticity) or GMM (under heteroskedasticity). Lam and Souza (2020)

suggested the LASSO strategy in selection of the weight matrices, where the LASSO objective

function is based on some distance measure constructed using IVs. It would be interesting to

explore using the II estimator in the Cp criterion and the sample binding functions in the LASSO

objective function.
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Table 1: Finite-Sample Performances of GMM, GS2SLS, and II in Estimating SARAR(2,2)

GMM GS2SLS II

n DGP θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

50 1 λ01 = 0.15 −0.009 0.287 24.6% 0.822 1.202 16.4% −0.028 0.196 10.8%
λ02 = 0.1 −0.014 0.178 17.2% 0.083 0.577 3.1% −0.005 0.118 5.6%
ρ01 = 0.5 0.032 0.154 17.3% −0.074 0.162 17.2% 0.023 0.123 12.3%
ρ02 = 0.4 −0.069 0.187 21.0% −0.078 0.178 17.7% −0.050 0.136 13.7%

2 λ01 = 0.5 −0.112 0.391 16.9% 0.674 0.930 14.4% −0.098 0.292 8.5%
λ02 = 0.4 −0.079 0.303 19.4% 0.078 0.658 3.6% −0.045 0.201 7.1%
ρ01 = 0.15 −0.015 0.199 16.7% −0.038 0.169 9.7% −0.018 0.154 9.5%
ρ02 = 0.1 −0.065 0.258 16.9% −0.044 0.167 13.7% −0.041 0.156 12.3%

3 λ01 = 0.15 −0.027 0.489 19.7% 0.981 1.309 11.7% −0.060 0.397 11.8%
λ02 = 0.1 −0.081 0.363 19.0% −0.127 0.758 2.9% −0.019 0.233 7.9%
ρ01 = 0.05 −0.020 0.207 17.7% −0.015 0.167 9.1% −0.022 0.163 9.6%
ρ02 = 0.02 −0.067 0.270 21.1% −0.041 0.171 15.6% −0.047 0.161 14.1%

4 λ01 = 0.5 −0.092 0.378 19.7% 0.645 0.905 12.4% −0.082 0.272 9.4%
λ02 = 0.4 −0.083 0.303 17.2% −0.044 0.598 3.2% −0.033 0.183 5.1%
ρ01 = 0.3 −0.010 0.175 12.4% −0.051 0.164 10.8% −0.015 0.140 10.3%
ρ02 = 0.2 −0.097 0.274 16.3% −0.063 0.173 16.4% −0.040 0.151 12.4%

100 1 λ01 = 0.15 0.024 0.200 15.1% 0.907 1.163 16.7% −0.000 0.132 10.0%
λ02 = 0.1 −0.006 0.149 7.3% 0.057 0.909 1.7% 0.001 0.103 5.8%
ρ01 = 0.5 0.018 0.103 11.3% −0.075 0.142 24.8% 0.004 0.079 9.4%
ρ02 = 0.4 −0.039 0.121 11.8% −0.054 0.136 14.8% −0.017 0.085 8.4%

2 λ01 = 0.5 −0.048 0.297 11.8% 0.732 0.907 15.7% −0.062 0.207 6.2%
λ02 = 0.4 −0.093 0.299 11.2% 0.091 0.911 3.9% −0.033 0.194 4.1%
ρ01 = 0.15 −0.007 0.132 9.9% −0.033 0.120 7.7% −0.002 0.101 8.9%
ρ02 = 0.1 −0.056 0.192 11.9% −0.029 0.123 10.1% −0.013 0.110 10.9%

3 λ01 = 0.15 −0.021 0.396 11.3% 1.057 1.289 14.9% −0.050 0.284 7.3%
λ02 = 0.1 −0.036 0.349 12.2% −0.149 1.003 1.6% 0.005 0.228 7.5%
ρ01 = 0.05 −0.017 0.145 10.5% −0.018 0.125 6.6% −0.012 0.107 8.1%
ρ02 = 0.02 −0.049 0.195 12.8% −0.012 0.119 9.9% −0.014 0.102 9.4%

4 λ01 = 0.5 −0.056 0.284 9.6% 0.661 0.822 17.8% −0.062 0.188 5.4%
λ02 = 0.4 −0.082 0.289 10.5% 0.198 0.918 3.5% −0.025 0.177 3.9%
ρ01 = 0.3 0.004 0.120 8.9% −0.045 0.113 8.1% 0.001 0.091 8.3%
ρ02 = 0.2 −0.057 0.184 11.3% −0.038 0.126 10.9% −0.015 0.097 9.1%

200 1 λ01 = 0.15 0.007 0.123 7.2% 1.021 1.219 16.8% −0.005 0.092 6.8%
λ02 = 0.1 −0.005 0.145 6.3% 0.148 1.426 3.5% −0.003 0.099 4.8%
ρ01 = 0.5 0.011 0.068 8.8% −0.070 0.120 25.0% 0.005 0.055 7.2%
ρ02 = 0.4 −0.021 0.077 9.3% −0.056 0.112 18.6% −0.011 0.059 6.5%

2 λ01 = 0.5 −0.027 0.255 7.5% 0.857 1.015 18.8% −0.051 0.169 5.8%
λ02 = 0.4 −0.120 0.294 8.5% 0.156 1.333 2.4% −0.033 0.193 3.4%
ρ01 = 0.15 −0.002 0.097 9.7% −0.023 0.087 6.5% −0.002 0.075 9.6%
ρ02 = 0.1 −0.025 0.121 9.0% −0.021 0.087 8.8% −0.009 0.074 7.6%

3 λ01 = 0.15 −0.001 0.309 9.9% 1.141 1.382 16.9% −0.019 0.213 7.8%
λ02 = 0.1 −0.062 0.327 7.9% −0.075 1.403 2.7% −0.017 0.230 5.4%
ρ01 = 0.05 −0.004 0.091 8.0% −0.017 0.091 5.0% −0.004 0.072 6.9%
ρ02 = 0.02 −0.023 0.116 8.9% −0.010 0.088 8.7% −0.007 0.073 7.8%

4 λ01 = 0.5 −0.023 0.241 9.4% 0.815 0.995 19.0% −0.044 0.154 6.0%
λ02 = 0.4 −0.093 0.266 7.1% 0.138 1.366 3.8% −0.031 0.179 3.3%
ρ01 = 0.3 −0.003 0.075 6.9% −0.044 0.093 12.7% −0.000 0.065 8.5%
ρ02 = 0.2 −0.032 0.109 7.1% −0.029 0.091 9.1% −0.012 0.071 8.8%

Note: All results are based on 1000 simulations and P (5%) denotes the empirical size of the two-sided 5% t-test of the specific parameter equal

to its true value.
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Table 2: Summary Statistics of Airbnb Listings in Asheville, NC

March 21, 2020 July 10, 2021

Variable Mean SD Mean SD Definition

log(Price) 4.748 0.683 4.995 0.655 Natural logarithm of listing price
Superhost 0.721 0.449 0.757 0.429 Host is experienced (a super host)
Hostcount 10.075 54.425 18.926 82.969 # of rentals listed by host
EnHome 0.768 0.422 0.829 0.376 Entire home/apartment
Accomm 4.091 2.638 4.424 2.765 # of people can be accommodated
Bdrms 1.591 1.272 1.820 1.083 # of bedrooms
Barms 1.360 0.733 1.473 0.767 # of bathrooms
DisCenter 3.338 2.551 3.537 2.747 Distance (in miles) to city center
PremisePk 0.606 0.489 0.550 0.498 Offer free parking on premises
AC 0.946 0.225 0.904 0.294 Offer air conditioning
TV 0.830 0.375 0.872 0.335 Offer TV
Bkfst 0.140 0.347 0.099 0.299 Offer breakfast
InsBook 0.632 0.482 0.575 0.495 Offer instant booking
MinNights 4.046 18.426 4.794 13.200 Minimum # of nights
Reviews 3.103 2.444 5.598 11.118 # of reviews per month
ReScore 97.706 3.304 97.568 5.205 Overall review scores
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Table 3: SAR(3) and SAR(2) Fitted to March 21, 2020 Airbnb Data in Asheville, NC

Variable Est. ADI AII ATI Est. ADI AII ATI

W(0,20]y 0.447
[7.939]

W(20,50]y −0.033
[0.726]

W(0,50]y 0.446
[9.270]

W(50,100]y 0.131 0.090
[2.905] [1.883]

Constant 0.144 0.041
[0.366] [0.101]

Superhost 0.008 0.008 0.009 0.017 0.010 0.010 0.011 0.021
[0.304] [0.304] [0.303] [0.303] [0.373] [0.373] [0.372] [0.373]

Hostcount 0.001 0.001 0.002 0.003 0.001 0.002 0.002 0.003
[5.809] [5.824] [4.227] [5.129] [5.551] [5.551] [4.118] [4.972]

EnHome 0.332 0.336 0.395 0.731 0.336 0.338 0.385 0.723
[14.748] [14.840] [6.048] [9.499] [14.870] [14.889] [5.954] [9.532]

Accomm 0.079 0.080 0.094 0.173 0.083 0.083 0.095 0.178
[7.250] [7.250] [4.936] [6.306] [7.728] [7.729] [4.937] [6.516]

Bdrms 0.011 0.011 0.013 0.024 0.004 0.004 0.005 0.009
[0.364] [0.364] [0.363] [0.363] [0.147] [0.147] [0.147] [0.147]

Barms 0.182 0.185 0.217 0.401 0.187 0.188 0.215 0.403
[8.056] [8.069] [5.185] [6.838] [8.103] [8.106] [5.118] [6.848]

DisCenter −0.036 −0.037 −0.043 −0.080 −0.040 −0.040 −0.046 −0.086
[9.226] [9.232] [5.969] [8.224] [9.944] [9.952] [5.871] [8.437]

PremisePk 0.009 0.009 0.010 0.019 0.018 0.019 0.021 0.040
[0.482] [0.482] [0.483] [0.483] [1.025] [1.025] [1.022] [1.027]

AC 0.211 0.214 0.251 0.464 0.222 0.223 0.254 0.477
[4.875] [4.882] [3.997] [4.596] [4.921] [4.923] [3.985] [4.627]

TV 0.140 0.141 0.166 0.307 0.153 0.153 0.175 0.329
[6.362] [6.386] [4.833] [5.910] [6.955] [6.962] [4.978] [6.323]

Bkfst 0.072 0.073 0.086 0.159 0.083 0.083 0.095 0.178
[2.864] [2.867] [2.633] [2.794] [3.244] [3.245] [2.890] [3.130]

InsBook 0.077 0.078 0.092 0.170 0.079 0.080 0.091 0.170
[4.226] [4.231] [3.637] [4.058] [4.281] [4.282] [3.665] [4.116]

MinNights −0.002 −0.002 −0.002 −0.003 −0.002 −0.002 −0.002 −0.004
[1.214] [1.214] [1.166] [1.192] [1.278] [1.278] [1.222] [1.253]

Reviews −0.041 −0.042 −0.049 −0.091 −0.043 −0.043 −0.049 −0.092
[9.349] [9.380] [5.376] [7.424] [9.417] [9.419] [5.330] [7.475]

ReScore 0.011 0.011 0.013 0.023 0.012 0.012 0.013 0.025
[2.769] [2.768] [2.598] [2.729] [3.008] [3.008] [2.767] [2.948]

ADI(v) 1.012 1.006
[328.160] [834.364]

AII(v) 1.188 1.147
[6.515] [6.335]

ATI(v) 2.200 2.153
[11.989] [11.829]

Note: The absolute values of t-ratios are inside brackets. ADI, AII, and ATI denote respectively the average direct, indirect, and total

impacts on the outcome from the observable covariates. ADI(v), AII(v), and ATI(v) denote the corresponding measures from the error

innovation v.
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Table 4: SARAR(2,2) and SARAR(1,1) Fitted to July 10, 2021 Airbnb Data in Asheville, NC

Variable Est. ADI AII ATI Est. ADI AII ATI

W(0,20]y 0.282 0.247
[4.257] [2.803]

W(20,50]y −0.044
[0.305]

W(0,50]y

M(0,20]u 0.319 0.480
[2.779] [4.466]

M(20,50]u 0.313
[1.510]

M(0,50]u

Constant 3.249 3.247
[4.034] [5.620]

Superhost 0.064 0.064 0.020 0.083 0.061 0.061 0.020 0.081
[2.606] [2.606] [1.153] [2.392] [2.479] [2.479] [1.648] [2.409]

Hostcount 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[1.656] [1.657] [1.064] [1.641] [1.665] [1.665] [1.379] [1.666]

EnHome 0.295 0.296 0.091 0.387 0.300 0.301 0.098 0.399
[10.356] [10.373] [1.243] [4.735] [10.466] [10.492] [2.128] [7.015]

Accomm 0.054 0.054 0.017 0.070 0.052 0.052 0.017 0.069
[7.428] [7.422] [1.231] [4.295] [7.114] [7.108] [2.013] [5.365]

Bdrms 0.114 0.114 0.035 0.150 0.114 0.114 0.037 0.151
[5.783] [5.786] [1.213] [3.841] [5.764] [5.767] [2.016] [4.860]

Barms 0.208 0.209 0.064 0.273 0.213 0.214 0.069 0.284
[9.942] [9.946] [1.237] [4.628] [10.114] [10.118] [2.090] [6.618]

DisCenter −0.040 −0.041 −0.013 −0.053 −0.046 −0.046 −0.015 −0.061
[5.062] [5.061] [1.215] [3.671] [7.532] [7.544] [2.099] [5.950]

PremisePk 0.075 0.075 0.023 0.098 0.068 0.068 0.022 0.090
[4.103] [4.103] [1.225] [3.384] [3.654] [3.656] [1.903] [3.461]

AC 0.069 0.069 0.021 0.091 0.068 0.068 0.022 0.090
[2.402] [2.402] [1.069] [2.114] [2.378] [2.378] [1.573] [2.283]

TV 0.239 0.239 0.074 0.313 0.238 0.239 0.078 0.317
[9.031] [9.027] [1.213] [4.293] [9.062] [9.053] [2.050] [6.099]

Bkfst 0.086 0.087 0.027 0.113 0.083 0.083 0.027 0.110
[2.950] [2.950] [1.146] [2.564] [2.822] [2.821] [1.684] [2.667]

InsBook 0.029 0.029 0.009 0.038 0.033 0.033 0.011 0.043
[1.578] [1.578] [1.051] [1.571] [1.773] [1.774] [1.450] [1.780]

MinNights −0.006 −0.006 −0.002 −0.007 −0.005 −0.005 −0.002 −0.007
[2.227] [2.226] [1.031] [1.958] [2.252] [2.252] [1.500] [2.146]

Reviews −0.001 −0.001 0.000 −0.001 −0.001 −0.001 0.000 −0.001
[1.052] [1.052] [0.796] [1.027] [0.987] [0.987] [0.859] [0.968]

ReScore −0.007 −0.007 −0.002 −0.009 −0.007 −0.007 −0.002 −0.009
[1.476] [1.476] [0.909] [1.386] [1.541] [1.540] [1.187] [1.489]

ADI(v) 1.027 1.026
[147.060] [146.035]

AII(v) 2.540 1.528
[2.919] [5.135]

ATI(v) 3.566 2.554
[4.070] [8.387]

Note: The absolute values of t-ratios are inside brackets. ADI, AII, and ATI denote respectively the average direct, indirect, and total

impacts on the outcome from the observable covariates. ADI(v), AII(v), and ATI(v) denote the corresponding measures from the error

innovation v.
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Table 5: SARAR(1,1) and SARAR(1,2) Fitted to July 10, 2021 Airbnb Data in Asheville, NC

Variable Est. ADI AII ATI Est. ADI AII ATI

W(0,20]y 0.276
[4.498]

W(20,50]y

W(0,50]y 0.242
[1.632]

M(0,20]u 0.336
[3.717]

M(20,50]u 0.269
[2.832]

M(0,50]u 0.645
[4.418]

Constant 3.153 3.061
[3.882] [6.085]

Superhost 0.064 0.065 0.021 0.085 0.063 0.063 0.024 0.087
[2.628] [2.629] [1.148] [2.397] [2.587] [2.587] [2.050] [2.537]

Hostcount 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[1.797] [1.798] [1.083] [1.763] [1.662] [1.662] [1.524] [1.661]

EnHome 0.295 0.295 0.094 0.389 0.296 0.297 0.112 0.408
[10.317] [10.327] [1.241] [4.710] [10.372] [10.390] [3.216] [8.194]

Accomm 0.057 0.057 0.018 0.076 0.054 0.054 0.020 0.074
[7.926] [7.926] [1.225] [4.302] [7.407] [7.401] [2.938] [6.122]

Bdrms 0.110 0.110 0.035 0.146 0.114 0.114 0.043 0.157
[5.595] [5.594] [1.209] [3.765] [5.770] [5.773] [2.917] [5.296]

Barms 0.208 0.209 0.066 0.275 0.209 0.210 0.079 0.288
[9.924] [9.919] [1.227] [4.500] [9.948] [9.952] [3.143] [7.729]

DisCenter −0.037 −0.038 −0.012 −0.049 −0.041 −0.041 −0.016 −0.057
[4.549] [4.546] [1.167] [3.243] [5.454] [5.453] [2.784] [4.913]

PremisePk 0.078 0.078 0.025 0.103 0.074 0.074 0.028 0.102
[4.238] [4.240] [1.214] [3.388] [4.052] [4.053] [2.577] [3.859]

AC 0.078 0.078 0.025 0.102 0.070 0.070 0.026 0.097
[2.656] [2.655] [1.086] [2.273] [2.451] [2.451] [1.970] [2.403]

TV 0.250 0.251 0.080 0.330 0.239 0.240 0.090 0.331
[9.569] [9.551] [1.211] [4.295] [9.139] [9.136] [3.074] [7.186]

Bkfst 0.090 0.090 0.029 0.119 0.086 0.087 0.033 0.119
[3.012] [3.011] [1.139] [2.573] [2.949] [2.949] [2.205] [2.869]

InsBook 0.030 0.030 0.010 0.040 0.029 0.029 0.011 0.041
[1.609] [1.610] [1.055] [1.600] [1.592] [1.592] [1.497] [1.601]

MinNights −0.006 −0.006 −0.002 −0.007 −0.006 −0.006 −0.002 −0.008
[2.271] [2.270] [1.036] [1.987] [2.231] [2.230] [1.796] [2.169]

Reviews −0.001 −0.001 0.000 −0.001 −0.001 −0.001 0.000 −0.001
[0.909] [0.909] [0.708] [0.884] [1.035] [1.035] [0.955] [1.020]

ReScore −0.006 −0.006 −0.002 −0.008 −0.007 −0.007 −0.003 −0.009
[1.406] [1.406] [0.881] [1.317] [1.475] [1.475] [1.298] [1.446]

ADI(v) 1.021 1.026
[128.346] [156.184]

AII(v) 2.698 2.470
[2.861] [3.680]

ATI(v) 3.719 3.496
[3.910] [5.164]

Note: The absolute values of t-ratios are inside brackets. ADI, AII, and ATI denote respectively the average direct, indirect, and total

impacts on the outcome from the observable covariates. ADI(v), AII(v), and ATI(v) denote the corresponding measures from the error

innovation v.
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Figure 1: Cumulative Distribution of max ε(Ψ−1(γ)) under SARAR(2,2)
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Figure 2: Time Ratio (GMM/II) in Estimating SARAR(2,2) when kx Increases
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Figure 3: Time Ratio (GMM/II) in Estimating SARAR(2,2) when n Increases
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Appendix

The appendix first collects some useful results that are used for the proofs of the lemmas and
theorems in the paper. Lemma A.1 is given by Kelejian and Prucha (2010) and Lemma A.2
follows from Appendix A.7 of Ullah (2004). The proofs of Lemmas 2 and 3 are very similar to
that of Lemma 1 and are omitted. Recall the notation A⋆ = A+A′.

Some Useful Results

Lemma A.1 For i = 1, · · · , k, let Ai be n×n non-random matrices with row and column sums
that are bounded uniformly in absolute value, bi = (bi1, · · · , bin)′ be vectors of constants such
that supn−1

∑n
j=1 |bij |2+η <∞ for some η > 0, and li = b

′
iv + v′Aiv be linear quadratic forms

in v, where the elements of v satisfy Assumption 3. For l = (l1, · · · , lk)′, if Var(l) ≻ 0 , then

[Var(l)]−1/2[l− E(l)]
d→ N(0, Ik).

Lemma A.2 For v with elements following Assumption 3, let Σ(3) = Dg(E(v31), ...,E(v
3
n)),

Σ(4) = Dg(E(v41)− 3σ4
1 , ...,E(v

4
n)− 3σ4

n), and A and B be nonrandom, then

E(v′Av) = tr(ΣA),

E(vv′Av) = dg(Σ(3) ⊙A),

E(v′Avv′Bv) = tr(Σ(4) ⊙A⊙B) + tr(ΣA)tr(ΣB) + tr[ΣAΣ(B +B′)].

Elements of The Jacobian and Hessian Matrices

Let ej(γ) = y
′S′(λ)R′(ρ)H(ρ)F ′

j(ρ)F j(ρ)H(ρ)R(ρ)S(λ)y and denote

Gi1,i2 ≡ ∂Gi1(λ0)

∂λi2
= Gi1Gi2 ,

F j1,j2 ≡ ∂Fj1(ρ0)

∂ρj2
= Fj1Fj2 ,

Hj ≡
∂H(ρ0)

∂ρj
= [HM jX(X ′R′RX)−1X ′R′]⋆,

Di,j ≡
∂Di(γ0)

∂ρj
= Dg[(HjR−HM j)GiR

−1 +HRGiR
−1F j ],

di,j ≡
∂di(ρ0)

∂ρj
= y′W ′

iR
′(HjR− 2HM j)W iy,

ej1,j2 ≡ ∂ej1(γ0)

∂ρj2
= 2y′S′R′[Hj2F

′
j1F j1HR+HF ′

j1F j1(F j2HR−HMj2)]Sy,

ej,(i) ≡
∂ej(γ0)

∂λi
= −2y′S′R′HF ′

jF jHRW iy.

Recall that di(ρ) = y
′W ′

iR
′(ρ)H(ρ)R(ρ)W iy. By observing

∂S(−i1)(λ0)

∂λi2
= (δi1i2 − 1)Wi2 ,

∂R(−j1)(ρ0)

∂ρj2
= (δj1j2 − 1)Mj2 ,

where δij denotes the Kronecker delta (namely, δij = 1 when i = j and δij = 0 otherwise), one
has
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ψλ,i1,i2 =
∂ψλi1

(γ0)

∂λi2

= d−1
i1

[(δi1i2 − 1)y′W ′
i1R

′HRWi2y + 2y′S′R′HDi1HRWi2y

− y′S′R′HDg(HRGi1,i2R
−1)HRSy]− δi1i2 ,

ψλρ,i,j =
∂ψλi(γ0)

∂ρj

= d−1
i [y′W ′

i(R
′HjR−M ′

jHR−R′HM j)S(−i)y

+ y′S′R′H(2DiHM j − 2DiHjR−Di,jHR)Sy]

− d−2
i di,j(y

′W ′
iR

′HRS(−i)y − y′S′R′HDiHRSy),

ψρ,j1,j2 =
∂ψρj1

(γ0)

∂ρj2

= e−1
j1

{y′S′(R′Hj2 −M ′
j2H)R−1′R′

(−j1)
F j1HRSy

+ y′S′R′H[F ′
j2R

−1′R′
(−j1)

F j1 + (δj1j2 − 1)R−1′M ′
j2F j1 +R

−1′R′
(−j1)

F j1,j2 ]HRSy

+ y′S′R′H[R−1′R′
(−j1)

F j1(Hj2R−HMj2) + 2Kj1HMj2 ]Sy

− y′S′R′H[2Kj1Hj2 +Dg(F j1,j2)H]RSy}
− e−2

j1
ej1,j2y

′S′R′H(R−1′R′
(−j1)

F j1 −Kj1)HRSy − δj1j2 ,

ψρλ,j,i =
∂ψρj

(γ0)

∂λi

= e−1
j (2y′S′R′HKjHRW iy − y′W ′

iR
′HR−1′R′

(−j)F jHRSy

− y′S′R′HR−1′R′
(−j)F jHRW iy)− e−2

j ej,(i)y
′S′R′H(R−1′R′

(−j)F j −Kj)HRSy,

which populate, respectively, the top-left p× p, top-right p× q, lower-right q × q, and lower-left
q × p blocks of the Jacobian matrix Ψ(γ0). Essentially, all the elements of Ψ(γ0) are quadratic
forms in y = S−1Xβ0 + S−1R−1v, which in term can be written as linear and quadratic
forms in v. Following the same strategy, one can derive all the elements of the Hessian matrix
∇Ψ(γ0) = ∂Ψ(γ0)/∂γ

′ and they are collected in the Supplementary Appendix.

Proof of Lemma 1

By substituting ṽ = v−RX(β̃−β0) into ṽ
′Diṽ, one has ṽ

′Diṽ−v′Div = (β̃−β0)
′X ′R′DiRX(β̃−

β0)− 2(β̃ − β0)
′X ′R′Div. Note that β̃ − β0 = Op(n

−1/2), X ′R′DiRX = O(n), X ′R′Div =
Op(n

1/2), and y′W ′
iR

′HRWiy = Op(n) in view ofWiy = GiXβ0+GiR
−1v and Lemma A.2.

So ṽ′Diṽ = v′Div+Op(1) and
√
n(λ̂i−λ0i− bλi) =

√
n(λ̂i−λ0i− ṽ′Diṽ/y

′W ′
iR

′HRWiy) =√
n(λ̂i − λ0i − v′Div/y

′W ′
iR

′HRWiy) + op(1). A Nagar-type (Nagar, 1959) expansion gives

√
n

(
λ̂i − λ0i −

v′Div

y′W ′
iR

′HRWiy

)
=

√
n

(
ri
di

− v′Div

di

)
=

√
n

(
ri − v′Div

E(di)

)(
1 +

di − E(di)

E(di)

)−1

=
√
n

(
ri − v′Div

E(di)

)
+ op(1)

=
1

E(di)

√
n(v′Eiv + β′

0X
′G′

iR
′Hv) + op(1)

=
√
nsλi + op(1),
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where the op(1) term in the expansion represents

√
n

(
ri − v′Div

E(di)

)
︸ ︷︷ ︸

Op(n−1/2)

−di − E(di)

E(di)︸ ︷︷ ︸
Op(n−1/2)

+

(
di − E(di)

E(di)

)2

︸ ︷︷ ︸
Op(n−1)

+ · · ·

 .
These magnitudes can be verified from di = β

′
0X

′G′
iR

′HRGiXβ0+v
′R−1′G′

iR
′HRGiR

−1v+
2β′

0X
′G′

iR
′HRGiR

−1v, and in view of Lemma A.2,

E(di) = tr(R−1′G′
iR

′HRGiR
−1Σ) = O(n),

Var(di) = tr(Σ(4) ⊙R−1′G′
iR

′HRGiR
−1 ⊙R−1′G′

iR
′HRGiR

−1)

+ 2tr[ΣR−1′G′
iR

′HRGiR
−1ΣR−1′G′

iR
′HRGiR

−1]

+ 4β′
0X

′G′
iR

′HRGiR
−1ΣR−1′G′R′HRGiXβ0

+ 4β′
0X

′G′
iR

′HRGiR
−1dg(Σ(3) ⊙R−1′G′

iR
′HRGiR

−1)

= O(n).

Similarly, E(ri) = O(n) and Var(ri) = O(n). And recall that E(ri − v′Div) = 0. Thus one can
claim (ri − v′Div)/E(di) = Op(n

−1/2) and [di − E(di)]/E(di) = Op(n
−1/2). Note that Ei is

uniformly bounded in maximum absolute row and column sums. The elements of HRGiXβ0

are O(1) and v′Eiv+β
′
0X

′G′
iR

′Hv is in the form of linear and quadratic forms in the random
vector v, so is any linear combination of v′Eiv + β′

0X
′G′

iR
′Hv and v′Ejv + β′

0X
′G′

jR
′Hv,

i ̸= j. Applying Lemma A.1 yields the asymptotic distribution result (3). ■

Proof of Theorem 1

Given the asymptotic distribution of γ̂ as in Lemma 3 and the definition of the II estimator, one
can use the generalized delta method in Phillips (2012) to derive the asymptotic distribution of
the II estimator. One needs to check a technical condition, namely, the inverse sample binding
function should be asymptotically locally equicontinuous at γ0 almost surely. For this purpose,
the following condition is sufficient: for a given δ > 0, if s→ ∞ and s/

√
n→ 0,

sup
||s(γ−γ0)||<δ

∥Ψ(Ψ−1(γ)−Ψ−1)∥ a.s.→ 0.

Let N = N(γ0, s, δ) denote the neighborhood induced by ||s(γ−γ0)|| < δ. It is sufficient to con-
sider ∥Ψ(Ψ−1(γ)−Ψ−1)∥, where the norm is sub-multiplicative (say, ∥·∥2), in this neighborhood.
Then

∥Ψ(Ψ−1(γ)−Ψ−1)∥ = ∥ΨΨ−1(γ)(Ψ−Ψ(γ))Ψ−1∥
≤ ∥Ψ∥ · ∥Ψ−1(γ)∥ · ∥Ψ−Ψ(γ)∥ · ∥Ψ−1∥.

By substituting y = S−1Xβ0 + S
−1R−1v into the terms that appears in Ψ, one can see that

all the elements of Ψ converge to some bounded constants almost surely. To illustrate, consider
ψλ,i1,i2 :

ψλ,i1,i2 = (δi1i2 − 1)
n−1y′W ′

i1R
′HRWi2y

n−1di1
+

2n−1y′S′R′HDi1HRWi2y

n−1di1

− n−1y′S′R′HDg(HRGi1,i2R
−1)HRSy

n−1di1
− δi1i2 ,
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where the normalizing scalar n−1 is added. Term by term, one sees that, for instance,

n−1y′W ′
i1R

′HRWi2y = n−1v′R−1′S−1′W ′
i1R

′HRWi2S
−1R−1v

+ n−1β′
0X

′S−1′W ′
i1R

′HRWi2S
−1Xβ0

+ 2n−1v′R−1′S−1′W ′
i1R

′HRWi2S
−1Xβ0.

Notably, for the quadratic form n−1v′R−1′S−1′W ′
i1R

′HRWi2S
−1R−1v, one can rewrite it as

(vΣ−1/2)′(n−1Σ1/2R−1′S−1′W ′
i1R

′HRWi2S
−1R−1Σ1/2)(Σ−1/2v), where Σ−1/2v is a vector

of independent random variables with mean zero and variance 1. Further, one can check that
the matrix Σ1/2R−1′S−1′W ′

i1R
′HRWi2S

−1R−1Σ1/2 ≡ C is uniformly bounded in absolute

row and column sums. Then n−1Σ1/2R−1′S−1′W ′
i1R

′HRWi2S
−1R−1Σ1/2 ≡ A is Hilbert-

Schmidt in the sense of Varberg (1968), as
∑n

i=1

∑n
j=1 a

2
ij ≤

∑n
i=1 n

−2(
∑n

j=1 |cij |)2 < ∞.

Further,
∑n

i=1 |aii| < ∞. From Theorem 1 of Varberg (1968), (vΣ−1/2)′A(Σ−1/2v), which
is n−1v′R−1′S−1′W ′

i1R
′HRWi2S

−1R−1v, converges almost surely to a bounded constant,

namely, n−1tr(R−1′S−1′W ′
i1R

′HRWi2S
−1R−1Σ). By Kolmogorov’s strong law of large num-

bers, the linear form n−1/2v′R−1′S−1′W ′
i1R

′HRWi2S
−1Xβ0 converges almost surely to 0 and

n−1β′
0X

′S−1′W ′
i1R

′HRWi2S
−1Xβ0 = O(1) by Assumption 5. So n−1y′W ′

i1R
′HRWi2y

converges to a bounded constant almost surely. The same argument applies to the three terms
n−1y′S′R′HDi1HRWi2y, n

−1y′S′R′HDg(HRGi1,i2R
−1)HRSy, and n−1di1 that appear

in ψλ,i1,i2 . Thus one can claim that ψλ,i1,i2 converges to a bounded constant almost surely, and
similarly, so do all the other elements of Ψ. It also holds for elements of Ψ−1(γ) for γ ∈ N in
light of Assumption 4.(ii) and Assumption 6.(ii). Thus one can claim that ∥Ψ∥, ∥Ψ−1(γ)∥ for
γ ∈ N, and ∥Ψ−1∥ are all bounded almost surely. So it is sufficient to show

sup
γ∈N

∥Ψ(γ)−Ψ∥ a.s.→ 0.

Note that

∥(Ψ(γ)−Ψ)∥ ≤
[
sup
γ∗

∥∇Ψ(γ∗)∥
]
∥γ − γ0∥

where γ∗ ∈ N lies between γ and γ0 and the Hessian matrix∇Ψ(γ) denotes the matrix derivative
of Ψ(γ) with respect to γ. Substituting y = S−1Xβ0+S

−1R−1v into all the terms that appear
in the Hessian matrix, one can check again that all the elements of∇Ψ are bounded almost surely,
and for γ ∈ N, ∇Ψ(γ) also has almost surely bounded elements in light of Assumption 4. It
then follows that

sup
γ∈N

∥Ψ(γ)−Ψ∥ ≤ sup
γ∈N

[
sup
γ∗

∥∇Ψ(γ∗)∥
]
∥γ − γ0∥

≤
∣∣∣∣δs
∣∣∣∣ [sup

γ∗
∥∇Ψ(γ∗)∥

]
a.s.→ 0.

Then one can use this sufficient condition, together with Lemma A.1, to derive the asymptotic
distribution (11) by following Phillips (2012). ■
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Proof of Theorem 2

Substituting R(ρ̂II) = R−
∑q

j=1(ρ̂II,j − ρ0j)M j and S(λ̂II) = S −
∑p

i=1(λ̂II,i − λ0i)W i, one
has

β̂II = [X ′R′RX −
q∑

j=1

(ρ̂II,j − ρ0j)X
′(R′M j)

⋆X]−1

· [X ′R′RSy −
p∑

i=1

(λ̂II,i − λ0i)X
′R′RW iy

−
q∑

j2=1

(ρ̂II,j − ρ0j)X
′R′M j2Sy

−
q∑

j1=1

(ρ̂II,j − ρ0j)X
′M ′

j1RSy] + op(n
−1/2)

= [(X ′R′RX)−1

+

q∑
j=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′(R′M j)

⋆X(X ′R′RX)−1

+ op(n
−3/2)]

· [X ′R′RSy −
p∑

i=1

(λ̂II,i − λ0i)X
′R′RW iy

−
q∑

j2=1

(ρ̂II,j − ρ0j)X
′R′M j2Sy

−
q∑

j1=1

(ρ̂II,j − ρ0j)X
′M ′

j1RSy] + op(n
−1/2)

= (X ′R′RX)−1X ′R′RSy

+

q∑
j=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′(R′M j)

⋆X(X ′R′RX)−1X ′R′RSy

−
p∑

i=1

(λ̂II,i − λ0i)(X
′R′RX)−1X ′R′RW iy

−
q∑

j2=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′R′M j2Sy

−
q∑

j1=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′M ′

j1RSy + op(n
−1/2)

= β0 + (X ′R′RX)−1X ′R′v

+

q∑
j=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′(R′M j)

⋆Xβ0

+

q∑
j=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′(R′M j)

⋆X(X ′R′RX)−1X ′R′v

−
p∑

i=1

(λ̂II,i − λ0i)(X
′R′RX)−1X ′R′RW iy
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−
q∑

j2=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′R′M j2(Xβ0 +R

−1v)

−
q∑

j1=1

(ρ̂II,j − ρ0j)(X
′R′RX)−1X ′M ′

j1(RXβ0 + vn) + op(n
−1/2)

= β0 + (X ′R′RX)−1X ′R′v

−
p∑

i=1

(λ̂II,i − λ0i)(X
′R′RX)−1X ′R′RGi(Xβ0 +R

−1v)

+ op(n
−1/2)

= β0 + (X ′R′RX)−1X ′R′v

−
p∑

i=1

(λ̂II,i − λ0i)(X
′R′RX)−1X ′R′RGiXβ0 + op(n

−1/2)

= β0 + (X ′R′RX)−1X ′R′v − J1(λ̂II − λ0) + op(n
−1/2), (22)

where J1 stacks horizontally (X ′R′RX)−1X ′R′RGiXβ0, i = 1, · · · , p.
From the definition of γ̂II , one can put

√
n(γ̂II − γ0) = Ψ−1√n(γ̂ − γ0 − bγ) + op(1).

Correspondingly,
√
n(λ̂II − λ0) =

√
nΨ

(−1)
λρ sρ +

√
nΨ

(−1)
λ sλ + op(1) and

√
n(ρ̂II − ρ0) =

√
nΨ(−1)

ρ sρ +
√
nΨ

(−1)
ρλ sλ + op(1). Putting (22) and these expansions together,

θ̂II − θ0 =

 Ψ
(−1)
λ sλ +Ψ

(−1)
λρ sρ

Ψ
(−1)
ρλ sλ +Ψ(−1)

ρ sρ

(X ′R′RX)−1X ′R′v − J1(Ψ
(−1)
λ sλ +Ψ

(−1)
λρ sρ)

+ op(n
−1/2). (23)

Recall that elements of sλ and sρ are linear and quadratic forms in v. This means all the

components of θ̂II − θ0 are linear and quadratic forms in v. Then the asymptotic distribution
of θ̂II follows from Lemma A.1. ■

Scenarios of Dense Weight Matrices

Suppose that only W i has divergent hn. From the proof of Lemma 1, ṽ′Diṽi = v′Div + (β̃ −
β0)

′X ′R′DiRX(β̃−β0)−2(β̃−β0)
′X ′R′Div. Observing β̃−β0 = Op(1/

√
n),X ′R′DiRX =

O(n/hn) andX
′R′Div = Op(

√
n/h2n) (since Var(X

′R′Div) = tr(X ′R′DiΣDiRX) = O(n/h2n)),
one can claim that the relationship ṽ′Diṽ = v′Divi+Op(1) still holds. Given y′W ′

iR
′HRWiy =

Op(n), one sees that
√
n(λ̂i−λ0i−bλi

) =
√
n(λ̂i−λ0i−vDiv/di)+op(1) is still true and the proof

of Lemma 1 goes through. It should be noted that in the special case of lim
√
n/hn = 0 (and

limhn/n = 0), i.e., hn diverges at a rate between
√
n and n, one can show that bλi

= o(n−1/2)

and thus the (infeasible) λ̂i is in fact consistent. For the SAR(1) model this was pointed out
by Lee (2002). Bao et al. (2020) echoed this view and emphasized that regardless of the rate
of hn, one can always recenter and it does not affect the asymptotic analysis of the resulting II
estimator. It can be seen that the same conclusion holds here and Lemma 1 needs not to be
modified to accommodate this special case.

If onlyM j has divergent hn, while it is still true that ṽ
′Lj ṽ = v′Ljv+Op(1) and ũ

′M ′
jMjũ =

v′F ′
jFjv +Op(1), now v

′Ljv = Op(
√
n/hn) and v

′F ′
jFjv = Op(n/hn). Then

√
n

hn
(ρ̂j − ρ0j − bρj

) =

√
n

hn

(
ṽ′Lj ṽ

ũ′M ′
jMjũ

)

44



=

√
n

hn

(
v′Ljv

v′F ′
jFjv

)
+ op(1)

=

√
n

hn

v′Ljv

tr(ΣF ′
jFj)

+ op(1),

where sρj
= v′Ljv/tr(ΣF

′
jFj) has variance ξρj

= (n/hn)tr[ΣLjΣ(Lj+L
′
j)]/[tr(ΣF

′
jF j)]

2 with

tr[ΣLjΣ(Lj + L
′
j)] = O(n/hn) and tr(ΣF ′

jF j) = O(n/hn). It follows that
√
n/hnξ

−1/2
ρj (ρ̂j −

ρ0j − bρj
) =

√
n/hnξ

−1/2
ρj sρj

+ op(1)
d→ N(0, 1). Moreover, one can show that the

√
n/hn-

consistent ρ̂j − bρj
is asymptotically uncorrelated with other recentered

√
n-consistent OLS

estimator as defined in the paper. For example, consider
√
n/hn(ρ̂j − ρ0j − bρj

) and
√
n(λ̂i −

λ0i − bλi
). Their asymptotic covariance is

lim

n√
hn

tr[ΣEiΣ(Lj +L
′
j)]

tr(ΣF ′
jF j)[tr(ΣR−1′G′

iR
′HRGiR−1) + β′

0X
′G′

iR
′HRGiXβ0]

= 0,

since tr[ΣEiΣ(Lj+L
′
j)] = O(n/hn), tr(ΣF

′
jF j) = O(n/hn), and tr(ΣR−1′G′

iR
′HRGiR

−1)+

β′
0X

′G′
iR

′HRGiXβ0 = O(n). The same applies to the asymptotic covariance of
√
n/hn(ρ̂j −

ρ0j − bρj
) and

√
n(ρ̂j′ − ρ0j′ − bρj′ ), j

′ ̸= j:

lim

n√
hn

tr[Σ(Lj +L
′
j)Σ(Lj′ +L

′
j′)]

tr(ΣF ′
jF j)tr(ΣF

′
j′F j′)

= 0,

since tr[Σ(Lj + L′
j)Σ(Lj′ + L′

j′)] = O(n/hn), tr(ΣF ′
jF j) = O(n/hn), and tr(ΣF ′

j′F j′) =
O(n). (Recall that only M j has divergent hn.) Given all the results, one can modify Lemma 3
straightforwardly.

Suppose among theM matrices, the first t of them are dense, each characterized by hn1
, · · · , hnt

,
the other M matrices are sparse, and the W matrices may be dense or sparse, then

Dg(
√
n, · · · ,

√
n,
√
n/hn1

, · · · ,
√
n/hnt

,
√
n, · · · ,

√
n)Ξ−1/2(γ̂ − γ0 − b)

d→ N(0, Ip+q),

where Ξ is the same as in Lemma 3 with the following exceptions: its (j, j′)-th element, j, j′ =
p+ 1, · · · , p+ t, is [n/(hnj

hnj′ )]tr[ΣLjΣ(Lj′ +L
′
j′)]/[tr(ΣF

′
jF j)tr(ΣF

′
j′F j′)], its (i, j)-th and

(j, i)-th elements, i = 1, · · · , p, j = p + 1, · · · , p + t, are zero, and its (j, j′)-th and (j′, j)-th
elements, j = p + 1, · · · , p + t,j′ = p + t + 1, · · · , p + q, are zero. Accordingly, Theorem 1
needs to be modified, with adjusted convergence rates, by updating the matrix V γ with the
new Ξ matrix. Finally, from the proof of Theorem 2, one sees that the asymptotic distribution
of β̂II is affected by λ̂II only, so β̂II is still

√
n-consistent. Modification of Theorem 2 is then

straightforward.

Asymptotic Distribution of GMM

In general, consider the GMM estimator based on the following set of moment conditions

g(θ) =
1

n
(v′(θ)Q,v′(θ)P 1v(θ), · · · ,v′(θ)P kp

v(θ))′, (24)

where P i’s, i = 1, · · · , kp, are symmetric with tr(P iΣ) = 0 and Q is an n × kq IV matrix
with full column rank. Further assume that P i’s are chosen such that dg(P i) = 0. (This
choice obviously makes it true that tr(P iΣ) = 0.) In total, there are kg = kq + kp number of
moment conditions. For the best GMM when error innovations are normal and i.i.d., Q contains
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RX,RG1Xβ0,· · · ,RGpXβ0 and the P matrices contain E1, · · · ,Ep,L1, · · · ,Lq. Note that

∇ = E

(
∂g(θ0)

∂θ′

)
=

− 1

n

 Q′RX
Okp,kx

∣∣∣∣
Q′RG1Xβ0 · · · Q′RGpXβ0

2tr(P 1A1) · · · 2tr(P 1Ap)
...

. . .
...

2tr(P kpA1) · · · 2tr(P kpAp)

∣∣∣∣∣∣∣∣∣
0kq

· · · 0kq

2tr(P 1B1) · · · 2tr(P 1Bq)
...

. . .
...

2tr(P kpB1) · · · 2tr(P kpBq)

 ,

where Ai = RGiR
−1Σ, i = 1, · · · , p, Bj = F jΣ, j = 1, · · · , q, and

Ω = Var(g(θ0)) =
1

n2

(
Q′ΣQ Okq×kp

Okp×kq
ΩPP

)
,

in which ΩPP is kp × kp with tr(ΣP iΣP
⋆
j ) in its (i, j)-th position, i, j = 1, · · · , kp. Given that

P i’s have zero diagonals, whether or not they involve the parameter vector θ0 does not affect the
expected gradient∇ and the variance matrixΩ. This is because ∂P i(θ0)/∂θj also has zero diago-
nals and E(v′(∂P i(θ0)/∂θj)v) = tr(Σ(∂P i(θ0)/∂θj)) = 0. For some initial consistent estimator

θ̃, the feasible optimal GMM estimated, denoted by θ̂FOGMM , minimizes g′(θ)Ω−1(θ̃)g(θ) and
it has the following asymptotic distribution:

√
n

(
1

n
∇′Ω−1∇

)1/2

(θ̂FOGMM − θ0)
d→ N(0, I). (25)

Partial Effects

The average partial effects of the r-th exogenous variable on the outcome variable, following
LeSage and Pace (2009), can be defined as

ADIr =
1

n
tr(Sr), ATIr =

1

n
1′Sr1, AIIr = ATIr −ADIr, (26)

where Sr = Sr(β0r,λ0) = β0rS
−1. In practice, one can estimate them by replacing β0r and S

by β̂II,r and S(λ̂II), respectively. In view of ∂S−1(λ)/∂λi = S
−1(λ)W iS

−1(λ), one has

∂Sr(θ0)

∂(λ′, βr)′
=


β0rS

−1W 1S
−1

...

β0rS
−1W pS

−1

S−1

 ≡ ∆.

So the standard error of ADIr, for instance, can be calculated as

1

n

√
(Tr(∆̂))′V̂ [1:p,p+q+r]Tr(∆̂),

where ∆̂ = ∆(λ̂II , β̂II,r) , Tr(∆̂) denotes matrix trace operation applied to each n× n block of

∆̂, and V̂ [1:p,p+q+r] denotes the block of V̂ pertaining to positions 1, · · · , p, p+ q + r.
Note that for SAR and SARAR, these definitions take on the same analytical form, whereas

for spatial error models (namely, when p = 0), they are all equal to the beta parameter associated
with xr, coinciding with the typical ceteris paribus interpretation. They measure the effects of
the observable on the outcome variable. An interesting question may also be: how would a shock
to the i-th unit affect its outcome as well as the outcomes of all its neighbors? So one can define
∂y/∂v′ = S−1R−1, resembling the so-called impulse response function in time series. Then it
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is straightforward that the average direct impact, indirect impart, and total impact from the
unobservable can be constructed and estimated, together with their standard errors. Elhorst
et al. (2012) emphasized that in contrast to the first-order model, it is in general not possible to
answer the question to which extent the second and higher-order effects fall on the corresponding
neighborhood rings in higher-order models.
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Supplementary Appendix to “Indirect Inference Estimation
of Higher-order Spatial Autoregressive Models”

Elements of ∇Ψ(γ0)

Introduce further the following notation,

Gi1,i2,i3 =
∂2Gi1(λ0)

∂λi2∂λi3

= Gi1Gi3Gi2 +Gi1Gi2Gi3 ,

F j1,j2,j3 =
∂2Fj1(ρ0)

∂ρj2∂ρj3
= Fj1Fj3Fj2 + Fj1Fj2Fj3 ,

Hj1,j2 =
∂2H(ρ0)

∂ρj1∂ρj2

= {Hj2M j1X(X ′R′RX)−1X ′R′ −HM j1X(X ′R′RX)−1X ′M ′
j2

+HM j1 [X(X ′R′RX)−1X ′M ′
j2RX(X ′R′RX)−1X ′]⋆R′}⋆,

Di,j1,j2 =
∂2Di(γ0)

∂ρj1∂ρj2

= Dg[(Hj1,j2R−Hj1M j2 −Hj2M j1)GiR
−1

+ (Hj1R−HM j1)GiR
−1M j2 + (Hj2R−HM j2)GiR

−1F j1

+HRGiR
−1(M j2F j1 + F j1,j2)],

ej1,j2,j3 ≡ ∂2ej1(γ0)

∂ρj2∂ρj3
= 2[y′S′R′Hj2,j3F

′
j1F j1HRSy − y′S′M ′

j3Hj2F
′
j1F j1HRSy

+ y′S′R′Hj2(F
′
j1,j3F j1)

⋆HRSy + y′S′R′Hj2F
′
j1F j1Hj3RSy

− y′S′R′Hj2F
′
j1F j1HMj3Sy + y′S′M ′

j3HF ′
j1F j1HMj2Sy

− y′S′R′Hj3F
′
j1F j1HMj2Sy − y′S′R′H(F ′

j1,j3F j1)
⋆HMj2Sy

− y′S′R′HF ′
j1F j1Hj3Mj2Sy − y′S′M ′

j3HF ′
j1F j1,j2HRSy

+ y′S′R′Hj3F
′
j1F j1,j2HRSy + y′S′R′HF ′

j1,j3F j1,j2HRSy

+ y′S′R′HF ′
j1F j1,j2,j3HRSy + y′S′R′HF ′

j1F j1,j2Hj3RSy

− y′S′R′HF ′
j1F j1,j2HMj3Sy],

ej1,j2,(i) ≡
∂2ej1(γ0)

∂ρj2∂λi
= −2y′W ′

iR
′(Hj2F

′
j1F j1HR−HF ′

j1F j1HMj2

+HF ′
j1F j1,j2HR)Sy − 2y′S′R′(Hj2F

′
j1F j1HR−HF ′

j1F j1HMj2

+HF ′
j1F j1,j2HR)W iy.

Upon taking another round of derivatives, one has

ψλ,i1,i2,i3 =
∂2ψλi1

(γ0)

∂λi2∂λi3

= d−1
i1

[2y′S′R′HDg(HRGi1,i2R
−1)HRW i3y

− y′S′R′HDg(HRGi1,i2,i3R
−1)HRSy − 2y′W ′

i3R
′HDi1HRWi2y

+ 2y′S′R′HDg(HRGi1,i3R
−1)HRWi2y],

ψλλρ,i1,i2,j =
∂2ψλi1

(γ0)

∂λi2∂ρj

= d−1
i1

[(δi1i2 − 1)(y′W ′
i1R

′HjRWi2y − y′W ′
i1M

′
jHRWi2y

− y′W ′
i1R

′HM jWi2y)− 2y′S′M ′
jHDi1HRWi2y

+ 2y′S′R′HjDi1HRWi2y + 2y′S′R′HDi1,jHRWi2y

+ 2y′S′R′HDi1HjRWi2y − 2y′S′R′HDi1HM jWi2y

+ 2y′S′R′HDg(HRGi1,i2R
−1)HMjSy − 2y′S′R′HjDg(HRGi1,i2R

−1)HRSy

S1



− y′S′R′HDg(HjRGi1,i2R
−1 −HM jGi1,i2R

−1 +HRGi1,i2R
−1M j)HRSy]

− d−2
i1
di1,j [(δi1i2 − 1)y′W ′

i1R
′HRWi2y + 2y′S′R′HDi1HRWi2y

− y′S′R′HDg(HRGi1,i2R
−1)HRSy],

ψρ,j1,j2,j3 =
∂2ψρj1

(γ0)

∂ρj2∂ρj3

= e−1
j1

{y′S′(R′Hj2,j3 −M ′
j3Hj2 −M ′

j2Hj3)R
−1′R′

(−j1)F j1HRSy

+ y′S′(R′Hj2 −M ′
j2H)[F ′

j3R
−1′R′

(−j1) + (δj1j3 − 1)R−1′M ′
j3 ]F j1HRSy

+ y′S′(R′Hj2 −M ′
j2H)R−1′R′

(−j1)F j1,j3HRSy

+ y′S′(R′Hj2 −M ′
j2H)R−1′R′

(−j1)F j1(Hj3R−HM j3)Sy

+ y′S′R′H[F ′
j2,j3R

−1′R′
(−j1)F j1 + F ′

j2F
′
j3R

−1′R′
(−j1)F j1

+ (δj1j3 − 1)F ′
j2R

−1′M ′
j3F j1 + F ′

j2R
−1′R′

(−j1)F j1,j3

+ (δj1j2 − 1)M ′
j3R

−1′M ′
j2F j1 + (δj1j2 − 1)R−1′M ′

j2F j1,j3

+M ′
j3R

−1′R′
(−j1)F j1,j2 + (δj1j3 − 1)R−1′M ′

j3F j1,j2 +R−1′R′
(−j1)F j1,j2,j3 ]HRSy

+ y′S′(R′Hj3 −M ′
j3H)[F ′

j2R
−1′R′

(−j1)F j1 + (δj1j2 − 1)R−1′M ′
j2F j1

+R−1′R′
(−j1)F j1,j2 ]HRSy + y′S′R′H[F ′

j2R
−1′R′

(−j1)F j1 + (δj1j2 − 1)R−1′M ′
j2F j1

+R−1′R′
(−j1)F j1,j2 ](Hj3R−HM j3)Sy + y′S′R′H[(M ′

j3R
−1′R′

(−j1)F j1

+ (δj1j3 − 1)R−1′M ′
j3F j1 +R−1′R′

(−j1)F j1,j3)(Hj2R−HMj2)]Sy

+ y′S′R′H[R−1′R′
(−j1)F j1(Hj2,j3R−Hj2Mj3 −Hj3Mj2) + 2Dg(F j1,j3)HMj2

+ 2Kj1Hj3Mj2 ]Sy + y′S′(R′Hj3 −M ′
j3H)[R−1′R′

(−j1)F j1(Hj2R−HMj2)

+ 2Kj1HMj2 ]Sy − y′S′R′H[2Dg(F j1,j3)Hj2 + 2Kj1Hj2,j3 +Dg(F j1,j2,j3)H

+Dg(F j1,j2)Hj3 ]RSy − y′S′(R′Hj3 −M ′
j3H)[2Dg(F j1,j3)Hj2 + 2Kj1Hj2,j3

+Dg(F j1,j2,j3)H +Dg(F j1,j2)Hj3 ]RSy + y′S′R′H[2Kj1Hj2

+Dg(F j1,j2)H]M j3Sy} − e−2
j1
ej1,j3{y

′S′(R′Hj2 −M ′
j2H)R−1′R′

(−j1)F j1HRSy

+ y′S′R′H[F ′
j2R

−1′R′
(−j1)F j1 + (δj1j2 − 1)R−1′M ′

j2F j1 +R−1′R′
(−j1)F j1,j2 ]HRSy

+ y′S′R′H[R−1′R′
(−j1)F j1(Hj2R−HMj2) + 2Kj1HMj2 ]Sy

− y′S′R′H[2Kj1Hj2 +Dg(F j1,j2)H]RSy}

+ 2e−3
j1
ej1,j2ej1,j3y

′S′R′H(R−1′R′
(−j1)F j1 −Kj1)HRSy

− e−2
j1
ej1,j2,j3y

′S′R′H(R−1′R′
(−j1)F j1 −Kj1)HRSy

− e−2
j1
ej1,j2y

′S′(R′Hj2 −M ′
j2H)(R−1′R′

(−j1)F j1 −Kj1)HRSy

− e−2
j1
ej1,j2y

′S′R′H[M ′
j3R

−1′R′
(−j1)F j1 + (δj1j3 − 1)R−1′M ′

j3F j1 +R−1′R′
(−j1)F j1,j3

−Dg(F j1,j3)]HRSy − e−2
j1
ej1,j2y

′S′R′H(R−1′R′
(−j1)F j1 −Kj1)(Hj2R−HMj2)Sy,

ψρρλ,j1,j2,i =
∂2ψρj1

(γ0)

∂ρj2∂λi

= e−1
j1

{−y′W ′
i(R

′Hj2 −M ′
j2H)R−1′R′

(−j1)F j1HRSy

− y′S′(R′Hj2 −M ′
j2H)R−1′R′

(−j1)F j1HRW iy

− y′W ′
iR

′H[F ′
j2R

−1′R′
(−j1)F j1 + (δj1j2 − 1)R−1′M ′

j2F j1 +R−1′R′
(−j1)F j1,j2 ]HRSy

− y′S′R′H[F ′
j2R

−1′R′
(−j1)F j1 + (δj1j2 − 1)R−1′M ′

j2F j1 +R−1′R′
(−j1)F j1,j2 ]HRW iy

− y′W ′
iR

′H[R−1′R′
(−j1)F j1(Hj2R−HMj2) + 2Kj1HMj2 ]Sy

− y′S′R′H[R−1′R′
(−j1)F j1(Hj2R−HMj2) + 2Kj1HMj2 ]W iy

+ y′W ′
iR

′H[2Kj1Hj2 +Dg(F j1,j2)H]RSy

+ y′S′R′H[2Kj1Hj2 +Dg(F j1,j2)H]RW iy}

− e−2
j1
ej1,(i){y

′S′(R′Hj2 −M ′
j2H)R−1′R′

(−j1)F j1HRSy

S2



+ y′S′R′H[F ′
j2R

−1′R′
(−j1)F j1 + (δj1j2 − 1)R−1′M ′

j2F j1 +R−1′R′
(−j1)F j1,j2 ]HRSy

+ y′S′R′H[R−1′R′
(−j1)F j1(Hj2R−HMj2) + 2Kj1HMj2 ]Sy

− y′S′R′H[2Kj1Hj2 +Dg(F j1,j2)H]RSy}

+ 2e−3
j1
ej1,(i)ej1,j2y

′S′R′H(R−1′R′
(−j1)F j1 −Kj1)HRSy

− e−2
j1
ej1,j2,(i)y

′S′R′H(R−1′R′
(−j1)F j1 −Kj1)HRSy

+ e−2
j1
ej1,j2y

′W ′
iR

′H(R−1′R′
(−j1)F j1 −Kj1)HRSy

+ e−2
j1
ej1,j2y

′S′R′H(R−1′R′
(−j1)F j1 −Kj1)HRW iy,

ψλρρ,i,j1,j2 =
∂2ψλi(γ0)

∂ρj1∂ρj2

= d−1
i {y′W ′

i[R
′Hj1,j2R− (M ′

j2Hj1R)⋆ + (M ′
j1HM j2 −M ′

j1Hj2R)⋆]S(−i)y

− y′S′M ′
j2H(2DiHM j1 − 2DiHj1R−Di,j1HR)Sy

+ y′S′R′Hj2(2DiHM j1 − 2DiHj1R−Di,j1HR)Sy

+ y′S′R′H(2Di,j2HM j1 + 2DiHj2M j1 − 2Di,j2Hj1R− 2DiHj1,j2R+ 2DiHj1M j2

−Di,j1,j2HR−Di,j1Hj2R+Di,j1HM j2)Sy}

− d−2
i di,j2 [y

′W ′
i(R

′Hj1R−M ′
j1HR−R′HM j1)S(−i)y

+ y′S′R′H(2DiHM j1 − 2DiHj1R−Di,j1HR)Sy]

+ 2d−3
i di,j1di,j2(y

′W ′
iR

′HRS(−i)y − y′S′R′HDiHRSy)

− d−2
i di,j1di,j2(y

′W ′
iR

′HRS(−i)y − y′S′R′HDiHRSy)

− d−2
i di,j1 [y

′W ′
iR

′Hj2RS(−i)y − y′W ′
iM

′
j2HRS(−i)y − y′W ′

iR
′HM j2S(−i)y

+ y′S′M ′
j2HDiHRSy − y′S′R′Hj2DiHRSy − y′S′R′HDi,j2HRSy

− y′S′R′HDiHj2RSy + y′S′R′HDiHM j2Sy],

ψρλλ,j,i1,i2 =
∂2ψρj (γ0)

∂λi1∂λi2

= e−1
j (y′W ′

i1R
′HR−1′R′

(−j)F jHRW i2y − 2y′W ′
i2R

′HKjHRW i1y

+ y′W ′
i2R

′HR−1′R′
(−j)F jHRW i1y)− e−2

j ej,(i2)(2y
′S′R′HKjHRW i1y

− y′W ′
i1R

′HR−1′R′
(−j)F jHRSy − y′S′R′HR−1′R′

(−j)F jHRW i1y)

− 2e−2
j y′W ′

i2R
′HF ′

jF jHRW i1y · y′S′R′H(R−1′R′
(−j)F j −Kj)HRSy

+ 2e−2
j ej,(i1)y

′W ′
i2R

′H(R−1′R′
(−j)F j −Kj)HRSy

+ 2e−2
j ej,(i1)y

′S′R′H(R−1′R′
(−j)F j −Kj)HRW i2y

+ 4e−3
j ej,(i2)ej,(i1)y

′S′R′H(R−1′R′
(−j)F j −Kj)HRSy,

ψρλρ,j1,i,j2 =
∂2ψρj1

(γ0)

∂λi∂ρj2
= ψρρλ,j1,j2,i,

ψλρλ,i1,j,i2 =
∂2ψλi1

(γ0)

∂ρj∂λi2

= ψλλρ,i1,i2,j .

Additional Simulation Results

Unless otherwise stated, all aspects of simulation design are the same as those in Table 1 in
the main text. In Table S.1, β0 = (2, 1.5,−1)′. In Table S.2, kx = 11, all the non-constant
covariates are simulated as independent uniform random variables on the interval [0, 1], and
β0 = (0.2, 0.1,−0.3, 0.1,−0.3, · · · )′. In Table S.3,W 2 in the outcome equation is first constructed
as a random symmetric matrix of zeros and ones with the number of ones restricted to be 20%
of the total entries and then row-normalized.
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Table S.1: Finite-Sample Performances of GMM, GS2SLS, and II in Estimating SARAR(2,2) with Strong Covariates

GMM GS2SLS II

n DGP θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

50 1 λ01 = 0.15 −0.003 0.284 23.6% 0.757 1.153 14.9% −0.027 0.193 11.0%
λ02 = 0.1 −0.010 0.179 17.0% 0.094 0.576 3.2% −0.004 0.117 5.4%
ρ01 = 0.5 0.037 0.153 17.9% −0.068 0.161 15.6% 0.022 0.123 12.3%
ρ02 = 0.4 −0.076 0.193 21.0% −0.080 0.180 17.3% −0.049 0.136 13.8%

2 λ01 = 0.5 −0.114 0.332 16.1% 0.177 0.463 6.6% −0.102 0.260 7.6%
λ02 = 0.4 −0.094 0.287 17.7% 0.115 0.556 6.9% −0.030 0.194 6.9%
ρ01 = 0.15 −0.016 0.198 17.1% −0.031 0.158 9.9% −0.015 0.154 9.0%
ρ02 = 0.1 −0.065 0.264 17.9% −0.030 0.156 13.8% −0.039 0.155 11.6%

3 λ01 = 0.15 −0.049 0.462 18.9% 0.603 1.012 10.8% −0.053 0.379 11.3%
λ02 = 0.1 −0.064 0.355 18.7% −0.127 0.779 4.4% −0.016 0.236 8.3%
ρ01 = 0.05 −0.020 0.206 18.2% −0.017 0.165 11.0% −0.021 0.164 9.9%
ρ02 = 0.02 −0.064 0.271 21.1% −0.034 0.160 16.6% −0.048 0.162 13.8%

4 λ01 = 0.5 −0.106 0.337 19.0% 0.283 0.536 9.0% −0.076 0.232 8.5%
λ02 = 0.4 −0.076 0.284 18.1% −0.005 0.536 6.6% −0.023 0.178 5.5%
ρ01 = 0.3 −0.007 0.187 16.0% −0.045 0.147 11.6% −0.014 0.138 9.8%
ρ02 = 0.2 −0.092 0.273 18.8% −0.054 0.161 17.0% −0.040 0.152 10.9%

100 1 λ01 = 0.15 0.016 0.195 13.3% 0.857 1.108 14.7% −0.001 0.133 10.0%
λ02 = 0.1 −0.007 0.147 7.7% 0.059 0.932 1.3% 0.000 0.103 5.8%
ρ01 = 0.5 0.018 0.101 11.7% −0.076 0.139 23.5% 0.005 0.079 9.3%
ρ02 = 0.4 −0.040 0.118 11.7% −0.052 0.129 14.3% −0.017 0.085 8.2%

2 λ01 = 0.5 −0.052 0.241 10.0% 0.140 0.350 7.6% −0.059 0.173 5.5%
λ02 = 0.4 −0.103 0.299 10.7% 0.194 0.938 5.7% −0.023 0.196 4.6%
ρ01 = 0.15 −0.008 0.134 10.5% −0.021 0.112 7.6% −0.001 0.101 8.2%
ρ02 = 0.1 −0.043 0.190 11.7% −0.021 0.115 12.1% −0.014 0.109 10.2%

3 λ01 = 0.15 −0.049 0.369 10.0% 0.485 0.734 9.6% −0.048 0.270 7.6%
λ02 = 0.1 −0.042 0.354 13.5% −0.092 1.032 2.5% 0.005 0.229 7.8%
ρ01 = 0.05 −0.013 0.143 11.0% −0.020 0.114 7.2% −0.012 0.107 7.8%
ρ02 = 0.02 −0.043 0.192 12.3% −0.013 0.118 11.0% −0.015 0.103 9.9%

4 λ01 = 0.5 −0.065 0.235 10.0% 0.189 0.379 7.7% −0.063 0.172 6.5%
λ02 = 0.4 −0.091 0.282 9.6% 0.272 0.966 5.6% −0.020 0.175 3.5%
ρ01 = 0.3 0.007 0.118 8.9% −0.035 0.102 7.4% 0.000 0.091 8.1%
ρ02 = 0.2 −0.045 0.174 12.2% −0.038 0.115 11.3% −0.015 0.098 8.8%

200 1 λ01 = 0.15 0.008 0.129 7.4% 0.913 1.127 16.3% −0.005 0.090 6.2%
λ02 = 0.1 −0.007 0.142 6.8% 0.150 1.416 3.5% −0.003 0.099 4.9%
ρ01 = 0.5 0.011 0.068 8.8% −0.069 0.118 26.1% 0.005 0.055 7.2%
ρ02 = 0.4 −0.020 0.077 8.9% −0.052 0.108 17.0% −0.011 0.059 6.6%

2 λ01 = 0.5 −0.031 0.168 6.3% 0.092 0.241 6.0% −0.052 0.141 5.6%
λ02 = 0.4 −0.124 0.278 6.6% 0.141 1.400 3.9% −0.023 0.197 3.6%
ρ01 = 0.15 −0.005 0.088 9.1% −0.017 0.076 7.6% −0.003 0.073 8.3%
ρ02 = 0.1 −0.017 0.116 8.5% −0.018 0.081 11.7% −0.009 0.072 7.6%

3 λ01 = 0.15 −0.015 0.284 8.8% 0.391 0.659 9.3% −0.021 0.206 8.0%
λ02 = 0.1 −0.065 0.333 8.0% −0.115 1.453 3.8% −0.018 0.230 5.6%
ρ01 = 0.05 −0.006 0.090 8.4% −0.011 0.078 7.3% −0.004 0.072 6.9%
ρ02 = 0.02 −0.021 0.112 9.5% −0.007 0.081 9.8% −0.007 0.073 7.6%

4 λ01 = 0.5 −0.031 0.167 6.9% 0.132 0.294 6.0% −0.045 0.136 6.3%
λ02 = 0.4 −0.099 0.254 6.2% 0.189 1.458 4.6% −0.025 0.181 2.8%
ρ01 = 0.3 0.001 0.075 8.3% −0.030 0.074 10.3% −0.001 0.064 7.3%
ρ02 = 0.2 −0.031 0.108 7.3% −0.025 0.079 9.8% −0.011 0.070 8.5%

Note: All results are based on 1000 simulations and P (5%) denotes the empirical size of the two-sided 5% t-test of the specific parameter equal

to its true value.
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Table S.2: Finite-Sample Performances of GMM, GS2SLS, and II in Estimating SARAR(2,2) with kx = 11 Covariates

GMM GS2SLS II

n DGP θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

50 1 λ01 = 0.15 −0.002 0.339 39.4% −0.086 0.676 15.9% −0.033 0.235 15.9%
λ02 = 0.1 −0.014 0.213 29.4% −0.151 0.450 21.9% −0.007 0.141 10.5%
ρ01 = 0.5 0.112 0.227 42.3% −0.150 0.197 34.9% 0.083 0.201 20.6%
ρ02 = 0.4 −0.133 0.249 40.8% −0.067 0.151 17.2% −0.090 0.209 20.4%

2 λ01 = 0.5 −0.133 0.440 28.5% 0.076 0.559 17.3% −0.114 0.326 9.2%
λ02 = 0.4 −0.113 0.366 28.9% 0.142 0.419 22.3% −0.046 0.232 10.1%
ρ01 = 0.15 0.042 0.310 40.0% −0.042 0.161 12.5% 0.024 0.265 13.0%
ρ02 = 0.1 −0.115 0.337 35.0% −0.045 0.159 16.2% −0.070 0.251 18.3%

3 λ01 = 0.15 −0.010 0.536 32.6% −0.170 0.867 23.5% −0.078 0.447 15.8%
λ02 = 0.1 −0.062 0.410 30.1% −0.058 0.460 20.4% −0.023 0.269 11.4%
ρ01 = 0.05 −0.022 0.342 44.3% −0.045 0.155 12.6% −0.044 0.278 11.6%
ρ02 = 0.02 −0.102 0.334 38.5% −0.037 0.155 16.9% −0.080 0.243 18.5%

4 λ01 = 0.5 −0.107 0.413 29.3% 0.006 0.595 16.8% −0.096 0.308 10.8%
λ02 = 0.4 −0.079 0.332 25.6% 0.187 0.428 25.5% −0.026 0.215 9.1%
ρ01 = 0.3 0.062 0.272 37.7% −0.066 0.151 11.4% 0.046 0.221 14.1%
ρ02 = 0.2 −0.122 0.336 35.5% −0.058 0.161 15.8% −0.047 0.229 16.2%

100 1 λ01 = 0.15 0.020 0.211 19.0% 0.527 0.656 31.1% 0.002 0.140 10.8%
λ02 = 0.1 −0.008 0.160 13.2% 0.240 0.476 16.1% 0.003 0.112 7.6%
ρ01 = 0.5 0.035 0.119 19.5% −0.074 0.116 21.1% 0.021 0.099 10.1%
ρ02 = 0.4 −0.048 0.134 20.5% −0.066 0.118 16.7% −0.026 0.104 9.9%

2 λ01 = 0.5 −0.052 0.321 13.4% 0.596 0.665 42.2% −0.060 0.215 7.4%
λ02 = 0.4 −0.106 0.320 13.1% 0.183 0.476 14.5% −0.033 0.201 5.0%
ρ01 = 0.15 0.000 0.165 17.3% −0.029 0.110 9.5% 0.014 0.123 8.9%
ρ02 = 0.1 −0.059 0.219 18.1% −0.026 0.112 11.2% −0.011 0.134 12.2%

3 λ01 = 0.15 −0.029 0.423 14.9% 0.644 0.809 33.1% −0.055 0.301 8.8%
λ02 = 0.1 −0.066 0.366 15.1% 0.033 0.475 11.2% 0.004 0.242 8.2%
ρ01 = 0.05 0.002 0.170 19.8% −0.015 0.109 7.5% −0.002 0.130 8.9%
ρ02 = 0.02 −0.056 0.210 20.4% −0.008 0.110 11.9% −0.013 0.127 10.4%

4 λ01 = 0.5 −0.056 0.313 15.1% 0.550 0.629 38.3% −0.060 0.193 6.9%
λ02 = 0.4 −0.092 0.300 11.9% 0.254 0.494 16.9% −0.020 0.189 6.2%
ρ01 = 0.3 0.027 0.143 17.8% −0.049 0.106 9.1% 0.025 0.116 9.9%
ρ02 = 0.2 −0.063 0.195 15.2% −0.046 0.118 13.8% −0.017 0.121 11.3%

200 1 λ01 = 0.15 0.008 0.131 9.0% 1.047 1.100 70.1% −0.005 0.095 7.6%
λ02 = 0.1 −0.003 0.145 8.0% −0.025 0.597 6.3% −0.003 0.102 5.2%
ρ01 = 0.5 0.019 0.071 11.8% −0.060 0.093 22.6% 0.013 0.061 8.1%
ρ02 = 0.4 −0.027 0.079 12.4% −0.055 0.098 17.4% −0.015 0.065 7.9%

2 λ01 = 0.5 −0.034 0.266 7.7% 0.870 0.910 70.0% −0.050 0.173 6.3%
λ02 = 0.4 −0.121 0.304 8.1% 0.198 0.637 8.4% −0.033 0.198 4.3%
ρ01 = 0.15 −0.001 0.096 12.2% −0.024 0.080 8.1% 0.003 0.081 9.5%
ρ02 = 0.1 −0.030 0.128 10.7% −0.019 0.079 9.4% −0.010 0.081 8.5%

3 λ01 = 0.15 0.002 0.318 10.9% 1.049 1.108 61.8% −0.020 0.220 8.9%
λ02 = 0.1 −0.056 0.333 7.8% −0.025 0.633 7.3% −0.020 0.240 6.7%
ρ01 = 0.05 −0.002 0.111 12.6% −0.015 0.081 5.8% −0.003 0.079 7.0%
ρ02 = 0.02 −0.022 0.123 11.4% −0.007 0.079 10.5% −0.008 0.081 7.5%

4 λ01 = 0.5 −0.025 0.242 9.0% 0.880 0.916 74.4% −0.042 0.156 6.4%
λ02 = 0.4 −0.100 0.274 7.7% 0.209 0.634 10.1% −0.028 0.183 3.4%
ρ01 = 0.3 0.008 0.082 10.9% −0.041 0.085 11.5% 0.009 0.073 9.2%
ρ02 = 0.2 −0.035 0.114 10.4% −0.026 0.082 9.9% −0.011 0.079 9.5%

Note: All results are based on 1000 simulations and P (5%) denotes the empirical size of the two-sided 5% t-test of the specific parameter equal

to its true value.
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Table S.3: Finite-Sample Performances of GMM, GS2SLS, and II in Estimating SARAR(2,2) with DenseW 2

GMM GS2SLS II

n DGP θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

50 1 λ01 = 0.15 0.011 0.291 26.2% 0.954 1.328 13.3% −0.027 0.198 11.2%
λ02 = 0.1 −0.030 0.253 15.4% −0.038 1.013 3.0% −0.011 0.176 5.3%
ρ01 = 0.5 0.034 0.153 17.6% −0.085 0.168 17.2% 0.021 0.123 12.2%
ρ02 = 0.4 −0.071 0.190 17.5% −0.093 0.182 17.8% −0.048 0.136 13.1%

2 λ01 = 0.5 −0.093 0.407 20.3% 0.749 0.980 13.7% −0.114 0.297 8.1%
λ02 = 0.4 −0.194 0.437 18.9% 0.060 1.063 5.5% −0.065 0.302 4.9%
ρ01 = 0.15 −0.029 0.205 16.1% −0.029 0.163 9.8% −0.024 0.157 10.7%
ρ02 = 0.1 −0.082 0.293 19.5% −0.038 0.170 14.6% −0.043 0.158 12.6%

3 λ01 = 0.15 −0.013 0.468 18.1% 1.001 1.273 14.9% −0.059 0.385 10.4%
λ02 = 0.1 −0.130 0.445 17.3% −0.028 1.069 5.3% −0.031 0.343 8.3%
ρ01 = 0.05 −0.021 0.210 16.7% −0.013 0.168 9.5% −0.023 0.164 9.8%
ρ02 = 0.02 −0.072 0.261 21.2% −0.044 0.169 13.8% −0.048 0.160 14.0%

4 λ01 = 0.5 −0.069 0.379 23.9% 0.614 0.889 13.1% −0.096 0.287 11.2%
λ02 = 0.4 −0.213 0.438 20.7% −0.101 1.092 5.0% −0.068 0.285 5.1%
ρ01 = 0.3 −0.006 0.186 16.0% −0.053 0.164 11.1% −0.019 0.145 10.5%
ρ02 = 0.2 −0.091 0.287 19.9% −0.064 0.179 16.7% −0.043 0.156 12.9%

100 1 λ01 = 0.15 0.016 0.197 15.2% 1.006 1.183 18.9% −0.001 0.133 10.7%
λ02 = 0.1 −0.014 0.224 9.8% 0.771 1.697 5.7% −0.000 0.163 4.8%
ρ01 = 0.5 0.013 0.094 11.0% −0.084 0.149 23.5% 0.004 0.079 9.3%
ρ02 = 0.4 −0.033 0.110 11.8% −0.067 0.147 17.5% −0.017 0.085 9.8%

2 λ01 = 0.5 −0.040 0.306 13.8% 0.758 0.924 17.8% −0.082 0.224 7.0%
λ02 = 0.4 −0.222 0.419 11.7% 0.043 1.371 2.8% −0.054 0.286 4.8%
ρ01 = 0.15 −0.008 0.127 10.5% −0.032 0.116 8.0% 0.002 0.104 9.2%
ρ02 = 0.1 −0.051 0.182 11.1% −0.027 0.122 10.7% −0.014 0.112 11.7%

3 λ01 = 0.15 −0.022 0.370 10.4% 1.014 1.264 14.7% −0.051 0.278 6.5%
λ02 = 0.1 −0.099 0.435 10.2% −0.052 1.494 2.8% 0.011 0.332 5.7%
ρ01 = 0.05 −0.015 0.136 11.3% −0.022 0.124 7.5% −0.012 0.107 8.7%
ρ02 = 0.02 −0.046 0.183 13.9% −0.013 0.126 9.9% −0.014 0.102 8.6%

4 λ01 = 0.5 −0.041 0.302 13.9% 0.641 0.814 15.8% −0.078 0.202 7.2%
λ02 = 0.4 −0.183 0.393 10.6% 0.281 1.476 3.4% −0.039 0.262 3.9%
ρ01 = 0.3 0.001 0.115 8.1% −0.050 0.122 10.1% 0.004 0.096 9.0%
ρ02 = 0.2 −0.055 0.175 9.4% −0.033 0.121 11.0% −0.017 0.101 10.4%

200 1 λ01 = 0.15 0.011 0.118 6.7% 0.954 1.176 16.5% −0.004 0.092 6.6%
λ02 = 0.1 −0.016 0.199 6.8% −0.212 2.044 3.2% −0.004 0.158 5.5%
ρ01 = 0.5 0.010 0.062 8.2% −0.064 0.113 24.2% 0.005 0.055 7.2%
ρ02 = 0.4 −0.020 0.070 8.5% −0.054 0.108 15.1% −0.011 0.059 7.2%

2 λ01 = 0.5 −0.024 0.233 8.7% 0.840 0.992 18.0% −0.066 0.184 7.6%
λ02 = 0.4 −0.222 0.381 9.2% −0.142 2.037 2.3% −0.051 0.282 2.9%
ρ01 = 0.15 −0.006 0.085 9.2% −0.027 0.089 8.2% 0.000 0.079 11.7%
ρ02 = 0.1 −0.023 0.103 7.4% −0.020 0.086 9.7% −0.010 0.079 10.6%

3 λ01 = 0.15 −0.018 0.278 9.4% 1.142 1.357 16.2% −0.021 0.211 7.5%
λ02 = 0.1 −0.111 0.404 11.2% −0.033 2.183 2.7% −0.010 0.353 6.8%
ρ01 = 0.05 −0.003 0.081 8.1% −0.018 0.091 5.3% −0.003 0.071 6.6%
ρ02 = 0.02 −0.017 0.098 9.3% −0.007 0.084 8.5% −0.007 0.073 7.1%

4 λ01 = 0.5 −0.020 0.235 10.1% 0.777 0.946 17.4% −0.058 0.168 8.3%
λ02 = 0.4 −0.199 0.375 9.1% −0.100 2.062 2.4% −0.052 0.262 2.9%
ρ01 = 0.3 −0.003 0.069 8.1% −0.040 0.087 11.4% 0.004 0.074 11.4%
ρ02 = 0.2 −0.028 0.099 7.2% −0.028 0.088 9.6% −0.016 0.078 11.0%

Note: All results are based on 1000 simulations and P (5%) denotes the empirical size of the two-sided 5% t-test of the specific parameter equal

to its true value.
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Airbnb Estimation Results from GMM and GS2SLS

Table S.4: SARAR Fitted to Airbnb Listings on March 21, 2020 in Asheville, NC

GMM GS2SLS

Variable Est. ADI AII ATI Est. ADI AII ATI

W(0,20]y 0.482 0.505
[14.410] [6.678]

W(20,50]y 0.026 0.019
[0.627] [0.356]

W(50,100]y 0.079 0.065
[1.838] [1.124]

Constant −0.068 −0.104
[0.196] [0.249]

Suerhost 0.006 0.006 0.008 0.013 0.006 0.006 0.009 0.015
[0.277] [0.277] [0.277] [0.277] [0.252] [0.252] [0.251] [0.251]

HostCount 0.001 0.001 0.002 0.004 0.001 0.001 0.002 0.004
[7.901] [7.900] [5.839] [7.052] [5.895] [5.789] [4.349] [5.112]

EnHome 0.329 0.335 0.464 0.799 0.330 0.336 0.466 0.802
[16.636] [16.668] [7.542] [11.130] [14.825] [14.615] [6.341] [9.340]

Accomm 0.078 0.080 0.110 0.190 0.078 0.080 0.111 0.190
[8.671] [8.682] [6.040] [7.488] [7.002] [7.094] [5.198] [6.339]

Bdrms 0.010 0.010 0.014 0.024 0.011 0.011 0.015 0.026
[0.404] [0.404] [0.403] [0.403] [0.355] [0.355] [0.354] [0.355]

Barms 0.181 0.183 0.254 0.438 0.180 0.183 0.254 0.437
[8.544] [8.557] [6.142] [7.565] [7.976] [7.952] [5.425] [6.832]

DistCenter −0.036 −0.037 −0.051 −0.088 −0.036 −0.037 −0.051 −0.087
[11.120] [11.136] [7.003] [9.294] [8.882] [9.074] [5.938] [7.757]

PremisePk 0.005 0.005 0.007 0.011 0.005 0.005 0.007 0.012
[0.281] [0.281] [0.281] [0.281] [0.269] [0.269] [0.268] [0.268]

AC 0.209 0.212 0.294 0.506 0.207 0.210 0.292 0.502
[5.467] [5.464] [4.461] [5.027] [4.862] [4.851] [3.891] [4.418]

TV 0.136 0.138 0.191 0.329 0.133 0.136 0.188 0.324
[6.832] [6.845] [5.516] [6.403] [6.253] [6.259] [4.867] [5.747]

Bkfst 0.073 0.074 0.102 0.176 0.070 0.072 0.099 0.171
[3.296] [3.295] [3.136] [3.261] [2.756] [2.761] [2.693] [2.772]

InsBook 0.076 0.077 0.107 0.184 0.076 0.077 0.107 0.183
[4.719] [4.720] [4.136] [4.512] [4.159] [4.141] [3.563] [3.914]

MinNights −0.001 −0.001 −0.002 −0.004 −0.001 −0.001 −0.002 −0.004
[1.321] [1.321] [1.328] [1.330] [1.169] [1.169] [1.191] [1.186]

Reviews −0.041 −0.042 −0.058 −0.099 −0.041 −0.042 −0.058 −0.099
[11.277] [11.299] [6.873] [9.155] [9.401] [9.266] [5.704] [7.498]

ReScore 0.011 0.011 0.015 0.026 0.011 0.011 0.016 0.027
[3.239] [3.238] [2.987] [3.140] [2.879] [2.881] [2.585] [2.748]

1.016 1.018
ADI(v) [447.404] [180.703]

1.408 1.411
AII(v) [8.114] [6.928]

2.424 2.428
ATI(v) [13.899] [11.809]

Note: The absolute values of t-ratios are inside brackets. ADI, AII, and ATI denote respectively the average direct, indirect, and total impacts

on the outcome from the observable covariates. ADI(v), AII(v), and ATI(v) denote the corresponding measures from the error innovation v.
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Table S.5: SARAR Fitted to Airbnb Listings on July 10, 2021 in Asheville, NC

GMM GS2SLS

Variable Est. ADI AII ATI Est. ADI AII ATI

W(0,20]y 0.231 0.462
[2.503] [8.762]

M(0,20]u 0.650 0.288
[7.998] [2.928]

M(20,50]u 0.340 0.265
[3.926] [2.662]

Constant 2.504 2.168
[2.300] [3.945]

Suerhost 0.066 0.067 0.020 0.086 0.049 0.049 0.041 0.090
[2.823] [2.824] [1.659] [2.740] [1.944] [1.945] [1.852] [1.939]

HostCount 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[1.175] [1.175] [1.012] [1.167] [2.463] [2.462] [2.173] [2.386]

EnHome 0.304 0.305 0.090 0.395 0.272 0.275 0.230 0.505
[10.841] [10.833] [1.901] [6.559] [8.715] [8.714] [4.188] [6.668]

Accomm 0.053 0.053 0.016 0.069 0.052 0.053 0.044 0.097
[7.403] [7.414] [1.921] [5.829] [6.979] [7.002] [4.190] [6.154]

Bdrms 0.118 0.119 0.035 0.154 0.095 0.096 0.080 0.177
[6.052] [6.047] [1.814] [4.768] [4.619] [4.616] [3.258] [4.159]

Barms 0.204 0.205 0.061 0.266 0.220 0.222 0.186 0.408
[9.799] [9.784] [1.878] [6.169] [9.940] [9.931] [4.272] [7.102]

DistCenter 0.049 0.049 0.015 0.064 −0.043 −0.044 −0.037 −0.081
[1.253] [1.254] [1.152] [1.273] [5.950] [5.968] [4.006] [5.503]

PremisePk 0.076 0.077 0.023 0.099 0.047 0.048 0.040 0.088
[4.264] [4.262] [1.733] [3.727] [2.332] [2.333] [2.115] [2.287]

AC 0.062 0.062 0.018 0.080 0.090 0.091 0.076 0.167
[2.191] [2.191] [1.451] [2.119] [2.984] [2.982] [2.469] [2.825]

TV 0.232 0.233 0.069 0.302 0.246 0.249 0.208 0.457
[9.058] [9.045] [1.872] [5.966] [8.485] [8.497] [4.252] [6.728]

Bkfst 0.078 0.078 0.023 0.101 0.110 0.112 0.093 0.205
[2.686] [2.684] [1.524] [2.508] [3.391] [3.388] [2.662] [3.146]

InsBook 0.024 0.024 0.007 0.031 0.042 0.042 0.035 0.077
[1.348] [1.348] [1.114] [1.334] [2.165] [2.165] [1.958] [2.111]

MinNights −0.005 −0.005 −0.002 −0.007 −0.005 −0.005 −0.004 −0.010
[2.641] [2.639] [1.501] [2.457] [2.179] [2.180] [2.038] [2.164]

Reviews −0.001 −0.001 0.000 −0.001 −0.001 −0.001 −0.001 −0.002
[1.090] [1.090] [0.952] [1.082] [1.240] [1.241] [1.213] [1.238]

ReScore −0.007 −0.007 −0.002 −0.009 −0.007 −0.007 −0.006 −0.012
[1.658] [1.658] [1.261] [1.627] [1.441] [1.442] [1.443] [1.459]

ADI(v) 1.446 1.039
[5.909] [2.403]

AII(v) 128.509 3.112
[0.909] [0.129]

ATI(v) 129.955 4.151
[0.917] [0.169]

Note: The absolute values of t-ratios are inside brackets. ADI, AII, and ATI denote respectively the average direct, indirect, and total impacts

on the outcome from the observable covariates. ADI(v), AII(v), and ATI(v) denote the corresponding measures from the error innovation v.
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CDF’s of Inverse Error Bound of Ψ(γ) for Airbnb Data

Figure S.1: Cumulative Distribution Functions of ε(Ψ−1(γ))

2020 Data with W(0,50] and W(50,100] 2020 Data with W(0,20], W(20,50], and W(50,100]

2021 Data with W(0,20] and M(0,20] 2021 Data with W(0,50] and M(0,50]

2021 Data with W(0,20], M(0,20], and M(20,50] 2021 Data with W(0,20], W(20,50], M(0,20], and M(20,50]
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