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Abstract

This paper proposes a new estimation procedure for the first-order spatial autoregressive
model, where the disturbance term also follows a first-order autoregression and its innova-
tions may be heteroscedastic. The estimation procedure is based on the principle of indirect
inference that matches the ordinary least squares estimator of the two spatial autoregressive
coefficients (one in the outcome equation and the other in the disturbance equation) with
its approximate analytical expectation. The resulting estimator is shown to be consistent,
asymptotically normal, and robust to unknown heteroscedasticity. Monte Carlo experiments
are provided to show its finite-sample performance in comparison with existing estimators
that are based on the generalized method of moments. The new estimation procedure is
applied to empirical studies on teenage pregnancy rates and Airbnb accommodation prices.

Key Words: spatial autoregressive model; indirect inference; ordinary least squares

JEL classification: C21, C31

Acknowledgements: The authors are grateful to two anonymous referees, a co-editor, and
the editor-in-chief (Paul Elhorst) for their helpful comments. Jeff Ello from the Krannert
Computing Center at Purdue University kindly created a virtual machine from a computer
cluster to facilitate the simulations conducted in this paper. The authors are responsible
for all remaining errors.

*Corresponding author: Department of Economics, Purdue University, 403 W State St, West Lafayette, IN
47907, USA.

1



INTRODUCTION

Spatial autoregressive (SAR) models have been widely used in many disciplines of social sciences

by extending the notion of autocorrelation from the traditional time domain to space. Spatial

correlation may arise from different sources such as strategic interaction, spill-over, copycatting,

and general equilibrium effects, to name just a few. In this framework, space can be defined

not only in the geographical sense but also from economic and social perspectives. A classical

treatment of this subject is Cliff and Ord (1981) and a more recent one is LeSage and Pace

(2009).

This paper considers the first-order SAR model with first-order autoregressive disturbances

(SARAR(1,1) for short), which extends the popular first-order SAR (SAR(1)) model by allowing

for a more general structure of spatial correlation that may originate from both the observ-

able and unobservable. Under the assumption of homoscedastic error innovations, Kelejian and

Prucha (1998) proposed a generalized spatial two-stage least squares (GS2SLS) procedure to

estimate SARAR(1,1). Lee (2003) proposed the best GS2SLS by replacing the IV (instrumental

variables) matrix of the GS2SLS estimator in Kelejian and Prucha (1998) with the asymptot-

ically optimal one. Lee and Liu (2010) discussed the generalized method of moments (GMM)

and proposed the best GMM estimator. Burridge (2012) discussed how to solve for the quasi

maximum likelihood (QML) estimator for the SARAR(1,1) model by a numerical search algo-

rithm and recently Liu and Lee (2019) derived the asymptotic properties of the QML estimator

in SARAR(1,1). Kelejian and Prucha (2010) extended their GS2SLS to allow for heteroscedas-

ticity in error innovations and Jin and Lee (2019) compared the generalized empirical likelihood

(GEL) and GMM estimators in this general framework. Taşpınar et al. (2019) considered var-

ious ways, robust to heteroscedasticity, to improve the finite-sample properties of the GMM

estimator in SARAR(1,1).1 In comparison with the QML, the IV/GMM approach enjoys not

only computational simplicity (in that it does not need to calculate the determinants of matrices

involving the spatial weight matrices, which is required for the QML) but also robustness against

departure from homoscedasticity.

The existing IV/GMM literature appears to rely on the so-called instrumental variables,

possibly together with some linear and quadratic moment conditions (associated with the error

term), to estimate SARAR models. Different choices of IV and moment conditions can result

in different estimation methods with different numerical optimization procedures. They are
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also directly related to the complexity of the resulting asymptotic variance of the corresponding

estimator. This paper takes a different approach that does not rely on IV or moment conditions.

In particular, it estimates model parameters by matching the simple ordinary least squares (OLS)

estimator of the two spatial autoregressive coefficients (one in the outcome equation and the

other in the disturbance equation) with its approximate analytical expectation. This approach

is largely in line with the indirect inference (II) procedure of Gouriéroux et al. (1993) and Smith

(1993). However, the original II is simulation-based in the sense that the relevant expectation

is approximated by the average of simulated estimates and one needs to make distributional

assumptions on the pseudo error term in simulations. Kyriacou et al. (2017) studied the SAR(1)

model by working out the approximate expectation of the OLS estimator of the SAR coefficient

and then matching with the inconsistent OLS estimator to “solve” for the SAR parameter.

Nevertheless, their model does not include exogenous regressors and the disturbance term is

serially uncorrelated and homoscedastic. Recently, Kyriacou et al. (2019) and Bao et al. (2020)

have extended the SAR(1) to include exogenous regressors with possibly heteroscedastic errors.2

This paper considers a more general framework where disturbances are spatially correlated and

innovations of the error process are heteroscedastic. Just as an ARMA process relative to an AR

process in time series, a SARAR model, compared with a SAR specification, is able to describe

a richer spectrum of interactions and heterogeneity among cross-sectional units. However, the

presence of spatial correlation in the error term introduces nontrivial technical difficulty. First

of all, one cannot simply ignore the correlation in the error process to estimate the outcome

equation by following the approach of Kyriacou et al. (2019) or Bao et al. (2020) that is

robust to error heteroscedasticity. The binding function (pertaining to the SAR parameter in

the outcome equation) involves the SAR parameter in the error process, so one cannot solve

the binding function to estimate the SAR parameter in the outcome equation. Secondly, the

traditional Cochrane-Orcutt procedure that aims for dealing with error correlation does not

work, since the OLS estimator of the SAR parameter in the error process is not consistent even

if one knows the SAR parameter in the outcome equation. The novelty of this paper is to design

two binding functions, one for each of the SAR parameters such that both are expressed in terms

of the observable data. The first binding function related to the SAR parameter in the outcome

equation depends on the SAR parameter in the error process. The second binding function,

since it is built from a consistent residual vector, which in turn depends on the SAR parameter

in the error process, involves both SAR parameters. Given the observable sample data, the two
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resulting binding functions constitute a system of two equations in terms of the two unknown

SAR parameters.

Similar to the IV/GMM estimator, the II estimator proposed in this paper is computation-

ally simpler relative to the QML estimator and is robust to heteroscedasticity. In comparison

with the IV/GMM estimator, the II estimator possesses three salient features. Firstly, it is free

of the choice of IV or moment conditions. This may be relevant when one is unsure about the

choices of IV and moment conditions or when one is daunted by the complexity of the optimal

weight matrix, as it involves the error innovation variance matrix and this may produce some

undesirable consequences in the numerical optimization when the estimated variance matrix is

used in the weight matrix. Secondly, the II procedure may enjoy some degree of computational

advantage. It is based on a 2-dimensional numerical search since it solves for the two spatial

autoregressive parameters (λ and ρ, appearing in the outcome equation and the error process,

respectively) using two sample binding functions established from the simple OLS procedure.

Once the two spatial parameters are estimated consistently, the coefficient vector β associated

with exogenous regressors in the outcome equation can be easily estimated by the usual OLS

procedure. The GS2SLS of Kelejian and Prucha (1998, 2010) involves two steps that estimate

the spatial autoregressive parameters separately. In the first step, λ and β are estimated by

2SLS based on some IV. In the second step, ρ is estimated by GMM using some quadratic mo-

ment conditions. These moment conditions are designed by some careful choices of the relevant

matrices appearing in the quadratic forms in the error innovations. (And such careful choices

also deal with heteroscedasticity.) The GMM estimator in Lee and Liu (2010) and Jin and Lee

(2019) estimates λ, ρ, and β jointly by using some linear and quadratic moment conditions as-

sociated with the error innovations. The numerical search in GMM is over a (k+2)-dimensional

parameter space, where k is the dimension of β. The optimal weight matrix (in formulating the

quadratic form of the objective function in GMM and in the second step of GS2SLS) involves

the error innovation variance matrix and to make it feasible one typically needs to estimate it

based on some initial consistently estimated parameters. Thirdly, the II procedure estimates

jointly λ and ρ first and then β is estimated by the usual OLS plug-in procedure. So essentially,

it is also a two-step procedure. Recall that the GS2SLS of Kelejian and Prucha (1998, 2010)

estimates λ and β first by 2SLS and then ρ by GMM. Lee (2007) and Yang (2015) emphasized

that the spatial coefficients are the main source of bias in model estimation and the main cause

of difficulty in bias correction in SAR models. In fact, Monte Carlo experiments in this paper
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show that in the first step of GS2SLS, it can happen that both λ and (some elements of) β may

be estimated with relatively large magnitudes of biases. This happens because the first step of

GS2SLS totally ignores the degree of spatial correlation in the error term. The II procedure on

the other hand takes care of the two spatial coefficients jointly in one step.

The plan of this paper is as follows. Section 2 describes the model specification and the main

assumptions used in this paper. Section 3 discusses the estimation procedure. In particular, the

asymptotic behavior of the (inconsistent) OLS estimator is discussed and then the II estimation

procedure is described and its asymptotic properties are provided. Section 4 reports results from

Monte Carlo experiments. It shows that the II estimator performs better than the GS2SLS

estimator of Kelejian and Prucha (1998, 2010) and the GMM estimator of Jin and Lee (2019) in

finite samples when a sparse county contiguity matrix is used. It is found that the GS2SLS- and

GMM-based inference procedures can give rise to severe size distortions when the degree of spatial

correlation in the error process is high. In contrast, the II-based t-test delivers excellent finite-

sample size performance. When the spatial weight matrices are relatively dense, however, the

three estimators can perform poorly in small samples. Section 5 contains two empirical studies,

one on teenage pregnancy rates and the other on Airbnb listing prices. Section 6 concludes.

Technical details and additional simulation results are collected in the appendix.

Throughout, tr denotes matrix trace operator, Dg(an) denotes a diagonal matrix with the

vector an spanning the main diagonal, and Dg(An) is a diagonal matrix that collects the diag-

onals elements of the square matrix An. The subscript 0 is used to signify the true parameter

value.

MODEL SPECIFICATION

Consider the following SARAR(1,1) model

yn = Xnβ + λWnyn + un, un = ρMnun + vn, (1)

where yn is an n × 1 vector of observations on the dependent variable, Xn is an n × k matrix

of observations on k exogenous deterministic regressors with coefficient vector β, un is an n× 1

vector of regression disturbances, vn is an n × 1 vector of innovations, λ and ρ are the spatial

autoregressive coefficients, and Wn and Mn are n× n matrices of spatial weights.
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For the ease of presentation, let Sn(λ) = In−λWn, Rn(ρ) = In−ρMn, Gn(λ) = WnS
−1
n (λ),

Fn(ρ) = MnR
−1
n (ρ), andHn(ρ) = In−Rn(ρ)Xn(X

′
nR

′
n(ρ)Rn(ρ)Xn)

−1X ′
nR

′
n(ρ). When a ma-

trix is presented without its argument, it means that it is evaluated at the true parameter value.

That is, Sn = Sn(λ0), Rn = Rn(ρ0), Gn = Gn(λ0), F n = F n(ρ0), and Hn = Hn(ρ0). With

such a set of notation, the equilibrium solution of the process is yn = S−1
n Xnβ0 + S−1

n R−1
n vn.

Throughout, the following assumptions are made.

Assumption 1. (i) The row and column sums of W n and Mn are bounded uniformly in absolute

value. (ii) The diagonal elements of W n and Mn are all zero.

Assumption 2. (i) S−1
n and R−1

n exist. (ii) The row and column sums of S−1
n and R−1

n are

bounded uniformly in absolute value.

Assumption 3. For 1 ≤ i ≤ n, the innovation terms vi,n in vn = (v1,n, · · · , vn,n)′ are mutually

independent with E(vi,n) = 0, E(v2i,n) = σ2
i,n, and E(|vi,n|4+δ) < ∞ for some positive constant δ.

Assumption 4. (i) λ0 and ρ0 are contained in compact parameter spaces Λ and P, respectively.

(ii) For any admissible λ ∈ Λ and ρ ∈ P, the row and column sums of S−1
n (λ) and R−1

n (ρ) are

bounded uniformly in absolute value.

Assumption 5. (i) The elements of Xn are uniformly bounded. (ii) The limit

lim
n→∞

n−1(Xn,β
′
0X

′
nG

′
nR

′
nHnRnGnXnβ0)

′(Xn,β
′
0X

′
nG

′
nR

′
nHnRnGnXnβ0)

exists and is nonsingular.

Assumption 6. Let Σn = Dg(σ2
1,n, ..., σ

2
n,n). Then

Ξ =

 ξ1 ξ12

ξ12 ξ2


exists and is positive definite, where

ξ1 = lim
n→∞

n{tr[ΣnEnΣn(En +E′
n)] + β′

0X
′
nG

′
nR

′
nHnΣnHnRnGnXnβ0}

[tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0]2

,

ξ2 = lim
n→∞

ntr[ΣnLnΣn(Ln +L′
n)]

[tr(ΣnF
′
nF n)]2

,

ξ12 = lim
n→∞

ntr[ΣnEnΣn(Ln +L′
n)]

tr(ΣnF
′
nF n)[tr(ΣnR

−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0]

,
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in which En = HnRnGnR
−1
n −Dg(HnRnGnR

−1
n ) and Ln = F n −Dg(F n).

Assumption 1.(ii) is a normalization rule often assumed in the literature to exclude “self

influence.” Assumptions 1.(i), 2 and 4 limit the degree of spatial dependency and are originated

by Kelejian and Prucha (1998). Assumption 3 is the same as in Kelejian and Prucha (2010) and

Jin and Lee (2019), which allows for heteroscedasticity in the innovations. If one further assumes

that the innovations are i.i.d., then the QML can be used. In Kyriacou et al. (2017), there are

no exogenous regressors and the disturbances contain no SAR structure and are i.i.d. Their

Monte Carlo experiments showed that their II estimator is comparable to the QML estimator

while losing efficiency in some cases. One would expect that the II estimator introduced in this

paper may lose efficiency relative to the QML estimator if the innovations are i.i.d. Lee (2002)

emphasized that Assumption 5.(ii) is related to an identification condition for estimation in the

least squares and IV frameworks and it rules out possible multicollinearities among Xn and

GnXnβ0 for large n. Assumption 6 is related to the asymptotic variance of the II estimator.

ESTIMATION PROCEDURE

This section provides the main results. The OLS estimator is briefly discussed first and its

asymptotic distribution, when properly recentered, is presented. Since the recentering terms

involve the unknown model parameters as well as the variance matrix of the error vector, the

recentered OLS estimator is not usable in practice. The II estimator solves for the unknown

parameters by utilizing two binding functions that do not rely on the unknown variance matrix.

It is then shown that the II estimator is consistent and asymptotically normal.

The OLS Estimator

If the true value of ρ is known, the Cochrane-Orcutt-type transformation to (1) yields

Rnyn = RnXnβ + λRnWnyn + vn. (2)

The OLS estimator of λ0 for the transformed model (2), depending explicitly on the true value

ρ0, is given by

λ̂(ρ0) =
y′
nW

′
nR

′
nHnRnyn

y′
nW

′
nR

′
nHnRnWnyn

= λ0 +
y′
nW

′
nR

′
nHnvn

y′
nW

′
nR

′
nHnRnWnyn

. (3)
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The probability limit of the ratio y′
nW

′
nR

′
nHnvn/y

′
nW

′
nR

′
nHnRnWnyn is non-zero so the

OLS estimator of λ0, even if ρ0 is given, is not consistent. One cannot follow Kyriacou et

al. (2017) to seek a consistent estimator of λ0 by building a binding function that takes the

(approximate) expectation of the ratio as (3) depends on the unknown value ρ0, so is the resulting

binding function. One cannot solve for λ without knowing ρ.

The strategy in this paper is to build another binding function based on the OLS estimator

of ρ0 that is constructed from a consistent residual vector, namely,

ρ̂(λ0, ρ0) =
ũ′
nMnũn

ũ′
nM

′
nMnũn

= ρ0 +
ũ′
nMnṽn

ũ′
nM

′
nMnũn

, (4)

where ũn = ũn(λ0, ρ0) = R−1
n ṽn, ṽn = ṽn(λ0, ρ0) = HnRnSnyn = RnSnyn −RnXnβ̃n, and

β̃n = β̃n(λ0, ρ0) = (X ′
nR

′
nRnXn)

−1X ′
nR

′
nRnSnyn.

The OLS estimator, as defined in (3) and (4), is not feasible, since it involves the un-

known λ0 and ρ0. It is not consistent either. However, one can properly recenter λ̂(ρ0) and

ρ̂(λ0, ρ0) and the resulting recentered estimator, though still infeasible, achieves consistency. One

choice of the re-centering term for λ̂(ρ0) is cλ = E(y′
nW

′
nR

′
nHnvn)/y

′
nW

′
nR

′
nHnRnWnyn =

tr(ΣnHnRnGnR
−1
n )/y′

nW
′
nR

′
nHnRnWnyn.

3 One can show that
√
n(λ̂(ρ0)−λ0−cλ) is asymp-

totically equivalent to
√
n[y′

nW
′
nR

′
nHnRnyn−E(y′

nW
′
nR

′
nHnRnyn)]/E(y

′
nW

′
nR

′
nHnRnWnyn).

Substituting RnWnyn = RnGnXnβ0 + RnGnR
−1
n vn, one can see that the random parts of

y′
nW

′
nR

′
nHnRnyn and y′

nW
′
nR

′
nHnRnyn are linear and quadratic forms in the random vec-

tor vn. Then from Lemma ?? (in the appendix),
√
n(λ̂(ρ0) − λ0 − cλ) converges to a zero-

mean normal random variable. For ρ̂(λ0, ρ0), the re-centering term is not obvious. By using

ũ′
nMnṽn − u′

nMnvn = Op(1) and ũ′
nM

′
nMnũn − u′

nM
′
nMnun = Op(1) (see Lemma ??),

where u′
nMnvn = v′

nFnvn with E(v′
nFnvn) = tr(ΣnFn) and u′

nM
′
nMnun = v′

nF
′
nFnvn =

y′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn, the re-centering term for ρ̂n(λ0, ρ0) can can be chosen as cρ =

tr(ΣnFn)/y
′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn. Some algebra shows that

√
n(ρ̂n−ρ0− cρ) is asymp-

totically equivalent to
√
n[v′

nFnvn − tr(ΣnFn)]/tr(ΣnF
′
nFn), which converges to a zero-mean

normal random variable.

The correction terms (cλ = tr(ΣnHnRnGnR
−1
n )/y′

nW
′
nR

′
nHnRnWnyn for λ̂(ρ0) and cρ =

tr(ΣnFn)/y
′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn for ρ̂n(λ0, ρ0)) involve, as usual, the unknown param-

eters. Moreover, they contain the annoying Σn. Since tr(ΣnHnRnGnR
−1
n ) = tr(ΣnDn) =

E(v′
nDnvn), where Dn = Dg(HnRnGnR

−1
n ), one may wonder whether replacing E(v′

nDnvn)
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with ṽ′
nDnṽn = y′

nS
′
nR

′
nHnDnHnRnSnyn in the correction term for λ̂(ρ0) can yield a use-

ful asymptotic distribution result. (And similarly, replace tr(ΣnFn) in the correction term for

ρ̂n(λ0, ρ0) with ṽ′
nKnṽn = y′

nS
′
nR

′
nHnKnHnRnSnyn, where Kn = Dg(F n).) It turns out

the answer is positive.

Theorem 1. Under Assumptions 1–6, the OLS estimator (λ̂(ρ0), ρ̂(λ0, ρ0))
′, as defined in (3)

and (4), has the following asymptotic distribution:

√
n

 λ̂(ρ0)− λ0 − y′
nS

′
nR

′
nHnDnHnRnSnyn

y′
nW

′
nR

′
nHnRnWnyn

ρ̂(λ0, ρ0)− ρ0 − y′
nS

′
nR

′
nHnKnHnRnSnyn

y′
nS

′
nR

′
nHnF ′

nFnHnRnSnyn

 d→ N(0,Ξ). (5)

Now the recentering terms involve only the sample data and model parameters, but not

the nuisance matrix Σn. This makes it feasible to design the II estimator that corrects the

inconsistency of the original OLS estimator.

The II Estimator

The asymptotic distribution result (5) can be used to design an estimator of (λ0, ρ0)
′ in the spirit

of indirect inference by matching (λ̂(ρ0), ρ̂(λ0, ρ0))
′ with its (approximate) expectation. Recall

λ̂(ρ0) = y′
nW

′
nR

′
n(ρ0)Hn(ρ0)Rn(ρ0)yn/y

′
nW

′
nR

′
n(ρ0)Hn(ρ0)Rn(ρ0)Wnyn and from (5), λ̂(ρ0)

centers around

λ0 +
y′
nS

′
n(λ0)R

′
n(ρ0)Hn(ρ0)Dn(λ0, ρ0)Hn(ρ0)Rn(ρ0)Sn(λ0)yn

y′
nW

′
nR

′
n(ρ0)Hn(ρ0)Rn(ρ0)Wnyn

,

where the dependency of various matrices on (λ0, ρ0)
′ is explicitly expressed. So a binding

function for finding the true parameter value λ0 is

b1n(λ, ρ) =
y′
nW

′
nR

′
n(ρ)Hn(ρ)Rn(ρ)yn

y′
nW

′
nR

′
n(ρ)Hn(ρ)Rn(ρ)Wnyn

− y′
nS

′
n(λ)R

′
n(ρ)Hn(ρ)Dn(λ, ρ)Hn(ρ)Rn(ρ)Sn(λ)yn

y′
nW

′
nR

′
n(ρ)Hn(ρ)Rn(ρ)Wnyn

− λ.

Of course, b1n(λ, ρ) = 0 alone cannot solve for λ since it involves two unknowns. It has to be

combined with a second binding function pertaining to ρ, which follows similarly:

b2n(λ, ρ) =
y′
nS

′
n(λ)R

′
n(ρ)Hn(ρ)R

−1′
n (ρ)F n(ρ)Hn(ρ)Rn(ρ)Sn(λ)yn

y′
nS

′
n(λ)R

′
n(ρ)Hn(ρ)F

′
n(ρ)F n(ρ)Hn(ρ)Rn(ρ)Sn(λ)yn
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− y′
nS

′
n(λ)R

′
n(ρ)Hn(ρ)Kn(ρ)Hn(ρ)Rn(ρ)Sn(λ)yn

y′
nS

′
n(λ)R

′
n(ρ)Hn(ρ)F

′
n(ρ)F n(ρ)Hn(ρ)Rn(ρ)Sn(λ)yn

− ρ.

The II estimator (λ̂II , ρ̂II)
′ of (λ, ρ)′ is thus defined as the root of bn(λ, ρ) = (b1n(λ, ρ), b2n(λ, ρ))

′.

Assumption 7. For (λ, ρ)′ ∈ Λ×P, (i) Pr(limn→∞ bn(λ0, ρ0) = 0) = 1 and Pr(limn→∞ bn(λ, ρ) ̸=

0) = 1 for any (λ, ρ)′ ̸= (λ0, ρ0)
′, (ii) the Jacobian Bn(λ, ρ) of bn(λ, ρ) is nonsingular almost

surely, and (iii) Bn(λ0, ρ0)
a.s.→ B, where B is nonsingular.

Essentially, Assumption 7.(i) ensures the existence and uniqueness of the root of bn(λ, ρ),

at least in large samples.4 Assumptions 7.(ii) and 7.(iii) are needed to derive the asymptotic

distribution of the resulting II estimator.

Theorem 2. For model (1), under Assumptions 1–7, the II estimator (λ̂II , ρ̂II)
′ of (λ, ρ)′,

defined as the root of bn(λ, ρ), has the following asymptotic distribution,

√
n

 λ̂II − λ0

ρ̂II − ρ0

 d→ N(0,Γ), (6)

where Γ = B−1ΞB−1′ = ((γλ, γλρ)
′, (γλρ, γρ)

′)′.

Once (λ0, ρ0)
′ is estimated by (λ̂II , ρ̂II)

′, one can estimate β0 by

β̂II = (X ′
nR

′
n(ρ̂II)Rn(ρ̂II)Xn)

−1X ′
nR

′
n(ρ̂II)Rn(ρ̂II)Sn(λ̂II)yn. (7)

Given that λ̂II and ρ̂II are consistent, β̂II is necessarily consistent. Its asymptotic variance,

however, is different from the traditional OLS variance formula given the additional uncertainty

introduced by λ̂II and ρ̂II . The following theorem gives the joint asymptotic distribution of λ̂II ,

ρ̂II , and β̂II .

Theorem 3. For model (1), under Assumptions 1–7,

√
n


λ̂II − λ0

ρ̂II − ρ0

β̂II − β0

 d→ N(0,V ), (8)

where

V =

 Γ γ′

γ Γβ

 ,
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is assumed to exist and be positive definite, and

γ =
(
γβλ,γβρ

)
,

γβλ = lim
n→∞

{
nb

(−1)
11 (X ′

nR
′
nRnXn)

−1X ′
nR

′
nΣnHnRnGnXnβ0

tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0

− (X ′
nR

′
nRnXn)

−1X ′
nR

′
nRnGnXnβ0γλ},

γβρ = lim
n→∞

{
nb

(−1)
21 (X ′

nR
′
nRnXn)

−1X ′
nR

′
nΣnHnRnGnXnβ0

tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0

− (X ′
nR

′
nRnXn)

−1X ′
nR

′
nRnGnXnβ0γλρ},

Γβ = lim
n→∞

[n(X ′
nR

′
nRnXn)

−1X ′
nR

′
nΣnRnXn(X

′
nR

′
nRnXn)

−1

+ (X ′
nR

′
nRnXn)

−1X ′
nR

′
nRnGnXnβ0β

′
0X

′
nG

′
nR

′
nRnXn(X

′
nR

′
nRnXn)

−1γλ

− nb
(−1)
11 (X ′

nR
′
nRnXn)

−1X ′
nR

′
nΣnHnRnGnXnβ0β

′
0X

′
nG

′
nR

′
nRnXn(X

′
nR

′
nRnXn)

−1

tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0

− nb
(−1)
11 (X ′

nR
′
nRnXn)

−1X ′
nR

′
nRnGnXnβ0β

′
0X

′
nG

′
nR

′
nHnΣnRnXn(X

′
nR

′
nRnXn)

−1

tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0

]
,

in which b
(−1)
ij denotes the (i, j)-th element of B−1.

In practice, one can estimate the asymptotic variance matrix V by replacing all the unknowns

appearing in Γ, γ, and Γβ with their consistent estimates and the limits with the sample ana-

logues. Further, one may replace Σn with Σ̂n = Dg(v̂nv̂
′
n), where v̂n = ĤnR̂nŜnyn with

Ĥn = Hn(ρ̂II), R̂n = Rn(ρ̂II), and Ŝn = Sn(λ̂II).
5 So the estimated V may be denoted by

V̂ n = V̂ n(λ̂II , ρ̂II , β̂II ,yn,Xn).

SIMULATION RESULTS

In this section, Monte Carlo simulations are conducted to illustrate the finite-sample performance

of the proposed II estimator, in comparison with the GMM estimator of Jin and Lee (2019) and

the GS2SLS estimator of Kelejian and Prucha (2010).6 The spatial weight matrixW n is the row-

normalized county contiguity matrix used in Lin and Lee (2010) with n = 761 and Mn = W n.
7

The exogenous variables include a constant term and two independently distributed random

variables, one following a normal distribution with mean 3 and variance 1 and the other following

a uniform distribution on the interval [−2, 2]. In the experiment, β0 is fixed at (0.8, 0.2, 1.5)′

and λ0 is positive (varying from 0.9 to 0.1) in Table 1, where ρ0 takes on a wide range of values
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(positive, negative, and 0.)8 (The appendix also reports the results under negative λ0 (varying

from −0.9 to −0.1 ).) These configurations represent different degrees of spatial correlation in

the outcome variable and the error term. The innovation term v is simulated as a zero-mean

normal random variable with variance following a uniform distribution on the interval [0.5, 4.5].

Insert Table 1 here.

Table 1 reports the Monte Carlo bias and root mean squared error (RMSE) from 10,000

simulations, as well as empirical rejection probability (P ) of the t-test for testing the parameter

equal to its true value at 5% for each parameter across the three estimation methods. Four

striking observations can be made: (i) The proposed II estimator is almost unbiased in all cases.

The GMM estimator is also almost unbiased in all cases (and on some occasions slightly better

than the II estimator), but the GS2SLS procedure delivers substantial biases in estimating λ,

ρ, and β1 (the parameter associated with the constant term) under high degree of positive

spatial correlation in the disturbance term (ρ0 = 0.9), regardless of the value of λ0. (ii) The

II estimator achieves the smallest RMSE across the three estimators in the majority of all the

cases considered. Under high degree of positive spatial correlation in the disturbance term, the

GS2SLS method gives much larger RMSEs (relative to II and GMM) for estimating λ and ρ.

This may not be surprising given the substantial biases of the GS2SLS estimator. Also, with

ρ0 = 0.9, the GMM estimator delivers extremely large RMSEs for estimating β1 in spite of its

small biases. This indicates that in this case there is a huge degree of uncertainty associated with

the estimated intercept term from the GMM procedure. (iii) Under high degree of positive spatial

correlation in the disturbance term, the GMM- and GS2SLS-based t-tests display substantial

size distortions for testing λ and ρ and the GS2SLS-based t-test is also severely upward-sized for

testing β1. In contrast, the II-based t-test delivers very good finite-sample size performance in

all cases. (iv) When ρ0 is negatively large, the GMM-based t-test displays non-negligible upward

size distortions for testing β1 and β2.

The county contiguity matrix is sparse. One may wonder about the performance of the II

estimator under dense spatial weight matrices.9 Suppose now the elements of the normalized

weight matrices are of order O(h−1
n ) such that hn → ∞ and hn/n → 0 as n → ∞. This

corresponds to the scenario when the row and column sums of the (nonnormalized) weight

matrices might diverge to infinity, as long as the number of cross-sectional units goes to infinity

faster. For example, if the inverse distance measure is used in specifying the spatial weight
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matrix, Elhorst et. al. (2020) showed that this scenario happens when the inverse distance is

raised to a positive power. With this modification, one can show that

 √
n
(
λ̂(ρ0)− λ0 − y′

nS
′
nR

′
nHnDnHnRnSnyn

y′
nW

′
nR

′
nHnRnWnyn

)
√

n
hn

(
ρ̂(λ0, ρ0)− ρ0 − y′

nS
′
nR

′
nHnKnHnRnSnyn

y′
nS

′
nR

′
nHnF ′

nFnHnRnSnyn

)


d→ N

0,

 lim
n→∞

n{tr[ΣnEnΣn(En+E′
n)]+β′

0X
′
nG

′
nR

′
nHnΣnHnRnGnXnβ0}

[tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n )+β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0]2

0

0 lim
n→∞

n
hn

tr[ΣnLnΣn(Ln+L′
n)]

[tr(ΣnF ′
nFn)]2




and Theorems 2 and 3 need to be modified accordingly. While the recentered estimator of λ0 has

the typical convergence rate
√
n, the recentered estimator of ρ0 has a slower convergence rate√

n/hn. It can be shown that the resulting II estimator of ρ0 also has the slower convergence

rate of
√
n/hn and the II estimator of λ0 and β0 are

√
n-consistent. This implies that in finite

samples, one may expect poor performance of the II estimator of ρ0 under dense spatial weight

matrices.

Insert Table 2 here.

Table 2 reports results from 10,000 simulations under the circular weight matrices of Kelejian

and Prucha (1999), under which each spatial unit has J neighboring units with J/2 neighbors

“ahead” and J/2 neighbors “behind.” The exogenous covariates Xn (and the corresponding

parameter vector β0) and error innovations vn follow the same experimental design as before in

Table 1. The SARAR parameters (λ0, ρ0) are such that λ0 is fixed at 0.4 and ρ0 varies from 0.9

to 0.0. With a sample size of 200, the spatial weight matrices W n and Mn (= W n) display

different degrees of density (J = 10, 20, 100, corresponding to 5%, 10%, and 50%, respectively,

of the sample size). It can be seen that the GMM procedure produces relatively small biases in

estimating λ0 and ρ0, but the corresponding t-test displays substantial upward size distortions.

The GMM method has trouble in estimating the intercept term. For given W n and Mn, the

GS2SLS approach performs worse as the degree of spatial correlation in the error term goes up

and for a given θ0, it performs worse as W n and Mn become denser.10 The GS2SLS-based

t-test, similar to that based on GMM, can be severely upward sized in testing the SARAR

parameters, especially when W n and Mn are dense and/or ρ0 is large. The II procedure

estimates λ0 reasonably well across different J ’s, but can have serious trouble in estimating ρ0

as J goes up. This is consistent with the statement earlier that with dense weight matrices the
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II estimator (of ρ0) may have a much slower convergence rate. The t-test from the II procedure

can also be over-sized in small samples, though not as bad as the GMM and GS2SLS procedures.

Additional simulation results under other parameter configurations, different degrees of density

of the spatial weight matrices, and larger sample sizes are collected in the appendix.11

EMPIRICAL STUDIES

In this section, two empirical studies are provided. The first one is based on the exercise in Lin

and Lee (2010) on county teenage pregnancy rates in 10 Upper Great Plains states in the U.S.

and the second one is on the Airbnb listing prices in the city of Asheville, North Carolina in the

U.S.

Teenage Pregnancy Rates

Using the data “Health and Healthcare in the United States - County and Metro Area Data”

(Thomas (1999)) and the 1990 US Census (U.S. Census Bureau (1992)), Lin and Lee (2010)

estimated a SAR(1) model by GMM and found strong spatial correlation among county teenage

pregnancy rates. The SAR(1) model used in Lin and Lee (2010) is as follows:

Teeni = λ

n∑
j=1

wijTeenj + β1 + Eduiβ2 + Incoiβ3 + FHHiβ4 +Blackiβ5 + Phyiβ6 + ui, (9)

where Teeni is the teenage pregnancy rate, wij is the entry from W n (the row-normalized county

contiguity matrix), Edui is the education service expenditure (divided by 100), Incoi is median

household income (divided by 1000), FHHi is percentage of female-headed households, Blacki

is proportion of black population, and Phyi is the number of physicians per 1000 population.12

As pointed out by Kelejian and Prucha (1998), it is important to test the presence of possible

spatial correlation in disturbances. The I2(1) of Liu and Prucha (2018) applied to Teen is

317.2698, yielding virtually a p-value of zero. This indicates strong cross-sectional dependence

in the dependent variable. Meanwhile, the I2
u(1) statistic (I2(1) applied to the SAR(1) residuals)

is 0.8011 with a p-value of 0.37, implying that the cross-sectional dependence in disturbances is

statistically insignificant. So the results are consistent with the SAR(1) specification used in Lin

and Lee (2010).
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Insert Table 3 here.

Suppose one still proceeds to estimate a SARAR(1,1) model (with Mn = W n), then one

would expect that the estimated spatial autoregressive coefficient in the disturbance should be

insignificant. Table 3 reports the estimated parameter values and corresponding t-statistics (ab-

solute values in parentheses) from the GMM, GS2SLS, and II procedures, which yield comparable

results. Consistent with the test statistics of Liu and Prucha (2018), the coefficient ρ is insignifi-

cant, while λ for the dependent variable is significant. The results support the findings in Hogan

and Kitagawa (1985), Jencks and Mayer (1990), Case and Katz (1991), Crane (1991), Evans et

al. (1992), and Lin and Lee (2010) regarding the important effect of social interaction on teenage

pregnancy. The estimated parameter values of control variables are similar to those reported

in Lin and Lee (2010): higher percentage of female-headed households and higher proportion of

black population are associated with higher teenage pregnancy rate and factors like education

expenditure, median household income and the number of physicians have the opposite effects.

Airbnb Listing Prices

The new business model of sharing economy has experienced rapid growth in recent years. In a

peer-to-peer fashion, individuals rent out underused resources to other individuals in the sharing

economy. Airbnb, usually described as a pioneer of the sharing economy, is an online platform

that connects individuals seeking to rent accommodation assets with individuals looking for

accommodations. The outburst of Airbnb has also attracted attentions from scholars and policy

makers. Gutiérrez et al. (2017) and Zervas et al. (2017) studied the impact of Airbnb on the

hotel industry. Lee (2016), Barron et al. (2018), and Horn and Merante (2017) investigated how

Airbnb affects the housing market. Fang et al. (2016) explored the effect of Airbnb on tourism

industry employment.

It is wildly acknowledged that price is one of the most critical factors in the long-term

success of the accommodation sector (Hung et al. 2010). Many studies have explored the price

determinants of Airbnb’s shared accommodations. For example, by examining accommodation

offers from 33 cities listed on Airbnb, Wang and Nicolau (2017) found that there are 5 categories

of price determinants: host attributes, site and property attributes, amenities and services, rental

rules, and online review ratings. Beńıtez-Aurioles (2018a, 2018b) explained the role of distance

to city center and flexible cancellation policies in Airbnb’s listing prices. Ert et al. (2016) found
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that the level of host trustworthiness, mainly inferred from listing photos, affects listing prices

and the probability of being chosen. However, the aforementioned papers did not take into

consideration of spatial correlation in Airbnb’s listing prices. By using micro and aggregate data

of accommodation prices listed on Airbnb in the urban area of Madrid, López et al. (2020)

estimated a spatial seemingly unrelated regressions hedonic model and they found statistically

significant spatial correlation.

Insert Table 4 here.

In this paper, SARAR(1,1) is applied to Airbnb accommodation log prices in Asheville, the

largest city in Western North Carolina in the United States. There are in total 2247 accommo-

dation offers in the sample.13 The set of explanatory variables used are listed and defined in

Table 4, corresponding to the 5 categories of price determinants as in Wang and Nicolau (2017).

The weight matrix Wn is specified as row-normalized J-nearest neighbor weight matrix with

J = 20, 50, 100 and Mn = W n.

Table 5 shows the estimation results. The estimated parameter values and corresponding

t-statistics (in absolute values) are quite similar across three different estimation procedures.14

One can see that the coefficient λ is statistically significant and indicates stronger degree of

spatial correlation as the number of nearest neighbors goes up. This result is consistent with

López et al. (2020). In contrast to λ, while the II method indicates absence of spatial correlation

in the disturbance term, the GMM and GS2SLS methods report statistically significant ρ̂ when

J = 20. Given the more reliable performance of the II approach as indicated in the Monte Carlo

experiments (when W n and Mn are relatively sparse), it is more reasonable to believe that

there is little evidence of spatial correlation in the disturbance term. The parameter estimates

of coefficients of control variables are similar to those reported in Wang and Nicolau (2017) and

López et al. (2020). It is interesting to note that WiFi does not seem to affect prices, suggesting

that it is perhaps taken as granted in the sharing economy of Airbnb. The number of bathrooms

appears to be far more important than the number of bedrooms in property attributes, hinting

that bathroom privacy is valued much more in this market. While a higher review score gives

rise to a higher price tag, the number of reviews per month indicates the opposite, consistent

with the phenomenon that dissatisfied customers are more likely to leave reviews, usually very

critical, than happy guests.

Insert Table 5 here.
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CONCLUSIONS

This paper considers the II estimation method of SARAR(1,1) model by matching the OLS

estimator of the two spatial autoregressive coefficients (one in the outcome equation and the other

in the error process) with its approximate analytical expectation. It is shown that the resulting

II estimator is consistent, asymptotically normal, and robust to unknown heteroscedasticity.

Compared with the existing estimators that rely on IV and some moment conditions associated

with the error innovation term, the II estimator is found to perform better in a Monte Carlo

study that uses a sparse county contiguity weight matrix. Moreover, when the degree of spatial

correlation in the disturbance is high, inference procedures based on other methods can lead

to severe upward size distortions, but the II-based t-test delivers very good size performance.

However, when dense spatial weight matrices are employed, the estimators, including II, do not

perform so well in small samples. The new estimation procedure is applied to empirical studies on

teenage pregnancy rates and Airbnb accommodation prices, showing strong presence of spatial

correlation in the outcome variables but little evidence of correlation in disturbances for both

cases.

For future research, it is of interest to apply the II estimation method to higher-order SARAR

models as in Badinger and Egger (2011), Lee and Liu (2010) and Jin and Lee (2019), among

others. Again, the existing literature is largely rooted in the IV/GMM framework. The II

approach aims to rely on no IV or linear and quadratic moment conditions. Another possible

extension is to consider spatial panel models as in, among others, Lee and Yu (2010a, 2010b,

2010c), Baltagi et al. (2013), Elhorst (2014), and Catania and Billé (2017).

In this paper, the spatial weight matrices Mn and W n are taken as given. In the empirical

study of Airbnb accommodation prices, different weight matrices based on nearest neighbors

are used and no attempt was made to decide which weight matrix specification gives the best

performance. One may follow the approach of Kelejian and Piras (2011) to consider a test that

compares the prediction power from a null model and that from an alternative model, where in

its first step, one needs to estimate model parameters under each model specification. Another

approach may be to follow Lam and Souza’s (2020) LASSO strategy in selection of the weight

matrices, where the LASSO objective function is based on some distance measure constructed

using IV’s. It would be interesting to explore testing strategies using the II estimator in the

first step of Kelejian and Piras (2011) or the sample binding functions in the LASSO objective
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function of Lam and Souza (2020) and this is left for future research.

NOTES

1Two closely related papers are Liu and Yang (2015) and Breitung and Wigger (2018). They
re-defined the the score function of the the log-likelihood function such that the resulting moment
conditions are in fact robust to heteroscedasticity and distributional assumptions.

2The major difference between them is that the binding function in Kyriacou et al. (2019)
comes from approximating the expectation of the ratio that defines the OLS estimator of the
SAR parameter by the ratio of expectations, but in Bao et al. (2020) it is approximated such
that one takes only the expectation of the numerator. In the end, the SAR parameter appears in
both the numerator and denominator of the sample binding function in Kyriacou et al. (2019)
and it appears only in the numerator in Bao et al. (2020). The primitive condition on the
invertbility of the binding function in Kyriacou et al. (2019) then seems to be more restrictive.

3Kyriacou et al. (2017) used tr(ΣnHnRnGnR
−1
n )/E(y′

nW
′
nR

′
nHnRnWnyn) as the correc-

tion term for λ̂ for the SAR(1) model. This makes the asymptotic variance of the recentered λ̂
more complicated and it involves the kurtosis of the disturbance term under homoscedasticity.

4It is beyond the scope of this paper to list a set of primitive conditions to ensure the existence
and uniqueness of the root for any given sample. It will depend on the structure of the data
matrix, the characteristics of the weight matrices, and the parameter space. For a given sample,
however, one can always plot the binding function bn(λ, ρ) against (λ, ρ) to verify numerically
validity of this assumption.

5This follows similarly from Proposition 2 of Lin and Lee (2010).
6 While other choices are possible, in this paper, for the GMM estimator of Jin and Lee

(2019), the vector of moment conditions is (v′
n(θ)Qn,v

′
n(θ)P 1nvn(θ),v

′
n(θ)P 2nvn(θ))

′, where
Qn = (Xn,W nX

∗
n,W

2
nX

∗
n) (X

∗
n denotes the part of Xn without the constant term), P 1n =

W n, and P 2n = W 2
n −Dg(W 2

n); for the GS2SLS estimator of Kelejian and Prucha (2010), the
matrix of instrumental variables is Qn in the first step and (v′

n(θ)P 1nvn(θ),v
′
n(θ)P 2nvn(θ))

′

with P 1n = Mn and P 2n = M ′
nMn − Dg(M ′

nMn) is used as the moment conditions in the
second step. With such choices of the moment conditions, the GMM and GS2SLS estimators are
robust to heteroscedasticity. For both, the optimal two-step GMM estimation is used. The GEL
estimator in Jin and Lee (2019) is not considered in this paper, as it is much more computationally
intensive and also it was shown in Jin and Lee’s (2019) Monte Carlo studies that the improvement
over GMM was marginal.

7As a referee pointed out, under a SARAR(1,1) specification, Mn = W n puts at risk the
identification of the spatial autoregressive parameters when their true values are near zero. This
is not the case in the simulation set-up though.

8The authors thank a referee for suggesting including negative spatial autoregressive param-
eters in the simulations.

9The authors thank the editor-in-chief and an anonymous referee for suggesting this line of
discussion.

10It should be pointed out further that when J = 100, the GS2SLS fails (in terms of the
optimization routine in Matlab R2020a that is used in conducting numerical estimation in this
paper) more than 50% of the time, but the GMM and II rarely fail. Under J = 10 and 20, all the
three methods have virtually zero failing rate. Table 2 reports simulation results with successful
optimizations for each estimator.

11Observations can be made from these additional results are that as the weight matrices
become denser, all the three estimators perform less reliably in small samples and that the II es-
timator usually performs relatively better among the three, but it may become more problematic
in estimating ρ0 accurately when each spatial unit has more neighbors.

12The authors are grateful to Xu Lin for providing the teenage pregnancy rate data.
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13The sample is retrieved from a third-party website, http://insideairbnb.com/, which pro-
vides data collected from publicly available information at https://www.airbnb.com/. The sam-
ple contains 2247 accommodation offers in Asheville on March 21, 2020, including 1728 entire
homes/apartments and 519 private rooms. Since only 10 shared rooms were available in Asheville
on March 21, 2020, they are excluded from the sample.

14With the choice of P 1n = W n and P 2n = W 2
n − Dg(W 2

n) (see endnote 6), the (two-step
optimal) GMM fails numerically. Instead, four quadratic moment conditions are used for the
GMM estimator: P 1n = W n and P in = W i

n −Dg(W i
n), i = 2, · · · , 4.
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Table 1: GMM, GS2SLS, and II under County Contiguity Weight Matrices (n = 761) and Positive λ0

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

λ0 = 0.9 -0.010 0.052 10.9% 0.004 0.049 10.0% -0.003 0.035 7.4%
ρ0 = 0.6 0.000 0.097 8.3% -0.029 0.102 6.5% -0.008 0.074 5.0%

β10 = 0.8 0.208 1.155 10.4% -0.093 1.082 9.6% 0.071 0.790 6.8%
β20 = 0.2 0.001 0.055 5.4% 0.001 0.064 5.1% 0.001 0.055 5.2%
β30 = 1.5 -0.001 0.050 5.2% -0.009 0.054 5.3% 0.000 0.050 4.9%

λ0 = 0.9 -0.004 0.032 9.1% 0.002 0.032 6.4% -0.002 0.024 5.3%
ρ0 = 0.3 -0.003 0.094 7.3% -0.018 0.098 6.0% -0.007 0.080 5.3%

β10 = 0.8 0.080 0.716 8.4% -0.026 0.715 5.9% 0.048 0.536 4.7%
β20 = 0.2 0.000 0.059 5.9% -0.001 0.059 5.4% 0.000 0.058 5.1%
β30 = 1.5 0.000 0.052 5.4% -0.004 0.052 5.1% 0.000 0.052 5.1%

λ0 = 0.9 -0.002 0.024 10.0% 0.001 0.026 6.2% -0.001 0.019 5.8%
ρ0 = 0.0 -0.004 0.092 7.3% -0.014 0.098 6.7% -0.007 0.081 5.1%

β10 = 0.8 0.046 0.557 9.8% -0.010 0.567 5.5% 0.033 0.435 5.4%
β20 = 0.2 -0.001 0.060 6.7% -0.001 0.058 5.3% -0.001 0.058 5.4%
β30 = 1.5 0.001 0.054 5.7% -0.001 0.054 5.2% 0.001 0.053 5.5%

λ0 = 0.9 -0.001 0.020 9.7% 0.000 0.022 5.4% -0.001 0.016 5.2%
ρ0 = −0.3 -0.004 0.091 8.2% -0.010 0.098 8.2% -0.006 0.080 5.5%
β10 = 0.8 0.031 0.475 10.2% 0.003 0.482 5.2% 0.030 0.370 5.1%
β20 = 0.2 -0.001 0.063 7.9% -0.001 0.059 5.1% -0.001 0.057 5.3%
β30 = 1.5 0.000 0.056 6.0% -0.001 0.056 5.1% 0.000 0.054 5.3%

λ0 = 0.9 -0.001 0.018 11.0% 0.000 0.020 5.1% -0.001 0.014 5.4%
ρ0 = −0.6 -0.002 0.086 8.5% -0.005 0.094 9.0% -0.004 0.075 5.5%
β10 = 0.8 0.022 0.438 12.0% 0.007 0.446 5.1% 0.023 0.330 5.3%
β20 = 0.2 0.000 0.065 9.6% 0.000 0.062 5.0% 0.000 0.056 5.1%
β30 = 1.5 -0.001 0.059 6.7% -0.001 0.062 5.1% 0.000 0.054 5.2%

λ0 = 0.4 0.004 0.111 11.3% 0.163 0.253 34.0% 0.025 0.089 4.9%
ρ0 = 0.9 -0.010 0.055 13.1% -0.120 0.188 24.0% -0.018 0.044 3.4%

β10 = 0.8 0.006 6.439 8.5% -0.560 1.044 29.6% -0.094 0.671 7.3%
β20 = 0.2 0.001 0.054 5.2% -0.003 0.081 5.6% 0.001 0.054 5.0%
β30 = 1.5 -0.002 0.058 7.0% -0.027 0.076 6.4% 0.005 0.054 5.0%

λ0 = 0.4 -0.004 0.098 8.5% 0.016 0.111 8.7% 0.012 0.092 7.9%
ρ0 = 0.6 -0.009 0.089 8.6% -0.030 0.103 8.4% -0.024 0.089 7.0%

β10 = 0.8 0.020 0.436 7.5% -0.051 0.477 7.3% -0.041 0.409 6.6%
β20 = 0.2 -0.001 0.056 5.1% -0.001 0.064 5.0% 0.000 0.055 4.9%
β30 = 1.5 -0.003 0.053 5.4% -0.007 0.055 5.1% 0.001 0.052 4.9%

λ0 = 0.4 -0.004 0.067 6.8% 0.003 0.065 5.6% 0.002 0.064 5.9%
ρ0 = 0.0 -0.005 0.105 7.1% -0.015 0.105 5.3% -0.013 0.101 6.1%

β10 = 0.8 0.014 0.317 7.6% -0.009 0.294 5.7% -0.008 0.289 5.8%
β20 = 0.2 0.000 0.060 6.6% 0.000 0.058 5.2% 0.000 0.058 5.3%
β30 = 1.5 -0.002 0.052 5.1% -0.002 0.052 5.0% -0.002 0.052 5.2%

λ0 = 0.4 -0.003 0.054 7.2% -0.002 0.059 4.9% 0.000 0.050 5.6%
ρ0 = −0.6 -0.003 0.098 7.5% -0.005 0.105 6.4% -0.007 0.090 5.2%
β10 = 0.8 0.016 0.278 10.4% 0.011 0.265 4.9% 0.004 0.231 4.6%
β20 = 0.2 -0.001 0.065 9.6% -0.001 0.062 4.9% -0.001 0.056 5.4%
β30 = 1.5 0.000 0.057 5.8% -0.001 0.059 5.0% -0.002 0.056 5.1%

λ0 = 0.4 -0.005 0.049 5.8% -0.005 0.064 5.6% -0.005 0.044 3.7%
ρ0 = −0.9 0.004 0.080 2.9% 0.013 0.094 3.8% 0.011 0.067 1.7%
β10 = 0.8 0.019 0.269 11.9% 0.016 0.283 5.3% 0.012 0.212 4.3%
β20 = 0.2 0.000 0.067 12.0% 0.000 0.069 5.4% 0.001 0.054 5.3%
β30 = 1.5 0.002 0.060 6.0% -0.001 0.067 5.5% 0.003 0.058 5.0%

λ0 = 0.1 0.005 0.107 10.5% 0.189 0.291 30.7% 0.020 0.084 4.3%
ρ0 = 0.9 -0.007 0.042 11.8% -0.101 0.159 30.4% -0.012 0.032 3.6%

β10 = 0.8 0.004 3.760 7.0% -0.430 0.895 25.1% -0.037 0.621 6.5%
β20 = 0.2 0.000 0.054 5.4% -0.001 0.086 6.4% 0.000 0.054 5.2%
β30 = 1.5 0.000 0.061 7.9% -0.011 0.080 5.5% 0.006 0.055 5.0%

λ0 = 0.1 0.001 0.105 9.0% 0.022 0.122 8.0% 0.014 0.097 6.1%
ρ0 = 0.6 -0.011 0.084 8.8% -0.028 0.098 9.1% -0.020 0.080 6.2%

β10 = 0.8 -0.002 0.353 7.2% -0.048 0.392 6.0% -0.036 0.330 5.4%
β20 = 0.2 0.000 0.055 5.1% -0.001 0.064 4.6% 0.000 0.055 4.8%
β30 = 1.5 -0.002 0.056 6.0% -0.005 0.058 4.7% 0.002 0.055 5.1%

λ0 = 0.1 -0.003 0.081 6.5% 0.003 0.078 5.4% 0.004 0.078 6.0%
ρ0 = 0.0 -0.007 0.105 6.5% -0.014 0.103 4.7% -0.014 0.103 6.2%

β10 = 0.8 0.008 0.285 7.3% -0.006 0.262 5.4% -0.008 0.263 5.6%
β20 = 0.2 0.000 0.061 6.9% 0.000 0.058 5.3% 0.000 0.058 5.6%
β30 = 1.5 -0.001 0.051 5.1% -0.001 0.051 4.9% -0.001 0.051 4.9%

λ0 = 0.1 -0.003 0.068 6.7% -0.002 0.075 5.0% 0.003 0.065 5.8%
ρ0 = −0.6 -0.005 0.103 7.2% -0.005 0.109 5.8% -0.010 0.096 5.9%
β10 = 0.8 0.008 0.262 10.3% 0.006 0.247 5.1% -0.004 0.220 5.2%
β20 = 0.2 -0.001 0.065 10.1% 0.000 0.063 5.1% 0.000 0.056 5.4%
β30 = 1.5 0.000 0.055 5.6% -0.001 0.056 4.9% -0.002 0.055 5.3%

λ0 = 0.1 -0.008 0.063 5.1% -0.008 0.086 6.2% -0.008 0.058 3.7%
ρ0 = −0.9 0.005 0.085 2.9% 0.018 0.100 3.7% 0.014 0.072 1.9%
β10 = 0.8 0.020 0.255 11.6% 0.023 0.269 5.6% 0.016 0.201 4.4%
β20 = 0.2 -0.001 0.068 11.9% -0.001 0.069 5.5% 0.001 0.054 5.3%
β30 = 1.5 0.002 0.058 5.6% -0.002 0.063 5.3% 0.003 0.056 4.6%
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Table 2: GMM, GS2SLS, and II under Circular Weight Matrices (n = 200)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = 0.4 -0.021 0.266 15.0% 0.487 0.552 68.8% 0.177 0.268 21.7%
ρ0 = 0.9 -0.033 0.141 24.7% -0.401 0.496 44.1% -0.134 0.197 8.8%

β10 = 0.8 1.535 144.105 10.2% -1.136 1.456 52.8% -0.429 1.140 16.2%
β20 = 0.2 -0.001 0.108 6.0% -0.001 0.120 4.5% 0.003 0.110 4.6%
β30 = 1.5 -0.010 0.105 7.0% -0.010 0.108 5.1% 0.022 0.101 4.6%

λ0 = 0.4 -0.048 0.283 18.4% 0.207 0.341 32.8% 0.072 0.215 19.6%
ρ0 = 0.7 -0.030 0.208 21.3% -0.218 0.350 20.8% -0.126 0.222 10.1%

β10 = 0.8 -0.776 114.976 8.2% -0.478 0.927 21.0% -0.173 0.701 10.8%
β20 = 0.2 -0.002 0.111 6.9% -0.002 0.118 5.1% 0.000 0.112 5.4%
β30 = 1.5 -0.012 0.104 6.9% -0.014 0.103 4.5% 0.006 0.097 4.5%

λ0 = 0.4 -0.050 0.251 15.0% 0.038 0.195 12.5% 0.008 0.182 12.1%
ρ0 = 0.3 -0.017 0.278 15.9% -0.074 0.279 9.8% -0.101 0.257 9.4%

β10 = 0.8 1.321 66.086 8.5% -0.077 0.593 6.6% -0.007 0.573 7.2%
β20 = 0.2 -0.004 0.115 7.6% -0.004 0.115 5.8% -0.003 0.114 6.5%
β30 = 1.5 -0.011 0.102 6.8% -0.010 0.099 5.3% -0.005 0.098 5.2%

λ0 = 0.4 -0.042 0.224 12.7% 0.017 0.169 9.1% -0.005 0.165 10.5%
ρ0 = 0.1 -0.013 0.292 12.9% -0.042 0.284 8.2% -0.088 0.263 9.3%

β10 = 0.8 -0.145 54.165 8.2% -0.039 0.541 5.7% 0.012 0.540 6.6%
β20 = 0.2 0.000 0.117 7.4% -0.001 0.114 5.6% -0.001 0.115 6.3%
β30 = 1.5 -0.008 0.102 7.0% -0.007 0.099 5.5% -0.005 0.099 5.3%

λ0 = 0.4 -0.037 0.213 12.0% 0.015 0.156 8.7% -0.005 0.155 10.3%
ρ0 = 0.0 -0.013 0.299 11.9% -0.038 0.279 7.5% -0.083 0.268 9.2%

β10 = 0.8 -0.328 38.903 8.2% -0.030 0.511 5.7% 0.015 0.512 6.5%
β20 = 0.2 -0.002 0.115 6.5% -0.002 0.112 5.3% -0.002 0.113 5.8%
β30 = 1.5 -0.010 0.102 6.8% -0.008 0.099 5.5% -0.007 0.099 5.5%

J = 20 λ0 = 0.4 -0.027 0.348 16.9% 0.553 0.605 72.0% 0.234 0.319 34.1%
ρ0 = 0.9 -0.056 0.213 34.8% -0.504 0.622 42.8% -0.226 0.310 13.7%

β10 = 0.8 -6.175 323.532 12.0% -1.300 1.543 59.6% -0.547 1.155 25.1%
β20 = 0.2 0.002 0.111 6.2% 0.002 0.114 4.5% 0.004 0.111 4.6%
β30 = 1.5 -0.007 0.103 7.0% -0.001 0.102 5.2% 0.014 0.101 4.5%

λ0 = 0.4 -0.083 0.398 22.0% 0.341 0.478 42.6% 0.099 0.263 25.1%
ρ0 = 0.7 -0.042 0.307 30.3% -0.343 0.522 27.0% -0.218 0.341 12.4%

β10 = 0.8 -0.219 311.057 10.9% -0.794 1.200 32.4% -0.228 0.795 15.1%
β20 = 0.2 -0.002 0.111 6.4% -0.001 0.113 4.7% 0.000 0.111 4.9%
β30 = 1.5 -0.013 0.102 6.6% -0.007 0.099 4.4% 0.001 0.097 4.4%

λ0 = 0.4 -0.086 0.376 19.4% 0.101 0.290 16.9% 0.005 0.244 15.0%
ρ0 = 0.3 -0.021 0.409 21.7% -0.144 0.440 14.9% -0.185 0.375 10.8%

β10 = 0.8 -1.110 236.415 10.4% -0.230 0.776 10.4% -0.003 0.692 9.1%
β20 = 0.2 -0.003 0.115 7.0% -0.003 0.113 5.4% -0.002 0.114 5.9%
β30 = 1.5 -0.011 0.102 6.9% -0.007 0.099 4.9% -0.005 0.099 5.3%

λ0 = 0.4 -0.084 0.356 17.4% 0.051 0.249 11.2% -0.015 0.233 12.7%
ρ0 = 0.1 -0.005 0.436 18.6% -0.077 0.423 10.8% -0.169 0.384 10.3%

β10 = 0.8 0.749 204.528 9.5% -0.113 0.692 6.8% 0.040 0.667 7.7%
β20 = 0.2 -0.002 0.115 6.6% -0.001 0.113 5.2% -0.001 0.114 5.9%
β30 = 1.5 -0.008 0.103 7.2% -0.004 0.099 5.4% -0.004 0.099 5.6%

λ0 = 0.4 -0.078 0.336 16.0% 0.029 0.227 8.4% -0.022 0.230 11.5%
ρ0 = 0.0 -0.003 0.449 17.4% -0.044 0.409 8.8% -0.156 0.389 10.4%

β10 = 0.8 0.159 196.797 9.0% -0.064 0.638 5.4% 0.054 0.652 7.0%
β20 = 0.2 -0.002 0.115 7.2% -0.001 0.113 5.5% -0.002 0.114 6.1%
β30 = 1.5 -0.009 0.101 6.6% -0.004 0.098 5.5% -0.005 0.099 5.7%

J = 100 λ0 = 0.4 0.143 0.601 18.8% 0.760 1.072 43.7% 0.301 0.531 16.4%
ρ0 = 0.9 -0.109 0.491 50.1% -0.770 1.018 31.5% -1.078 1.216 24.0%

β10 = 0.8 10.883 606.612 13.9% -1.770 2.936 40.9% -0.709 1.624 28.9%
β20 = 0.2 -0.001 0.114 6.4% 0.000 0.115 5.6% -0.001 0.114 5.7%
β30 = 1.5 0.002 0.100 6.6% 0.009 0.099 5.5% 0.004 0.099 5.8%

λ0 = 0.4 0.044 0.641 22.9% 0.603 1.014 34.1% 0.193 0.510 14.4%
ρ0 = 0.7 -0.034 0.601 48.7% -0.638 0.939 25.0% -1.061 1.193 22.7%

β10 = 0.8 1.734 586.217 17.7% -1.423 2.454 32.0% -0.451 1.307 14.3%
β20 = 0.2 0.001 0.114 6.5% 0.001 0.113 5.8% 0.001 0.114 6.0%
β30 = 1.5 0.002 0.099 6.0% 0.010 0.099 5.7% 0.005 0.098 5.5%

λ0 = 0.4 -0.062 0.691 27.3% 0.366 0.974 18.1% 0.003 0.512 10.8%
ρ0 = 0.3 0.066 0.796 43.2% -0.260 0.755 22.3% -0.863 0.998 15.3%

β10 = 0.8 9.369 540.922 22.3% -0.862 2.304 16.4% -0.014 1.254 9.3%
β20 = 0.2 -0.001 0.114 6.5% 0.000 0.113 5.4% 0.000 0.114 5.3%
β30 = 1.5 -0.001 0.099 6.4% 0.007 0.099 5.4% 0.002 0.098 5.5%

λ0 = 0.4 -0.070 0.690 29.0% 0.229 0.926 12.3% -0.066 0.520 10.5%
ρ0 = 0.1 0.106 0.847 38.1% -0.023 0.686 23.8% -0.741 0.879 10.6%

β10 = 0.8 6.651 503.107 23.5% -0.526 2.228 11.2% 0.160 1.276 8.8%
β20 = 0.2 -0.002 0.116 7.1% -0.002 0.116 6.4% -0.002 0.115 6.0%
β30 = 1.5 -0.003 0.098 6.2% 0.004 0.097 4.9% -0.001 0.097 5.2%

λ0 = 0.4 -0.098 0.701 27.5% 0.120 0.969 9.3% -0.114 0.531 10.1%
ρ0 = 0.0 0.160 0.861 37.4% 0.114 0.687 25.3% -0.668 0.808 8.3%

β10 = 0.8 0.939 492.668 22.8% -0.280 2.337 8.1% 0.261 1.300 8.7%
β20 = 0.2 0.001 0.115 6.7% -0.002 0.115 5.9% 0.001 0.114 5.7%
β30 = 1.5 -0.004 0.098 6.2% 0.001 0.097 4.4% -0.002 0.098 5.2%
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Table 3: SARAR(1,1) Fitted to County Teenage Pregnancy Rates

λ ρ Constant Edu Inco FHH Black Phy

GMM 0.4792 -0.1156 7.6036 -0.0107 -0.2409 0.6608 0.1495 -0.1877
(7.5052) (1.0506) (5.5285) (2.4390) (7.0172) (7.4832) (3.1224) (1.1137)

GS2SLS 0.4201 -0.0947 7.893 -0.0103 -0.2368 0.7443 0.144 -0.3688
(5.6651) (0.7769) (5.6188) (2.3312) (6.5599) (7.2083) (2.6241) (2.0594)

II 0.4688 -0.1774 6.9261 -0.0115 -0.2122 0.7216 0.1443 -0.3908
(3.1151) (0.6863) (2.5613) (2.3572) (4.1099) (7.5515) (2.6486) (2.1516)

Table 4: Explanatory Variables of Airbnb Prices

Variable Mean Std Dev Definition

Superhost 0.7178 0.4501 Host is experiened (1) or not (0)
Host Count 10.3053 55.6603 Number of accommodation rentals listed by host

Entire Home 0.7690 0.4216 Entire home/apartment (1) or not (0)
Accommodates 4.0908 2.6398 Number of people that can be accommodated
Bedrooms 1.5928 1.2728 Number of bedrooms
Bathrooms 1.3605 0.7376 Number of bathrooms
Dist-Center 5.3845 4.0990 Distance to city center

Free Parking 0.9675 0.1773 Offer free parking (1) or not (0)
WiFi 0.9866 0.1148 Offer WiFi (1) or not (0)
TV 0.8247 0.3803 Offer TV (1) or not (0)
Breakfast 0.1397 0.3468 Offer breakfast (1) or not (0)

Instant Bookable 0.6306 0.4827 Offer instant booking (1) or not (0)
Min-Nights 4.2016 19.8402 Minimum number of nights

Reviews/month 3.0792 2.4404 Number of reviews per month
Review Score 97.6756 3.4261 Overall review scores
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Estimating a Spatial Autoregressive Model with

Autoregressive Disturbances Based on the

Indirect Inference Principle

Appendix A: Lemmas and Proofs

This appendix first collects several lemmas that are useful for deriving the main results. ⊙
denotes matrix Hadamard product operator and dg(An) is a column vector that collects in
order the diagonal elements of the square matrix An.

Lemma 1. Suppose {An} is a sequence of matrices with row and column sums that are bounded
uniformly in absolute value. Let {bn} be a sequence of constants with uniformly bounded elements
and supn−1

∑n
i=1 |bi,n|2+η < ∞ for some η > 0. For the sequence {vn} that satisfies Assumption

3, let Qn = b′nvn + v′
nAnvn. Then

Qn − E(Qn)√
Var(Qn)

d→ N(0, 1).

Proof. The proof follows closely Kelejian and Prucha (2001) and Lee (2002, 2004), with slight
modification to allow heterogeneity in {vi,n}. ■

Lemma 2. If {An} and {Bn} are sequences of matrices with row and column sums that are
bounded uniformly in absolute value, then {An + Bn} and {AnBn} are also are bounded uni-
formly in absolute value in row and column sums.

Proof. See Lee (2002, 2004). ■

Lemma 3. For the sequence {vn} with elements following Assumption 3, let An and Bn be
nonrandom, then

E(v′
nAnvn) = tr(ΣnAn),

E(vnu
′
nAnvn) = dg(Σ(3)

n ⊙An),

E(v′
nAnvnv

′
nBnvn) = tr(Σ(4)

n ⊙An ⊙Bn) + tr(ΣnAn)tr(ΣnBn)

+ tr[ΣnAnΣn(Bn +B′
n)],

where Σ
(3)
n = Dg(E(v31,n), ...,E(v

3
n,n)), and Σ

(4)
n = Dg(E(v41,n)− 3σ4

1,n, ...,E(v
4
n,n)− 3σ4

n,n).

Proof. See Appendix A.7 of Ullah (2004). ■

Lemma 4. Let β̃n = (X ′
nR

′
nRnXn)

−1X ′
nR

′
nRnSnyn, ṽn = RnSnyn −RnXnβ̃n, and ũn =

R−1
n ṽn. Then under Assumptions 1–3, 5, ũ′

nMnṽn − u′
nMnvn = Op(1), ũ′

nM
′
nMnũn −

u′
nM

′
nMnun = Op(1), ṽ

′
nDnṽn − v′

nDnvn = Op(1), and ṽ′
nLnṽn − v′

nLnvn = Op(1). Also,
[v′

nF
′
nFnvn − tr(ΣnF

′
nFn)]/tr(ΣnF

′
nFn) = Op(n

−1/2).

1



Proof. By substitution, one has ũ′
nMnṽn − u′

nMnvn = ũ′
nMnRnũn − u′

nMnRnun = (β̃n −
βn)

′X ′
nMnRnXn(β̃n − βn) − 2(β̃n − βn)X

′
nMnRnun. Note that X ′

nMnRnXn = O(n) and
Var(X ′

nMnRnun) = Var(X ′
nMnvn) = X ′

nMnΣnMnXn = Op(n) (by using Lemma 2). Then,

in view of (β̃n − β0) = Op(n
−1/2), one can immediately see that ũ′

nMnṽn −u′
nMnvn = Op(1).

Other proofs are similar. The result on [v′
nF

′
nFnvn−tr(ΣnF

′
nFn)]/tr(ΣnF

′
nFn) = [v′

nF
′
nFnvn−

E(v′
nF

′
nFnvn)]/E(v

′
nF

′
nFnvn) follows directly from Lemmas 2 and 3. ■

Lemma 5. Under Assumptions 1–3, 5, E(rn) = O(n), E(dn) = O(n), Var(rn) = O(n),
Var(dn) = O(n), [rn − E(rn)]/E(rn) = Op(n

−1/2), and [dn − E(dn)]/E(dn) = Op(n
−1/2),

where rn = v′
nHnRnGnR

−1
n vn+β′

0X
′
nG

′
nR

′
nHnvn and dn = v′

nR
−1′
n G′

nR
′
nHnRnGnR

−1
n vn+

2β′
0X

′
nG

′
nR

′
nHnRnGnR

−1
n vn + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0.

Proof. Lemma 3 gives E(rn) = tr(ΣnHnRnGnR
−1
n ). From Lemma 2, HnRnGnR

−1
n has row

and column sums bounded uniformly in absolute value and it follows that tr(ΣnHnRnGnR
−1
n ) =

O(n). Similarly, E(dn) = tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ) + β′

0X
′
nG

′
nR

′
nHnRnGnXnβ0 =

O(n). As for the variances, using Lemma 3, one has

Var(rn) = tr(Σ(4)
n ⊙HnRnGnR

−1
n ⊙HnRnGnR

−1
n )

+ tr[ΣnHnRnGnR
−1
n Σn(HnRnGnR

−1
n +R−1′

n G′
nR

′
nHn)]

+ β′
0X

′
nG

′
nR

′
nHnΣnHnRnGnXnβ0

+ 2β′
0X

′
nG

′
nR

′
nHndg(Σ

(3)
n ⊙HnRnGnR

−1
n )

and

Var(dn) = tr(Σ(4)
n ⊙R−1′

n G′
nR

′
nHnRnGnR

−1
n ⊙R−1′

n G′
nR

′
nHnRnGnR

−1
n )

+ 2tr(ΣnR
−1′
n G′

nR
′
nHnRnGnR

−1
n ΣnR

−1′
n G′

nR
′
nHnRnGnR

−1
n )

+ 4β′
0X

′
nG

′
nR

′
nHnRnGnR

−1
n ΣnR

−1′
n G′

nR
′
nHnRnGnXnβ0

+ 4β′
0X

′
nG

′
nR

′
nHnRnGnR

−1
n dg(Σ(3)

n ⊙R−1′
n G′

nR
′
nHnRnGnR

−1
n ).

From Lemma 2 again, one sees that both Var(rn) and Var(dn) are O(n). With these, it is obvious
that [rn − E(rn)]/E(rn) = Op(n

−1/2) and [dn − E(dn)]/E(dn) = Op(n
−1/2). ■

Proof of Theorem 1

With rn and dn defined as in Lemma 5, note that

√
n

(
λ̂n − λ0 −

y′
nS

′
nR

′
nH

′
nDnHnRnSnyn

y′
nW

′
nR

′
nHnRnWnyn

)
=

√
n

(
λ̂n − λ0 −

ṽ′
nDnṽn

y′
nW

′
nR

′
nHnRnWnyn

)
=

√
n

(
λ̂n − λ0 −

vnDnvn

y′
nW

′
nR

′
nHnRnWnyn

)
+ op(1)

=
√
n

(
rn − vnDnvn

dn

)
+ op(1)

=
√
n

(
rn − v′

nDnvn

E(dn)

)(
1 +

dn − E(dn)

E(dn)

)−1

+ op(1)

=
√
n

(
rn − v′

nDnvn

E(dn)

)
+ op(1)

=
√
n

√
Var(rn − v′

nDnvn)

E(dn)

rn − v′
nDnvn√

Var(rn − v′
nDnvn)

+ op(1),

2



where the second equality follows from ṽ′
nDnṽn − vnDnvn = Op(1) (see Lemma 4) and the

second last equality follows from [dn − E(dn)]/E(dn) = Op(n
−1/2) (see Lemma 5). Similarly,

√
n

(
ρ̂n − ρ0 −

y′
nS

′
nR

′
nHnKnHnRnSnyn

y′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn

)
=

√
n

(
ρ̂n − ρ0 −

ṽ′
nKnṽn

ũ′
nM

′
nMnũn

)
=

√
n

(
ṽ′
nF ṽn

ũ′
nM

′
nMnũn

− ṽ′
nKnṽn

ũ′
nM

′
nMnũn

)
=

√
n

(
ṽ′
nLnṽn

ũ′
nM

′
nMnũn

)
=

√
n

(
v′
nLnvn

v′
nF

′
nFnvn

)
+ op(1)

=
√
n

(
v′
nLnvn

tr(ΣnF ′
nFn)

)(
1 +

v′
nF

′Fvn − tr(ΣnF
′
nFn)

tr(ΣnF ′
nFn)

)−1

+ op(1)

=
√
n

v′
nLnvn

tr(ΣnF ′
nFn)

+ op(1)

=
√
n

√
Var(v′

nLnvn)

tr(ΣnF ′
nFn)

v′
nLnvn√

Var(v′
nLnvn)

+ op(1),

where the fourth last equality follows from ṽ′
nLnṽn = v′

nLnvn + Op(1) and ũ′
nM

′
nMnũn =

u′
nM

′
nMnun +Op(1) = v′

nF
′
nFnvn +Op(1) (see Lemma 4) and the second last equality follows

from [v′
nF

′
nFnvn − tr(ΣnF

′
nFn)]/tr(ΣnF

′
nFn) = Op(n

−1/2) (see Lemma 4). Applying Lemma

1 to the quadratic forms (rn in the expansion for λ̂n − λ0 and v′
nLnvn in the expansion for

ρ̂n−ρ0) and their linear combinations yields immediately the asymptotic distribution (5), where
ξ1 = limn→∞ nVar(rn − v′

nDnvn)/[E(dn)]
2, ξ2 = limn→∞ nVar(v′

nLnvn)/[tr(ΣnF
′
nFn)]

2, and
ξ12 = limn→∞ nCov(rn − v′

nDnvn,v
′
nLnvn)/tr(ΣnF

′
nF n)E(dn) with their expressions given in

Assumption 6. ■

Proof of Theorem 2

One can apply the extended delta method of multivariate case as in Phillips (2012) to derive the
asymptotic distribution result (6). For this purpose, the following condition is sufficient: for a
given δ > 0, if sn → ∞ and sn/

√
n → 0,

sup
||sn((λ,ρ)′−(λ0,ρ0)′))||<δ

∥Bn(B
−1
n (λ, ρ)−B−1

n )∥ a.s.→ 0,

where Bn = ((bn,11, bn,12)
′, (bn,21, bn,22)

′)′ is the Jacobian matrix associated with bn(λ, ρ), evalu-
ated at (λ0, ρ0). Since all matrix norms are equivalent, it is sufficient to consider ∥Bn(B

−1
n (λ, ρ)−

B−1
n )∥ where the norm is sub-multiplicative (say, ∥·∥2). Then

∥Bn(B
−1
n (λ, ρ)−B−1

n )∥ ≤ ∥Bn∥∥(B−1
n (λ, ρ)−B−1

n )∥
= ∥Bn∥∥B−1

n (λ, ρ)(I2 −Bn(λ, ρ)B
−1
n )∥

≤ ∥Bn∥∥B−1
n (λ, ρ)∥∥I2 −Bn(λ, ρ)B

−1
n )∥

= ∥Bn∥∥B−1
n (λ, ρ)∥∥(Bn −Bn(λ, ρ))B

−1
n ∥

≤ ∥Bn∥∥B−1
n (λ, ρ)∥∥Bn −Bn(λ, ρ)∥∥B−1

n ∥.

After some tedious algebra, the elements of the Jacobian matrix Bn are as follows:

bn,11 = (y′
nW

′
nR

′
nHnRnWnyn)

−1 · (2y′
nW

′
nR

′
nHnDnHnRnSnyn

3



− y′
nS

′
nR

′
nHnDn,λHnRnSnyn)− 1,

bn,12 = (y′
nW

′
nR

′
nHnRnWnyn)

−1 · (y′
nW

′
nR

′
nHn,ρRnyn

− y′
nW

′
nM

′
nHnRnyn − y′

nW
′
nR

′
nHnMnyn + 2y′

nS
′
nM

′
nHnDnHnRnSnyn

− 2y′
nS

′
nR

′
nHn,ρDnHnRnSnyn − y′

nS
′
nR

′
nHnDn,ρHnRnSnyn)

− (y′
nW

′
nR

′
nHnRnWnyn)

−2 · (y′
nW

′
nR

′
nHn,ρRnWnyn − 2y′

nW
′
nM

′
nHnRnWnyn)

· (y′
nW

′
nR

′
nHnRnyn − y′

nS
′
nR

′
nHnDnHnRnSnyn),

bn,21 = (y′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn)

−1 · (2y′
nW

′
nR

′
nHnKnHnRnSnyn

− y′
nW

′
nR

′
nHnR

−1′
n F nHnRnSnyn − y′

nS
′
nR

′
nHnR

−1′
n F nHnRnW nyn)

+ 2(y′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn)

−2 · y′
nW

′
nR

′
nHnF

′
nF nHnRnSnyn

· (y′
nS

′
nR

′
nHnR

−1′
n F nHnRnSnyn − y′

nS
′
nR

′
nHnKnHnRnSnyn),

bn,22 = (y′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn)

−1 · [y′
nS

′
nR

′
nHn,ρR

−1′
n F nHnRnSnyn

+ y′
nS

′
nR

′
nHnR

−1′
n F nHn,ρRnSnyn − y′

nS
′
nM

′
nHnR

−1′
n F nHnRnSnyn

− y′
nS

′
nR

′
nHnR

−1′
n F nHnMnSnyn + y′

nS
′
nR

′
nHnF

′
nR

−1′
n F nHnRnSnyn

+ y′
nS

′
nR

′
nHnR

−1′
n F 2

nHnRnSnyn + 2y′
nS

′
nM

′
nHnKnHnRnSnyn

− 2y′
nS

′
nR

′
nHn,ρKnHnRnSnyn − y′

nS
′
nR

′
nHnDg(F 2

n)HnRnSnyn]

− 2(y′
nS

′
nR

′
nHnF

′
nF nHnRnSnyn)

−2 · (y′
nS

′
nR

′
nHn,ρF

′
nF nHnRnSnyn

− y′
nS

′
nM

′
nHnF

′
nF nHnRnSnyn + y′

nS
′
nR

′
nHnF

′
nF

2
nHnRnSnyn)

· (y′
nS

′
nR

′
nHnR

−1′
n F nHnRnSnyn − y′

nS
′
nR

′
nHnKnHnRnSnyn)− 1,

where

Hn,ρ = MnXn(X
′
nR

′
nRnXn)

−1X ′
nR

′
n +RnXn(X

′
nR

′
nRnXn)

−1X ′
nM

′
n

−RnXn(X
′
nR

′
nRnXn)

−1X ′
n(M

′
nRn +R′

nMn)Xn(X
′
nR

′
nRnXn)

−1X ′
nR

′
n,

Dn,λ = Dg(HnRnG
2
nR

−1
n ),

Dn,ρ = Dg(Hn,ρRnGnR
−1
n −HnMnGnR

−1
n +HnRnGnR

−1
n F n).

By substituting yn = S−1
n Xnβ0+S−1

n R−1
n vn and applying Lemmas 1–3, one can see that all the

elements of Bn are bounded almost surely. (It also holds for Bn(λ, ρ) for λ ∈ Λ and ρ ∈ P given
Assumption 4.(ii).) This, together with Assumption 7.(ii), implies that ∥Bn∥, ∥B−1

n (λ, ρ)∥, and
∥B−1

n ∥ are all bounded almost surely. So it is sufficient to show

sup
||sn((λ,ρ)′−(λ0,ρ0)′))||<δ

∥(Bn(λ, ρ)−Bn)∥
a.s.→ 0.

Note that

∥(Bn(λ, ρ)−Bn)∥ ≤

[
sup

(λ∗,ρ∗)

∥B′
n(λ

∗, ρ∗)∥

]∥∥∥∥([ λ
ρ

]
−
[

λ0

ρ0

])∥∥∥∥
where (λ∗, ρ∗)′ lies between (λ, ρ)′ and (λ0, ρ0)

′ and B′
n(λ, ρ) denotes the matrix derivative of

Bn(λ, ρ) with respect to (λ, ρ)′. Applying again Lemmas 1–3, one can check that all the elements
of B′

n(λ, ρ) are bounded almost surely for λ ∈ Λ and ρ ∈ P. It then follows that

sup
||sn((λ,ρ)′−(λ0,ρ0)′))||<δ

∥(Bn(λ, ρ)−Bn)∥

≤ sup
||sn((λ,ρ)′−(λ0,ρ0)′))||<δ

[
sup

(λ∗,ρ∗)

∥B′
n(λ

∗, ρ∗)∥

]∥∥∥∥([ λ
ρ

]
−
[

λ0

ρ0

])∥∥∥∥
≤
∣∣∣∣ δsn

∣∣∣∣
[

sup
(λ∗,ρ∗)

∥B′
n(λ

∗, ρ∗)∥

]
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a.s.→ 0.

Then one can use this sufficient condition, together with (5), to derive the asymptotic distribution
(6) by following Phillips (2012). ■

Proof of Theorem 3

By substituting Rn(ρ̂II) = Rn− (ρ̂II −ρ0)Mn and Sn(λ̂II) = Sn− (λ̂II −λ0)W n into (7), one
has

X ′
nR

′
n(ρ̂II)Rn(ρ̂II)Xn = X ′

nR
′
nRnXn + (ρ̂II − ρ0)

2X ′
nM

′
nMnXn

− (ρ̂II − ρ0)X
′
n(R

′
nMn +M ′

nRn)Xn

and

X ′
nR

′
n(ρ̂II)Rn(ρ̂II)Sn(λ̂II)yn

= [X ′
nR

′
n − (ρ̂II − ρ0)X

′
nM

′
n][Rn − (ρ̂II − ρ0)Mn][Sn − (λ̂II − λ0)W n]yn

= X ′
nR

′
nRnSnyn − (λ̂II − λ0)X

′
nR

′
nRnW nyn − (ρ̂II − ρ0)X

′
nR

′
nMnSnyn

+ (λ̂II − λ0)(ρ̂II − ρ0)X
′
nR

′
nMnW nyn − (ρ̂II − ρ0)X

′
nM

′
nRnSnyn

+ (λ̂II − λ0)(ρ̂II − ρ0)X
′
nM

′
nRnW nyn + (ρ̂II − ρ0)

2X ′
nM

′
nMnSnyn

− (λ̂II − λ0)(ρ̂II − ρ0)
2X ′

nM
′
nMnW nyn.

Thus,

β̂II = [X ′
nR

′
nRnXn − (ρ̂II − ρ0)X

′
n(R

′
nMn +M ′

nRn)Xn]
−1

· [X ′
nR

′
nRnSnyn − (λ̂II − λ0)X

′
nR

′
nRnW nyn − (ρ̂II − ρ0)X

′
nR

′
nMnSnyn

− (ρ̂II − ρ0)X
′
nM

′
nRnSnyn] + op(n

−1/2)

= [(X ′
nR

′
nRnXn)

−1

+ (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
n(R

′
nMn +M ′

nRn)Xn(X
′
nR

′
nRnXn)

−1 + op(n
−3/2)]

· [X ′
nR

′
nRnSnyn − (λ̂II − λ0)X

′
nR

′
nRnW nyn − (ρ̂II − ρ0)X

′
nR

′
nMnSnyn

− (ρ̂II − ρ0)X
′
nM

′
nRnSnyn] + op(n

−1/2)

= (X ′
nR

′
nRnXn)

−1X ′
nR

′
nRnSnyn

+ (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
n(R

′
nMn +M ′

nRn)Xn(X
′
nR

′
nRnXn)

−1X ′
nR

′
nRnSnyn

− (λ̂II − λ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nRnW nyn

− (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nMnSnyn

− (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
nM

′
nRnSnyn + op(n

−1/2)

= β0 + (X ′
nR

′
nRnXn)

−1X ′
nR

′
nvn

+ (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
n(R

′
nMn +M ′

nRn)Xnβ0

+ (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
n(R

′
nMn +M ′

nRn)Xn(X
′
nR

′
nRnXn)

−1X ′
nR

′
nvn

− (λ̂II − λ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nRn(GnXnβ0 +GnR

−1
n vn)

− (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nMn(Xnβ0 +R−1

n vn)

− (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
nM

′
n(RnXnβ0 + vn) + op(n

−1/2)

= β0 + (X ′
nR

′
nRnXn)

−1X ′
nR

′
nvn

+ (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
n(R

′
nMn +M ′

nRn)Xnβ0

− (λ̂II − λ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nRnGnXnβ0
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− (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nMnXnβ0

− (ρ̂II − ρ0)(X
′
nR

′
nRnXn)

−1X ′
nM

′
nRnXnβ0 + op(n

−1/2)

= β0 + (X ′
nR

′
nRnXn)

−1X ′
nR

′
nvn

− (λ̂II − λ0)(X
′
nR

′
nRnXn)

−1X ′
nR

′
nRnGnXnβ0 + op(n

−1/2). (1)

From the definition of (λ̂II , ρ̂II)
′,

√
n

(
λ̂II − λ0

ρ̂II − ρ0

)
= B−1

n

√
n

(
v′
nEnvn+β′

0X
′
nG

′
nR

′
nHnvn

E(dn)
v′
nLnvn

tr(ΣnF ′
nFn)

)
+ op(1). (2)

In view of (1) and (2), one can write any linear combination of (λ̂II − λ0, ρ̂II − ρ0, (β̂II − β0)
′)′

as a form satisfying Qn in Lemma 1. It implies that
√
n(λ̂II − λ0, ρ̂II − ρ0, (β̂II − β0)

′)′ has a
joint asymptotic normal distribution, given by (8). ■

Appendix B: Additional Simulation Results

This appendix collects additional simulation results, all based on 10,000 simulations. Table
1.A1 supplements Table 1 when λ0 is negative. Tables 2.A1-A3 supplements Table 2 with other
parameter configurations and Tables 2.A4-A7 report results under a larger sample size 1, 000.
Tables 2.A8-A11 present results when n = 1, 000 and J is fixed (10, 20, and 100). In Table 2
and Tables 2.A1-A7, when n increases, the relative density of the spatial weight matrices stay
the same, whereas in Tables 2.A8-A.11, as n goes up, the weight matrices become less dense.
One can see that when the spatial weight matrices are dense, increasing the sample size does not
help much in improving the performance of the three estimators unless the sample size increases
much faster than J . For example, comparing Table 2 and Tables 2.A.4, one sees that when n
goes up from 200 to 1,000 (but the proportionality of J relative to n stays the same), all the
three estimators make little improvement, though it is still the case the II estimator performs
relatively better. On the other hand, by comparing Table 2 and Table 2.A.8, one sees that as
the sample size increases, given fixed J , the spatial weight matrices become less dense and the
three estimators in general perform better in terms of reduced bias and lower RMSE. One also
observes that when n = 1, 000, J = 100 (so that W n and Mn have 10% non-zero entries), and
ρ0 ≥ 0, there still exist non-negligible size distortions for testing λ0, ρ0, and β10 across the three
procedures. Table A.12 reports additional results when n = 5, 000, J = 100, and ρ0 ≥ 0. Now as
the weight matrices become less dense, the three procedures have improved size performances.
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Table 1.A1: GMM, GS2SLS, and II under County Contiguity Weight Matrices (n = 761, λ0 < 0 )

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

λ0 = −0.9 0.006 0.077 4.7% 0.017 0.106 5.9% 0.013 0.063 2.8%
ρ0 = 0.6 -0.009 0.062 7.1% -0.019 0.077 11.9% -0.014 0.055 4.3%

β10 = 0.8 -0.006 0.256 6.5% -0.019 0.299 5.9% -0.017 0.243 5.1%
β20 = 0.2 0.000 0.056 5.2% 0.000 0.066 4.9% 0.000 0.056 4.9%
β30 = 1.5 0.001 0.064 7.0% 0.001 0.074 5.2% 0.005 0.058 4.8%

λ0 = −0.9 0.007 0.078 4.4% 0.006 0.086 5.5% 0.015 0.066 2.8%
ρ0 = 0.3 -0.013 0.084 6.2% -0.014 0.088 7.0% -0.019 0.078 4.4%

β10 = 0.8 -0.010 0.229 6.5% -0.006 0.234 5.3% -0.022 0.215 4.9%
β20 = 0.2 0.001 0.059 6.1% 0.000 0.060 5.4% 0.001 0.058 5.3%
β30 = 1.5 0.001 0.058 5.8% 0.000 0.060 5.0% 0.005 0.055 4.7%

λ0 = −0.9 0.007 0.077 3.7% 0.002 0.080 4.9% 0.017 0.068 2.8%
ρ0 = 0.0 -0.013 0.096 5.1% -0.009 0.096 4.9% -0.022 0.092 4.2%

β10 = 0.8 -0.010 0.225 7.5% -0.003 0.213 5.2% -0.023 0.205 4.8%
β20 = 0.2 0.001 0.061 6.8% 0.000 0.058 5.2% 0.001 0.058 5.3%
β30 = 1.5 0.000 0.054 5.3% -0.001 0.055 5.2% 0.003 0.053 5.0%

λ0 = −0.9 0.005 0.077 3.0% -0.002 0.081 5.4% 0.018 0.071 2.9%
ρ0 = −0.3 -0.012 0.106 5.8% -0.005 0.107 4.7% -0.025 0.102 4.7%
β10 = 0.8 -0.005 0.222 8.5% 0.006 0.207 5.3% -0.020 0.196 4.7%
β20 = 0.2 0.000 0.063 7.9% -0.001 0.058 5.1% -0.001 0.057 5.2%
β30 = 1.5 -0.001 0.052 5.3% -0.002 0.052 5.1% 0.000 0.051 4.9%

λ0 = −0.9 0.005 0.078 2.8% -0.004 0.088 5.6% 0.021 0.074 3.0%
ρ0 = −0.6 -0.010 0.106 5.0% 0.002 0.112 4.1% -0.025 0.103 5.0%
β10 = 0.8 -0.005 0.225 9.8% 0.009 0.214 5.2% -0.021 0.190 4.7%
β20 = 0.2 0.000 0.065 9.6% -0.001 0.062 5.0% 0.000 0.056 5.1%
β30 = 1.5 -0.002 0.051 5.3% -0.004 0.051 5.2% -0.004 0.050 5.2%

λ0 = −0.4 0.001 0.094 10.8% 0.178 0.295 23.7% 0.011 0.076 4.7%
ρ0 = 0.9 -0.004 0.032 11.1% -0.072 0.115 42.9% -0.008 0.025 4.2%

β10 = 0.8 0.004 1.308 6.8% -0.269 0.765 16.4% -0.005 0.607 6.5%
β20 = 0.2 0.000 0.055 5.7% 0.002 0.094 6.8% 0.000 0.055 5.4%
β30 = 1.5 0.000 0.064 8.0% 0.008 0.100 7.6% 0.004 0.057 5.0%

λ0 = −0.4 0.004 0.103 10.1% 0.023 0.126 7.5% 0.011 0.088 5.3%
ρ0 = 0.6 -0.010 0.074 9.3% -0.024 0.089 10.8% -0.014 0.066 5.3%

β10 = 0.8 -0.008 0.295 7.5% -0.038 0.336 6.0% -0.021 0.275 5.1%
β20 = 0.2 0.001 0.056 5.5% 0.001 0.066 5.1% 0.001 0.056 5.4%
β30 = 1.5 0.000 0.061 7.0% -0.001 0.066 5.1% 0.003 0.058 5.1%

λ0 = −0.4 0.000 0.090 7.3% 0.004 0.086 5.3% 0.007 0.085 5.8%
ρ0 = 0.0 -0.009 0.104 6.7% -0.013 0.101 4.8% -0.015 0.102 6.1%

β10 = 0.8 0.003 0.250 7.8% -0.003 0.231 5.3% -0.008 0.231 5.5%
β20 = 0.2 -0.001 0.061 7.1% -0.001 0.058 5.1% -0.001 0.058 5.5%
β30 = 1.5 -0.001 0.052 5.1% 0.000 0.052 4.9% 0.000 0.052 4.9%

λ0 = −0.4 -0.001 0.085 6.7% -0.003 0.092 5.6% 0.005 0.083 6.0%
ρ0 = −0.6 -0.005 0.109 7.0% -0.001 0.114 5.2% -0.009 0.105 6.1%
β10 = 0.8 0.005 0.244 10.8% 0.009 0.228 5.4% -0.005 0.205 5.4%
β20 = 0.2 -0.001 0.065 9.7% -0.001 0.062 5.3% -0.001 0.056 5.5%
β30 = 1.5 -0.002 0.052 5.2% -0.002 0.053 5.2% -0.003 0.052 5.1%

λ0 = −0.4 -0.010 0.077 4.0% -0.012 0.103 6.1% -0.014 0.073 3.6%
ρ0 = −0.9 0.006 0.090 2.8% 0.022 0.104 3.2% 0.020 0.080 2.1%
β10 = 0.8 0.020 0.241 11.6% 0.024 0.248 5.1% 0.019 0.189 4.4%
β20 = 0.2 -0.002 0.067 12.3% -0.001 0.068 4.9% 0.000 0.054 5.0%
β30 = 1.5 0.000 0.054 5.0% -0.004 0.056 4.9% 0.003 0.054 4.8%

λ0 = −0.1 0.003 0.103 10.7% 0.190 0.301 27.6% 0.016 0.083 4.8%
ρ0 = 0.9 -0.005 0.037 11.6% -0.089 0.139 37.8% -0.010 0.029 3.9%

β10 = 0.8 0.003 2.805 7.1% -0.367 0.838 21.9% -0.032 0.622 6.6%
β20 = 0.2 -0.001 0.054 5.4% -0.001 0.089 6.6% 0.000 0.054 5.3%
β30 = 1.5 0.000 0.063 7.9% -0.002 0.086 5.7% 0.005 0.056 5.1%

λ0 = −0.1 0.002 0.107 9.8% 0.023 0.129 7.8% 0.014 0.096 6.0%
ρ0 = 0.6 -0.010 0.080 9.3% -0.026 0.095 10.4% -0.018 0.074 5.5%

β10 = 0.8 -0.001 0.326 7.3% -0.040 0.368 6.1% -0.026 0.302 5.0%
β20 = 0.2 0.000 0.056 5.3% 0.000 0.065 5.1% 0.000 0.056 4.9%
β30 = 1.5 0.000 0.059 6.8% -0.002 0.062 4.9% 0.003 0.057 5.4%

λ0 = −0.1 -0.002 0.087 7.0% 0.003 0.084 5.6% 0.005 0.084 6.4%
ρ0 = 0.0 -0.008 0.105 6.4% -0.013 0.103 4.6% -0.013 0.104 5.8%

β10 = 0.8 0.006 0.268 7.7% -0.003 0.247 5.2% -0.007 0.247 5.5%
β20 = 0.2 0.000 0.060 6.6% 0.000 0.057 5.1% 0.000 0.057 5.2%
β30 = 1.5 -0.002 0.052 5.3% -0.001 0.052 5.2% -0.001 0.052 5.2%

λ0 = −0.1 -0.003 0.077 6.3% -0.003 0.084 5.6% 0.003 0.075 5.6%
ρ0 = −0.6 -0.006 0.107 7.2% -0.004 0.114 5.6% -0.010 0.101 6.1%
β10 = 0.8 0.008 0.254 10.4% 0.009 0.239 5.4% -0.003 0.213 5.2%
β20 = 0.2 0.000 0.065 9.9% 0.000 0.062 5.1% 0.000 0.056 5.2%
β30 = 1.5 -0.003 0.054 5.3% -0.003 0.055 5.0% -0.004 0.054 5.1%

λ0 = −0.1 -0.009 0.070 4.4% -0.010 0.094 5.7% -0.011 0.066 3.7%
ρ0 = −0.9 0.005 0.086 2.7% 0.019 0.101 3.6% 0.016 0.075 2.0%
β10 = 0.8 0.019 0.251 11.5% 0.021 0.262 5.6% 0.017 0.198 4.6%
β20 = 0.2 0.000 0.068 12.4% 0.000 0.069 5.4% 0.001 0.054 5.2%
β30 = 1.5 0.001 0.056 5.0% -0.002 0.060 4.9% 0.003 0.055 4.6%
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Table 2.A1: GMM, GS2SLS, and II under Circular Weight Matrices (n = 200, λ0 = −0.4, ρ0 ≥ 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = −0.4 -0.010 0.275 8.2% 0.865 0.994 61.9% 0.147 0.352 5.8%
ρ0 = 0.9 -0.007 0.079 18.3% -0.468 0.639 39.5% -0.070 0.141 2.9%

β10 = 0.8 1.448 116.901 6.7% -0.894 1.246 44.1% -0.164 1.151 10.1%
β20 = 0.2 -0.001 0.108 5.9% 0.008 0.129 4.6% 0.003 0.110 5.1%
β30 = 1.5 -0.009 0.110 7.2% 0.060 0.139 9.2% 0.025 0.114 5.1%

λ0 = −0.4 -0.016 0.298 11.9% 0.307 0.505 28.2% 0.124 0.327 10.3%
ρ0 = 0.7 -0.013 0.163 16.8% -0.220 0.330 13.0% -0.113 0.217 6.2%

β10 = 0.8 -1.085 112.599 6.7% -0.315 0.717 15.2% -0.135 0.599 7.1%
β20 = 0.2 -0.001 0.112 7.1% 0.002 0.124 5.5% 0.003 0.113 5.8%
β30 = 1.5 -0.009 0.110 7.0% 0.012 0.118 5.1% 0.017 0.107 4.9%

λ0 = −0.4 -0.023 0.285 13.5% 0.066 0.294 11.3% 0.058 0.266 11.5%
ρ0 = 0.3 -0.016 0.262 16.3% -0.127 0.266 7.0% -0.119 0.273 9.7%

β10 = 0.8 1.950 66.564 7.6% -0.055 0.486 6.6% -0.048 0.467 6.9%
β20 = 0.2 -0.004 0.115 7.4% -0.003 0.116 6.1% -0.002 0.115 6.4%
β30 = 1.5 -0.011 0.106 7.1% -0.004 0.104 5.4% 0.000 0.101 5.3%

λ0 = −0.4 -0.026 0.275 13.6% 0.031 0.263 9.0% 0.036 0.249 11.5%
ρ0 = 0.1 -0.017 0.288 15.4% -0.092 0.270 7.0% -0.113 0.286 10.5%

β10 = 0.8 -0.980 56.210 8.3% -0.031 0.460 6.2% -0.035 0.452 7.2%
β20 = 0.2 -0.001 0.117 7.4% -0.001 0.115 5.9% -0.001 0.115 6.4%
β30 = 1.5 -0.010 0.104 6.8% -0.004 0.101 5.4% -0.003 0.100 5.2%

λ0 = −0.4 -0.023 0.266 13.4% 0.030 0.248 8.1% 0.033 0.232 10.5%
ρ0 = 0.0 -0.015 0.299 14.6% -0.081 0.271 6.7% -0.106 0.285 9.5%

β10 = 0.8 0.244 36.282 8.0% -0.026 0.440 5.8% -0.029 0.430 6.2%
β20 = 0.2 -0.002 0.114 6.4% -0.002 0.112 5.2% -0.002 0.113 5.8%
β30 = 1.5 -0.012 0.103 7.1% -0.006 0.100 5.5% -0.006 0.100 5.4%

J = 20 λ0 = −0.4 0.010 0.403 5.7% 1.068 1.172 74.7% 0.312 0.523 13.1%
ρ0 = 0.9 -0.028 0.165 29.1% -0.711 0.850 46.6% -0.170 0.272 5.0%

β10 = 0.8 -3.154 282.471 8.8% -1.090 1.337 60.1% -0.319 1.119 15.8%
β20 = 0.2 0.002 0.111 6.4% 0.008 0.119 5.3% 0.006 0.113 5.2%
β30 = 1.5 -0.006 0.106 7.0% 0.043 0.117 7.4% 0.025 0.107 4.9%

λ0 = −0.4 -0.014 0.422 8.8% 0.554 0.773 42.5% 0.233 0.457 17.2%
ρ0 = 0.7 -0.035 0.280 26.0% -0.440 0.593 21.8% -0.240 0.379 10.3%

β10 = 0.8 -2.309 291.061 7.9% -0.561 0.901 27.9% -0.235 0.669 11.3%
β20 = 0.2 -0.002 0.111 6.5% 0.002 0.116 5.1% 0.001 0.112 5.3%
β30 = 1.5 -0.009 0.104 6.6% 0.015 0.107 4.9% 0.012 0.101 4.9%

λ0 = −0.4 -0.041 0.394 9.2% 0.159 0.446 15.9% 0.105 0.356 15.0%
ρ0 = 0.3 -0.014 0.390 22.2% -0.217 0.437 11.1% -0.238 0.422 12.3%

β10 = 0.8 2.515 232.256 7.0% -0.155 0.590 8.9% -0.099 0.522 8.3%
β20 = 0.2 -0.003 0.115 6.8% -0.002 0.114 5.5% -0.002 0.114 5.7%
β30 = 1.5 -0.010 0.103 6.6% -0.001 0.101 5.1% 0.000 0.100 5.4%

λ0 = −0.4 -0.041 0.376 9.1% 0.084 0.388 10.5% 0.066 0.326 13.0%
ρ0 = 0.1 -0.009 0.425 20.2% -0.144 0.413 8.6% -0.223 0.423 11.5%

β10 = 0.8 3.432 193.001 7.1% -0.082 0.542 6.5% -0.063 0.498 7.5%
β20 = 0.2 -0.001 0.115 6.9% 0.000 0.114 5.7% -0.001 0.115 6.2%
β30 = 1.5 -0.007 0.102 6.5% -0.001 0.100 5.1% -0.001 0.099 5.2%

λ0 = −0.4 -0.043 0.364 8.8% 0.047 0.362 7.8% 0.046 0.307 11.3%
ρ0 = 0.0 -0.006 0.439 19.4% -0.103 0.393 7.1% -0.205 0.417 11.3%

β10 = 0.8 1.639 178.446 6.9% -0.044 0.514 5.3% -0.043 0.475 6.7%
β20 = 0.2 -0.002 0.115 7.0% -0.001 0.113 5.4% -0.001 0.114 6.1%
β30 = 1.5 -0.008 0.101 6.6% -0.002 0.100 5.6% -0.004 0.099 5.7%

J = 100 λ0 = −0.4 0.374 0.826 21.2% 1.066 1.504 41.2% 0.662 0.891 35.5%
ρ0 = 0.9 -0.165 0.577 63.8% -0.806 1.053 27.4% -1.248 1.377 30.6%

β10 = 0.8 11.659 579.236 13.3% -1.070 1.801 39.2% -0.672 1.222 38.0%
β20 = 0.2 -0.001 0.114 6.6% 0.001 0.114 5.5% 0.000 0.114 5.7%
β30 = 1.5 0.006 0.101 6.8% 0.014 0.100 5.2% 0.008 0.100 5.6%

λ0 = −0.4 0.262 0.792 20.1% 0.839 1.376 30.5% 0.469 0.763 25.1%
ρ0 = 0.7 -0.081 0.649 57.8% -0.611 0.924 25.4% -1.146 1.275 26.1%

β10 = 0.8 8.415 561.663 12.3% -0.848 1.467 26.4% -0.472 0.895 20.7%
β20 = 0.2 0.001 0.114 6.4% 0.001 0.114 5.7% 0.001 0.114 5.5%
β30 = 1.5 0.006 0.099 5.9% 0.015 0.101 5.7% 0.009 0.099 5.3%

λ0 = −0.4 0.115 0.737 17.4% 0.440 1.225 14.3% 0.204 0.593 12.3%
ρ0 = 0.3 0.083 0.777 48.7% -0.217 0.727 24.1% -0.912 1.032 18.1%

β10 = 0.8 -2.982 518.406 12.2% -0.441 1.284 11.5% -0.204 0.703 9.1%
β20 = 0.2 -0.001 0.115 6.5% -0.001 0.115 5.8% -0.001 0.114 5.4%
β30 = 1.5 0.002 0.099 6.3% 0.008 0.099 5.2% 0.003 0.098 5.1%

λ0 = −0.4 0.100 0.723 16.8% 0.220 1.187 8.6% 0.103 0.544 9.3%
ρ0 = 0.1 0.134 0.828 43.0% 0.047 0.671 27.7% -0.782 0.899 12.6%

β10 = 0.8 7.076 483.110 11.8% -0.224 1.268 7.6% -0.104 0.658 6.7%
β20 = 0.2 0.000 0.115 6.8% 0.001 0.114 5.7% 0.000 0.115 5.9%
β30 = 1.5 0.000 0.098 6.1% 0.005 0.099 5.0% 0.001 0.097 5.1%

λ0 = −0.4 0.077 0.714 16.2% 0.081 1.172 6.9% 0.061 0.524 8.3%
ρ0 = 0.0 0.187 0.839 41.2% 0.168 0.685 29.6% -0.715 0.829 10.0%

β10 = 0.8 -1.303 468.419 11.4% -0.085 1.252 6.1% -0.060 0.635 5.6%
β20 = 0.2 -0.001 0.115 6.8% 0.001 0.115 6.0% 0.000 0.114 5.6%
β30 = 1.5 -0.001 0.099 6.1% 0.002 0.099 4.9% -0.001 0.098 5.2%
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Table 2.A2: GMM, GS2SLS, and II under Circular Weight Matrices (n = 200, λ0 = 0.4, ρ0 < 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = 0.4 -0.025 0.106 4.0% -0.020 0.121 4.7% -0.209 0.434 3.3%
ρ0 = −0.9 0.052 0.200 2.6% 0.128 0.240 4.2% 0.278 0.602 2.0%
β10 = 0.8 0.057 0.412 5.7% 0.048 0.452 5.0% 0.487 1.090 4.1%
β20 = 0.2 0.000 0.112 6.3% 0.000 0.122 5.5% 0.000 0.112 4.7%
β30 = 1.5 0.002 0.106 6.2% 0.003 0.109 5.9% -0.005 0.122 5.1%

λ0 = 0.4 -0.013 0.118 6.0% -0.008 0.120 4.7% -0.109 0.312 3.4%
ρ0 = −0.7 -0.003 0.249 3.1% 0.055 0.241 3.6% 0.107 0.437 1.9%
β10 = 0.8 0.117 8.682 6.7% 0.016 0.452 5.5% 0.256 0.819 4.8%
β20 = 0.2 0.000 0.115 7.2% 0.000 0.121 6.2% 0.000 0.114 5.9%
β30 = 1.5 -0.001 0.103 6.1% 0.000 0.104 5.3% -0.006 0.109 4.4%

λ0 = 0.4 -0.024 0.168 9.0% 0.006 0.135 6.5% -0.014 0.160 8.0%
ρ0 = −0.3 -0.016 0.298 9.8% -0.015 0.268 5.9% -0.065 0.284 8.2%
β10 = 0.8 0.077 33.499 7.6% -0.006 0.474 5.4% 0.043 0.516 6.4%
β20 = 0.2 -0.003 0.117 7.8% -0.002 0.116 6.2% -0.003 0.115 6.9%
β30 = 1.5 -0.005 0.102 6.6% -0.005 0.100 5.6% -0.006 0.101 5.4%

λ0 = 0.4 -0.029 0.180 10.0% 0.005 0.143 7.1% -0.011 0.153 8.7%
ρ0 = −0.2 -0.016 0.300 10.4% -0.017 0.279 6.9% -0.076 0.279 8.8%
β10 = 0.8 0.185 30.476 8.0% -0.010 0.489 5.3% 0.029 0.509 6.3%
β20 = 0.2 -0.001 0.117 7.6% -0.001 0.115 5.8% -0.001 0.115 6.5%
β30 = 1.5 -0.005 0.102 6.7% -0.004 0.100 5.4% -0.005 0.100 5.5%

λ0 = 0.4 -0.032 0.197 11.1% 0.012 0.147 8.0% -0.004 0.153 9.8%
ρ0 = −0.1 -0.013 0.300 10.6% -0.030 0.275 6.8% -0.084 0.276 8.8%
β10 = 0.8 0.186 38.113 7.8% -0.025 0.494 5.6% 0.012 0.504 6.6%
β20 = 0.2 -0.002 0.115 6.7% -0.002 0.113 5.4% -0.001 0.113 6.0%
β30 = 1.5 -0.009 0.102 6.9% -0.007 0.099 5.7% -0.008 0.100 5.6%

J = 20 λ0 = 0.4 -0.051 0.201 5.1% -0.011 0.168 4.1% -0.230 0.444 3.1%
ρ0 = −0.9 0.128 0.349 5.0% 0.164 0.344 4.3% 0.265 0.588 2.7%
β10 = 0.8 -0.363 83.794 5.5% 0.021 0.522 4.5% 0.533 1.105 3.6%
β20 = 0.2 0.001 0.115 6.5% 0.002 0.117 5.5% 0.002 0.113 4.7%
β30 = 1.5 0.000 0.105 6.8% -0.001 0.105 5.8% 0.004 0.110 5.3%

λ0 = 0.4 -0.050 0.231 7.7% -0.006 0.180 5.4% -0.143 0.347 3.7%
ρ0 = −0.7 0.061 0.388 5.4% 0.087 0.362 4.4% 0.083 0.458 2.2%
β10 = 0.8 -0.312 104.780 6.4% 0.014 0.545 4.9% 0.333 0.896 4.3%
β20 = 0.2 -0.001 0.115 6.9% 0.000 0.115 5.6% 0.000 0.113 5.7%
β30 = 1.5 -0.004 0.101 6.4% -0.004 0.101 5.3% -0.001 0.103 5.0%

λ0 = 0.4 -0.062 0.293 11.9% 0.019 0.197 7.3% -0.046 0.243 8.0%
ρ0 = −0.3 0.010 0.450 8.9% -0.021 0.405 4.4% -0.113 0.399 5.1%
β10 = 0.8 0.225 144.841 8.0% -0.037 0.578 4.9% 0.117 0.678 5.9%
β20 = 0.2 -0.003 0.116 6.8% -0.002 0.115 5.7% -0.003 0.114 5.9%
β30 = 1.5 -0.007 0.101 6.4% -0.004 0.099 5.4% -0.004 0.100 5.5%

λ0 = 0.4 -0.068 0.316 14.7% 0.023 0.211 8.6% -0.034 0.234 9.4%
ρ0 = −0.2 0.004 0.456 13.8% -0.039 0.418 7.2% -0.140 0.400 8.2%
β10 = 0.8 -2.658 155.756 8.9% -0.050 0.610 5.7% 0.084 0.662 6.8%
β20 = 0.2 -0.002 0.115 6.9% -0.001 0.114 5.5% -0.001 0.114 6.0%
β30 = 1.5 -0.006 0.102 6.7% -0.003 0.099 5.4% -0.004 0.100 5.4%

λ0 = 0.4 -0.075 0.325 14.8% 0.031 0.218 9.5% -0.028 0.234 10.7%
ρ0 = −0.1 0.004 0.455 16.1% -0.056 0.425 9.1% -0.149 0.398 9.8%
β10 = 0.8 -0.297 183.371 8.8% -0.069 0.622 6.0% 0.068 0.660 7.0%
β20 = 0.2 -0.002 0.116 7.0% -0.001 0.114 5.6% -0.001 0.114 6.1%
β30 = 1.5 -0.009 0.102 6.9% -0.005 0.100 5.7% -0.006 0.100 5.9%

J = 100 λ0 = 0.4 -0.188 0.671 18.7% 0.039 0.810 5.0% -0.324 0.648 13.9%
ρ0 = −0.9 0.554 0.992 24.8% 0.448 0.799 13.3% 0.081 0.396 1.2%
β10 = 0.8 2.623 353.489 15.4% -0.085 1.926 4.5% 0.756 1.559 11.3%
β20 = 0.2 -0.002 0.115 6.6% -0.001 0.115 5.8% -0.001 0.114 5.3%
β30 = 1.5 -0.003 0.100 6.6% 0.000 0.099 5.7% -0.001 0.099 5.5%

λ0 = 0.4 -0.153 0.666 20.9% 0.092 0.802 6.5% -0.281 0.620 13.2%
ρ0 = −0.7 0.441 0.951 26.8% 0.284 0.736 13.3% -0.098 0.414 0.9%
β10 = 0.8 0.611 373.715 17.5% -0.219 1.908 5.7% 0.655 1.503 10.8%
β20 = 0.2 0.000 0.115 6.7% 0.001 0.114 5.7% 0.001 0.114 5.7%
β30 = 1.5 -0.001 0.099 6.0% 0.003 0.099 5.2% 0.001 0.098 4.8%

λ0 = 0.4 -0.131 0.692 24.2% 0.211 0.812 11.7% -0.180 0.562 11.2%
ρ0 = −0.3 0.273 0.912 33.4% -0.015 0.705 14.1% -0.439 0.610 2.6%
β10 = 0.8 0.894 447.475 20.2% -0.492 1.930 9.8% 0.415 1.367 8.9%
β20 = 0.2 -0.001 0.115 6.5% -0.001 0.114 5.4% 0.000 0.113 5.2%
β30 = 1.5 -0.002 0.099 6.3% 0.003 0.099 5.5% 0.001 0.098 5.3%

λ0 = 0.4 -0.116 0.693 25.7% 0.261 0.852 13.3% -0.155 0.552 11.1%
ρ0 = −0.2 0.228 0.900 34.4% -0.108 0.719 14.0% -0.515 0.677 4.2%
β10 = 0.8 1.917 457.908 21.2% -0.601 2.046 11.0% 0.366 1.349 9.3%
β20 = 0.2 -0.002 0.115 6.8% -0.002 0.115 5.9% -0.001 0.115 5.8%
β30 = 1.5 -0.003 0.098 6.2% 0.002 0.098 5.2% -0.001 0.097 5.2%

λ0 = 0.4 -0.117 0.696 25.6% 0.284 0.855 13.9% -0.132 0.546 11.2%
ρ0 = −0.1 0.209 0.883 36.7% -0.169 0.744 15.2% -0.591 0.743 6.3%
β10 = 0.8 0.697 480.756 21.3% -0.668 2.061 12.6% 0.305 1.327 9.3%
β20 = 0.2 0.000 0.115 6.9% 0.000 0.114 5.9% 0.000 0.114 5.7%
β30 = 1.5 -0.005 0.099 6.2% 0.001 0.098 5.2% -0.003 0.098 5.2%
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Table 2.A3: GMM, GS2SLS, and II under Circular Weight Matrices (n = 200, λ0 < 0, ρ0 = −0.4)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = −0.9 0.046 0.171 4.5% -0.002 0.247 5.6% 0.069 0.181 4.9%
ρ0 = −0.4 -0.055 0.269 5.9% -0.031 0.264 3.5% -0.129 0.275 6.1%
β10 = 0.8 -0.032 0.375 5.5% 0.007 0.400 5.4% -0.049 0.372 5.1%
β20 = 0.2 -0.001 0.116 6.9% -0.002 0.116 5.6% -0.001 0.114 6.2%
β30 = 1.5 -0.003 0.100 6.2% -0.006 0.100 5.6% -0.004 0.099 5.4%

λ0 = −0.7 -0.002 0.209 5.0% 0.000 0.238 5.4% 0.031 0.203 5.8%
ρ0 = −0.4 -0.019 0.291 9.0% -0.023 0.266 3.9% -0.099 0.283 7.2%
β10 = 0.8 0.003 0.396 6.7% 0.000 0.407 5.7% -0.025 0.388 5.9%
β20 = 0.2 0.000 0.116 7.2% 0.000 0.116 5.8% 0.000 0.114 6.4%
β30 = 1.5 -0.005 0.099 6.4% -0.004 0.099 5.7% -0.005 0.098 5.6%

λ0 = −0.3 -0.026 0.227 9.7% -0.001 0.213 5.6% 0.009 0.200 7.8%
ρ0 = −0.4 -0.006 0.310 11.4% -0.008 0.269 4.8% -0.085 0.286 8.3%
β10 = 0.8 0.280 25.189 7.1% 0.001 0.418 5.1% -0.008 0.406 5.7%
β20 = 0.2 0.000 0.114 7.1% 0.000 0.114 5.4% 0.000 0.112 6.2%
β30 = 1.5 -0.007 0.101 6.2% -0.004 0.099 5.3% -0.006 0.099 5.4%

λ0 = −0.2 -0.025 0.221 9.5% 0.000 0.202 5.5% 0.008 0.191 7.8%
ρ0 = −0.4 -0.010 0.311 11.4% -0.008 0.269 5.1% -0.086 0.286 8.7%
β10 = 0.8 0.036 38.752 7.4% 0.003 0.432 5.6% -0.004 0.416 6.3%
β20 = 0.2 -0.002 0.116 7.4% -0.001 0.117 6.0% -0.002 0.114 6.4%
β30 = 1.5 -0.006 0.101 6.5% -0.003 0.099 5.5% -0.005 0.099 5.5%

λ0 = −0.1 -0.026 0.218 9.6% 0.001 0.193 5.6% 0.006 0.184 7.6%
ρ0 = −0.4 -0.011 0.311 11.4% -0.007 0.270 5.1% -0.086 0.285 8.3%
β10 = 0.8 -0.093 12.998 7.7% 0.000 0.430 5.3% -0.005 0.417 6.2%
β20 = 0.2 -0.001 0.116 7.1% 0.000 0.116 5.9% -0.001 0.114 6.3%
β30 = 1.5 -0.006 0.102 6.8% -0.003 0.099 5.4% -0.005 0.099 5.6%

J = 20 λ0 = −0.9 0.080 0.230 4.7% 0.013 0.379 6.0% 0.097 0.227 4.3%
ρ0 = −0.4 -0.052 0.381 4.1% -0.031 0.385 5.1% -0.222 0.374 3.0%
β10 = 0.8 -0.077 60.727 4.6% -0.010 0.450 5.4% -0.073 0.386 4.2%
β20 = 0.2 0.001 0.116 6.9% 0.000 0.114 5.3% 0.001 0.114 5.7%
β30 = 1.5 0.002 0.100 6.1% -0.002 0.099 5.2% 0.001 0.098 5.2%

λ0 = −0.7 0.009 0.268 5.1% 0.019 0.360 5.7% 0.040 0.248 4.3%
ρ0 = −0.4 -0.012 0.403 6.6% -0.025 0.396 5.8% -0.185 0.373 3.1%
β10 = 0.8 0.380 76.503 4.8% -0.012 0.460 5.0% -0.029 0.403 4.5%
β20 = 0.2 -0.001 0.115 6.9% -0.001 0.115 5.5% -0.001 0.113 5.9%
β30 = 1.5 0.000 0.099 6.0% -0.001 0.099 5.3% 0.001 0.098 5.2%

λ0 = −0.3 -0.053 0.330 7.1% 0.013 0.317 5.9% -0.008 0.269 6.6%
ρ0 = −0.4 0.029 0.448 11.5% -0.006 0.398 5.5% -0.148 0.380 3.4%
β10 = 0.8 -0.190 101.158 6.3% -0.007 0.488 5.0% 0.015 0.455 5.5%
β20 = 0.2 -0.003 0.116 7.1% -0.003 0.115 6.0% -0.002 0.114 6.4%
β30 = 1.5 -0.008 0.101 6.7% -0.004 0.099 5.7% -0.004 0.099 5.7%

λ0 = −0.2 -0.059 0.335 10.2% 0.016 0.303 6.6% -0.017 0.268 7.3%
ρ0 = −0.4 0.022 0.452 10.9% -0.007 0.402 5.5% -0.149 0.382 3.7%
β10 = 0.8 0.795 116.361 7.2% -0.009 0.506 5.6% 0.029 0.475 6.0%
β20 = 0.2 -0.003 0.116 6.9% -0.003 0.115 5.5% -0.003 0.115 6.1%
β30 = 1.5 -0.008 0.100 6.2% -0.004 0.098 5.2% -0.004 0.098 5.2%

λ0 = −0.1 -0.075 0.338 11.3% 0.004 0.288 6.4% -0.029 0.262 6.7%
ρ0 = −0.4 0.037 0.455 11.1% 0.002 0.399 5.6% -0.135 0.379 3.6%
β10 = 0.8 -0.338 130.452 7.1% -0.005 0.503 4.8% 0.037 0.485 5.6%
β20 = 0.2 0.000 0.116 7.1% 0.001 0.115 5.8% 0.000 0.115 6.4%
β30 = 1.5 -0.006 0.100 6.3% -0.003 0.098 5.1% -0.003 0.098 5.2%

J = 100 λ0 = −0.9 0.247 0.603 8.8% 0.161 1.244 7.3% 0.161 0.402 6.5%
ρ0 = −0.4 0.237 0.823 27.3% 0.171 0.732 20.2% -0.462 0.542 2.6%
β10 = 0.8 -8.396 331.362 5.6% -0.116 0.992 6.2% -0.117 0.460 3.7%
β20 = 0.2 0.000 0.115 6.7% -0.002 0.115 5.9% 0.000 0.114 5.7%
β30 = 1.5 0.004 0.100 6.1% 0.000 0.100 5.2% 0.002 0.098 5.2%

λ0 = −0.7 0.149 0.614 9.9% 0.202 1.183 7.8% 0.063 0.432 7.3%
ρ0 = −0.4 0.294 0.865 30.7% 0.176 0.730 19.4% -0.434 0.536 2.2%
β10 = 0.8 -0.231 366.654 6.6% -0.160 1.045 6.0% -0.050 0.499 4.3%
β20 = 0.2 0.000 0.115 6.3% -0.001 0.115 5.6% -0.001 0.114 5.5%
β30 = 1.5 0.002 0.100 5.9% 0.001 0.100 5.3% 0.001 0.099 5.3%

λ0 = −0.3 0.011 0.679 13.6% 0.239 1.089 8.4% -0.100 0.508 6.6%
ρ0 = −0.4 0.321 0.904 33.5% 0.155 0.735 18.7% -0.406 0.538 2.0%
β10 = 0.8 -3.462 401.156 10.0% -0.256 1.235 7.1% 0.108 0.653 4.6%
β20 = 0.2 -0.001 0.115 6.3% -0.001 0.114 5.7% -0.001 0.114 5.4%
β30 = 1.5 -0.002 0.099 6.2% -0.001 0.099 5.3% -0.001 0.099 5.4%

λ0 = −0.2 -0.040 0.686 14.0% 0.202 1.029 8.0% -0.132 0.527 7.2%
ρ0 = −0.4 0.343 0.917 34.7% 0.156 0.727 17.9% -0.398 0.538 1.7%
β10 = 0.8 1.789 413.325 10.4% -0.237 1.253 6.6% 0.154 0.709 4.8%
β20 = 0.2 0.000 0.115 6.8% 0.000 0.113 5.5% 0.000 0.113 5.4%
β30 = 1.5 -0.003 0.099 6.1% -0.001 0.099 5.4% -0.002 0.099 5.4%

λ0 = −0.1 -0.058 0.700 15.4% 0.208 0.997 8.4% -0.151 0.543 8.3%
ρ0 = −0.4 0.337 0.923 34.8% 0.127 0.723 17.3% -0.389 0.541 1.8%
β10 = 0.8 7.192 413.014 11.7% -0.258 1.338 6.9% 0.194 0.783 5.7%
β20 = 0.2 0.000 0.116 6.9% -0.002 0.115 6.1% 0.000 0.115 5.9%
β30 = 1.5 -0.002 0.100 6.8% 0.000 0.101 5.7% -0.001 0.100 5.7%
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Table 2.A4: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 = 0.4, ρ0 ≥ 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 50 λ0 = 0.4 -0.011 0.271 14.3% 0.490 0.558 68.3% 0.177 0.270 22.5%
ρ0 = 0.9 -0.041 0.142 20.5% -0.383 0.478 41.7% -0.130 0.189 8.7%

β10 = 0.8 -0.021 31.658 12.2% -1.141 1.328 65.9% -0.415 0.755 21.7%
β20 = 0.2 -0.001 0.050 5.3% -0.001 0.051 4.8% -0.000 0.050 4.3%
β30 = 1.5 -0.002 0.043 4.7% -0.002 0.044 4.0% 0.005 0.043 3.6%

λ0 = 0.4 -0.043 0.278 15.6% 0.209 0.353 32.0% 0.073 0.213 19.9%
ρ0 = 0.7 -0.039 0.201 17.7% -0.210 0.348 19.7% -0.128 0.220 9.3%

β10 = 0.8 -0.037 33.643 11.0% -0.485 0.846 29.1% -0.169 0.545 16.5%
β20 = 0.2 -0.001 0.050 5.3% -0.001 0.051 4.7% -0.001 0.050 4.7%
β30 = 1.5 -0.003 0.043 4.8% -0.004 0.043 4.0% 0.001 0.043 4.0%

λ0 = 0.4 -0.052 0.241 11.3% 0.033 0.193 11.5% 0.005 0.175 11.1%
ρ0 = 0.3 -0.016 0.261 12.7% -0.069 0.286 9.5% -0.103 0.250 8.2%

β10 = 0.8 0.258 23.443 9.2% -0.075 0.482 9.4% -0.009 0.443 8.6%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.003 0.043 4.5% -0.002 0.043 4.2% -0.001 0.043 4.4%

λ0 = 0.4 -0.045 0.213 9.4% 0.016 0.163 9.1% -0.008 0.158 9.4%
ρ0 = 0.1 -0.010 0.279 10.2% -0.051 0.287 7.5% -0.088 0.260 8.1%

β10 = 0.8 0.024 19.059 7.6% -0.036 0.413 7.0% 0.021 0.403 7.3%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.5% -0.002 0.043 4.2% -0.001 0.043 4.5%

λ0 = 0.4 -0.041 0.199 8.5% 0.011 0.150 7.9% -0.012 0.147 8.6%
ρ0 = 0 -0.009 0.285 9.2% -0.043 0.288 6.9% -0.080 0.262 8.0%

β10 = 0.8 0.003 12.653 6.8% -0.024 0.387 6.3% 0.031 0.380 6.8%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.5% -0.002 0.043 4.3% -0.001 0.043 4.5%

J = 100 λ0 = 0.4 -0.029 0.356 16.1% 0.556 0.612 71.3% 0.227 0.319 33.8%
ρ0 = 0.9 -0.060 0.214 31.8% -0.496 0.617 41.4% -0.219 0.304 13.3%

β10 = 0.8 3.435 115.738 12.8% -1.298 1.448 69.6% -0.530 0.843 32.1%
β20 = 0.2 -0.001 0.050 5.1% -0.001 0.051 4.7% -0.000 0.050 4.1%
β30 = 1.5 -0.002 0.043 4.6% -0.000 0.043 3.9% 0.003 0.043 3.5%

λ0 = 0.4 -0.082 0.397 19.1% 0.340 0.478 41.8% 0.096 0.261 24.4%
ρ0 = 0.7 -0.046 0.294 26.5% -0.338 0.527 26.6% -0.215 0.334 11.2%

β10 = 0.8 3.710 123.538 12.4% -0.791 1.128 39.4% -0.224 0.646 21.0%
β20 = 0.2 -0.001 0.050 5.1% -0.001 0.051 4.7% -0.001 0.050 4.4%
β30 = 1.5 -0.003 0.043 4.7% -0.001 0.043 3.8% 0.000 0.043 4.0%

λ0 = 0.4 -0.091 0.370 15.9% 0.091 0.291 16.4% -0.001 0.240 13.3%
ρ0 = 0.3 -0.017 0.392 18.8% -0.134 0.442 14.8% -0.188 0.371 9.9%

β10 = 0.8 2.018 105.694 12.4% -0.211 0.699 14.1% 0.004 0.586 11.4%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.0%
β30 = 1.5 -0.002 0.043 4.7% -0.002 0.043 4.1% -0.001 0.043 4.3%

λ0 = 0.4 -0.087 0.348 13.9% 0.039 0.244 10.0% -0.021 0.231 11.5%
ρ0 = 0.1 -0.003 0.421 16.0% -0.068 0.420 10.0% -0.171 0.384 9.8%

β10 = 0.8 1.499 89.263 11.0% -0.089 0.592 8.4% 0.051 0.567 9.6%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.1%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.1% -0.001 0.043 4.3%

λ0 = 0.4 -0.084 0.336 12.9% 0.021 0.228 7.8% -0.027 0.225 10.5%
ρ0 = 0 0.003 0.432 14.8% -0.039 0.414 8.5% -0.163 0.388 9.4%

β10 = 0.8 0.694 82.839 10.3% -0.047 0.555 6.6% 0.064 0.551 8.7%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.6% -0.001 0.042 4.0% -0.001 0.043 4.4%

J = 500 λ0 = 0.4 0.156 0.595 18.3% 0.775 1.077 43.6% 0.309 0.520 17.0%
ρ0 = 0.9 -0.104 0.482 48.2% -0.764 1.023 34.4% -1.099 1.233 24.3%

β10 = 0.8 4.637 252.411 16.2% -1.806 2.599 43.6% -0.727 1.278 23.3%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.4% -0.001 0.051 5.1%
β30 = 1.5 0.000 0.043 4.6% 0.001 0.043 4.2% 0.000 0.043 4.3%

λ0 = 0.4 0.060 0.638 22.8% 0.637 1.024 34.1% 0.199 0.503 15.5%
ρ0 = 0.7 -0.028 0.603 48.8% -0.665 0.974 26.2% -1.076 1.204 22.7%

β10 = 0.8 1.603 250.286 20.5% -1.490 2.394 33.8% -0.465 1.190 14.9%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.5% -0.001 0.051 5.1%
β30 = 1.5 -0.000 0.043 4.6% 0.001 0.043 4.4% 0.000 0.043 4.3%

λ0 = 0.4 -0.030 0.679 27.4% 0.392 0.986 18.8% 0.008 0.499 11.9%
ρ0 = 0.3 0.080 0.793 42.9% -0.314 0.784 20.5% -0.884 1.009 16.2%

β10 = 0.8 1.514 232.446 25.5% -0.916 2.286 18.0% -0.017 1.178 11.4%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.050 5.1% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.7% 0.002 0.043 4.5% -0.000 0.043 4.4%

λ0 = 0.4 -0.058 0.687 27.7% 0.245 0.905 12.1% -0.067 0.510 10.8%
ρ0 = 0.1 0.143 0.849 39.5% -0.062 0.707 22.8% -0.750 0.880 11.5%

β10 = 0.8 -0.130 220.392 25.8% -0.575 2.107 11.6% 0.157 1.202 10.8%
β20 = 0.2 -0.001 0.051 5.4% -0.000 0.051 5.1% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.7% 0.001 0.043 4.4% -0.000 0.043 4.2%

λ0 = 0.4 -0.077 0.693 27.2% 0.206 0.919 10.2% -0.103 0.517 10.7%
ρ0 = 0 0.187 0.871 38.4% 0.054 0.701 23.6% -0.677 0.811 8.7%

β10 = 0.8 -0.004 214.543 25.5% -0.483 2.140 10.3% 0.241 1.218 10.5%
β20 = 0.2 -0.001 0.051 5.4% -0.000 0.050 5.1% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.8% 0.001 0.043 4.6% -0.000 0.043 4.2%
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Table 2.A5: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 = −0.4, ρ0 ≥ 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 50 λ0 = −0.4 0.008 0.306 7.0% 0.922 1.045 63.7% 0.165 0.378 5.8%
ρ0 = 0.9 -0.014 0.082 13.5% -0.469 0.637 39.8% -0.069 0.134 2.6%

β10 = 0.8 -0.333 25.612 7.2% -0.930 1.088 61.3% -0.172 0.605 10.1%
β20 = 0.2 -0.000 0.050 5.6% 0.002 0.052 4.6% 0.001 0.050 5.3%
β30 = 1.5 -0.001 0.044 5.0% 0.013 0.047 5.3% 0.006 0.045 4.6%

λ0 = −0.4 0.001 0.321 9.2% 0.350 0.563 30.0% 0.138 0.350 11.3%
ρ0 = 0.7 -0.030 0.161 12.1% -0.235 0.353 12.8% -0.117 0.212 6.3%

β10 = 0.8 -0.502 28.624 6.8% -0.353 0.600 25.9% -0.141 0.413 9.6%
β20 = 0.2 -0.000 0.051 5.5% 0.000 0.051 5.1% 0.000 0.051 5.3%
β30 = 1.5 -0.001 0.044 5.0% 0.003 0.045 4.3% 0.004 0.044 4.6%

λ0 = −0.4 -0.021 0.295 8.3% 0.074 0.315 11.7% 0.057 0.278 12.1%
ρ0 = 0.3 -0.028 0.247 12.2% -0.129 0.271 6.8% -0.124 0.267 9.2%

β10 = 0.8 -0.261 21.705 7.0% -0.074 0.356 8.7% -0.057 0.323 8.7%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.002 0.044 5.0% -0.001 0.044 4.6% 0.000 0.043 4.8%

λ0 = −0.4 -0.027 0.277 7.6% 0.040 0.275 9.0% 0.036 0.253 11.2%
ρ0 = 0.1 -0.023 0.274 11.6% -0.101 0.277 6.1% -0.120 0.284 9.2%

β10 = 0.8 -0.280 17.745 6.4% -0.040 0.317 6.7% -0.036 0.298 7.8%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.5%
β30 = 1.5 -0.002 0.043 5.0% -0.001 0.043 4.6% -0.001 0.043 4.6%

λ0 = −0.4 -0.029 0.267 7.5% 0.028 0.259 7.9% 0.024 0.237 10.3%
ρ0 = 0 -0.020 0.284 11.1% -0.086 0.278 5.7% -0.111 0.284 9.1%

β10 = 0.8 -0.180 14.784 6.0% -0.028 0.303 6.0% -0.024 0.283 6.8%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.4% -0.000 0.051 5.5%
β30 = 1.5 -0.002 0.043 4.9% -0.001 0.043 4.6% -0.001 0.043 4.6%

J = 100 λ0 = −0.4 0.031 0.423 5.6% 1.097 1.196 75.6% 0.334 0.540 13.4%
ρ0 = 0.9 -0.037 0.172 24.8% -0.701 0.841 44.5% -0.169 0.267 5.0%

β10 = 0.8 -0.289 95.621 9.2% -1.102 1.225 73.7% -0.340 0.690 16.5%
β20 = 0.2 -0.000 0.051 5.8% 0.001 0.051 5.0% 0.001 0.051 4.9%
β30 = 1.5 -0.001 0.044 4.8% 0.009 0.045 5.1% 0.005 0.044 4.2%

λ0 = −0.4 0.009 0.429 8.6% 0.586 0.806 43.6% 0.250 0.466 18.2%
ρ0 = 0.7 -0.050 0.274 21.0% -0.439 0.597 20.7% -0.242 0.372 10.2%

β10 = 0.8 -1.914 116.485 8.3% -0.588 0.829 39.9% -0.252 0.511 15.7%
β20 = 0.2 -0.000 0.051 5.8% 0.001 0.051 5.2% 0.000 0.051 5.2%
β30 = 1.5 -0.001 0.044 4.8% 0.004 0.044 4.5% 0.003 0.043 4.3%

λ0 = −0.4 -0.024 0.394 9.2% 0.175 0.460 16.4% 0.111 0.358 15.9%
ρ0 = 0.3 -0.035 0.383 18.5% -0.222 0.447 11.1% -0.251 0.428 12.6%

β10 = 0.8 -0.743 99.351 7.7% -0.175 0.487 13.7% -0.111 0.395 12.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.4% -0.000 0.051 5.5%
β30 = 1.5 -0.001 0.043 4.8% 0.000 0.043 4.5% 0.000 0.043 4.5%

λ0 = −0.4 -0.032 0.372 8.8% 0.086 0.390 10.3% 0.067 0.325 13.7%
ρ0 = 0.1 -0.024 0.415 17.0% -0.143 0.412 7.7% -0.236 0.430 11.8%

β10 = 0.8 0.053 81.565 6.9% -0.086 0.420 8.0% -0.067 0.363 10.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.000 0.043 4.6% -0.000 0.043 4.6%

λ0 = −0.4 -0.035 0.362 8.5% 0.054 0.368 7.9% 0.047 0.307 11.7%
ρ0 = 0 -0.018 0.426 16.3% -0.106 0.401 6.5% -0.222 0.424 10.9%

β10 = 0.8 -0.326 74.845 6.7% -0.055 0.399 6.2% -0.047 0.344 8.6%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.6% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.000 0.043 4.5% -0.001 0.043 4.6%

J = 500 λ0 = −0.4 0.392 0.835 20.7% 1.118 1.549 42.0% 0.669 0.890 36.4%
ρ0 = 0.9 -0.151 0.564 64.2% -0.804 1.057 27.8% -1.256 1.385 29.7%

β10 = 0.8 6.607 239.891 13.0% -1.114 1.603 42.8% -0.670 0.962 39.3%
β20 = 0.2 0.000 0.051 5.7% -0.000 0.051 5.7% 0.000 0.051 5.4%
β30 = 1.5 0.001 0.043 4.9% 0.003 0.044 5.1% 0.002 0.043 4.7%

λ0 = −0.4 0.270 0.796 19.7% 0.889 1.430 31.4% 0.471 0.756 24.8%
ρ0 = 0.7 -0.057 0.639 59.8% -0.627 0.939 23.6% -1.155 1.280 25.5%

β10 = 0.8 2.694 239.377 14.0% -0.888 1.454 30.0% -0.472 0.782 23.9%
β20 = 0.2 0.000 0.051 5.7% 0.000 0.051 5.4% 0.000 0.051 5.3%
β30 = 1.5 0.001 0.043 4.9% 0.002 0.043 4.9% 0.001 0.043 4.6%

λ0 = −0.4 0.154 0.757 18.9% 0.480 1.258 15.6% 0.207 0.588 12.3%
ρ0 = 0.3 0.104 0.772 49.8% -0.238 0.745 24.3% -0.925 1.040 17.8%

β10 = 0.8 0.742 222.633 15.2% -0.480 1.274 15.0% -0.207 0.612 11.5%
β20 = 0.2 -0.000 0.051 5.7% 0.000 0.050 5.3% 0.000 0.051 5.3%
β30 = 1.5 0.000 0.043 4.8% 0.001 0.043 4.8% 0.001 0.043 4.6%

λ0 = −0.4 0.123 0.735 17.7% 0.268 1.173 9.3% 0.109 0.535 9.3%
ρ0 = 0.1 0.172 0.828 45.1% 0.007 0.678 26.0% -0.792 0.903 12.8%

β10 = 0.8 -0.645 210.096 14.5% -0.268 1.189 9.1% -0.109 0.560 8.5%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.050 5.2% 0.000 0.051 5.3%
β30 = 1.5 0.000 0.043 4.8% 0.001 0.044 5.2% 0.000 0.043 4.6%

λ0 = −0.4 0.107 0.722 16.7% 0.169 1.191 7.9% 0.064 0.515 8.2%
ρ0 = 0 0.212 0.849 43.0% 0.121 0.686 27.8% -0.719 0.831 9.9%

β10 = 0.8 -0.610 204.345 13.7% -0.167 1.209 7.3% -0.064 0.540 7.2%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.050 4.9% 0.000 0.051 5.3%
β30 = 1.5 0.000 0.043 4.8% 0.000 0.043 4.7% 0.000 0.043 4.6%
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Table 2.A6: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 = 0.4, ρ0 < 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 50 λ0 = 0.4 -0.023 0.092 2.9% -0.021 0.101 3.1% -0.113 0.284 2.5%
ρ0 = −0.9 0.071 0.217 2.8% 0.148 0.253 4.3% 0.136 0.409 1.8%
β10 = 0.8 0.056 0.264 3.8% 0.050 0.282 4.0% 0.264 0.681 3.6%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.2% -0.000 0.051 5.1%
β30 = 1.5 0.000 0.043 4.5% 0.001 0.043 4.7% 0.003 0.044 4.4%

λ0 = 0.4 -0.020 0.107 4.0% -0.011 0.104 3.4% -0.060 0.212 2.9%
ρ0 = −0.7 0.017 0.257 2.9% 0.063 0.245 3.4% 0.019 0.330 1.8%
β10 = 0.8 0.048 0.295 4.4% 0.028 0.288 3.9% 0.142 0.521 3.8%
β20 = 0.2 -0.001 0.051 5.5% -0.001 0.051 5.1% -0.001 0.051 5.2%
β30 = 1.5 -0.001 0.043 4.5% 0.000 0.043 4.5% 0.000 0.043 4.5%

λ0 = 0.4 -0.028 0.156 6.7% 0.003 0.124 6.2% -0.015 0.138 7.1%
ρ0 = −0.3 -0.008 0.294 7.1% -0.025 0.281 5.2% -0.077 0.285 7.5%
β10 = 0.8 -0.084 10.707 5.6% -0.005 0.330 5.1% 0.036 0.357 5.8%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.0% -0.001 0.051 5.3%
β30 = 1.5 -0.001 0.043 4.5% -0.001 0.043 4.3% -0.001 0.043 4.4%

λ0 = 0.4 -0.031 0.167 7.1% 0.006 0.132 6.8% -0.012 0.139 8.0%
ρ0 = −0.2 -0.009 0.292 7.5% -0.034 0.286 6.0% -0.082 0.281 7.7%
β10 = 0.8 0.057 10.971 5.9% -0.011 0.346 5.5% 0.030 0.362 6.3%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.0% -0.001 0.051 5.3%
β30 = 1.5 -0.001 0.043 4.5% -0.001 0.043 4.3% -0.001 0.043 4.4%

λ0 = 0.4 -0.036 0.184 7.8% 0.009 0.141 7.5% -0.011 0.145 8.5%
ρ0 = −0.1 -0.009 0.290 8.3% -0.040 0.289 6.6% -0.086 0.276 8.0%
β10 = 0.8 0.116 15.824 6.4% -0.018 0.365 6.0% 0.027 0.374 6.7%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.0% -0.001 0.051 5.3%
β30 = 1.5 -0.002 0.043 4.5% -0.001 0.043 4.3% -0.001 0.043 4.4%

J = 100 λ0 = 0.4 -0.053 0.192 3.9% -0.018 0.163 3.5% -0.176 0.372 2.9%
ρ0 = −0.9 0.142 0.356 4.7% 0.196 0.374 5.6% 0.189 0.493 2.2%
β10 = 0.8 0.137 31.221 3.9% 0.044 0.409 3.6% 0.411 0.883 3.1%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.2% -0.000 0.051 4.8%
β30 = 1.5 -0.000 0.043 4.6% 0.000 0.043 4.6% 0.001 0.043 4.1%

λ0 = 0.4 -0.054 0.224 5.4% -0.011 0.171 4.2% -0.119 0.304 3.1%
ρ0 = −0.7 0.077 0.394 5.6% 0.109 0.375 5.2% 0.041 0.415 1.9%
β10 = 0.8 -0.227 41.646 5.2% 0.027 0.426 4.1% 0.278 0.729 3.4%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.1% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.7% -0.001 0.043 4.3% 0.000 0.043 4.2%

λ0 = 0.4 -0.069 0.289 9.7% 0.008 0.196 6.4% -0.046 0.227 6.9%
ρ0 = −0.3 0.019 0.444 8.1% -0.010 0.412 5.1% -0.131 0.397 3.6%
β10 = 0.8 1.206 65.656 8.1% -0.016 0.484 5.7% 0.109 0.555 6.2%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.2% -0.001 0.043 4.3%

λ0 = 0.4 -0.075 0.305 10.7% 0.015 0.206 7.6% -0.038 0.225 8.3%
ρ0 = −0.2 0.013 0.444 10.3% -0.033 0.420 5.7% -0.148 0.400 6.5%
β10 = 0.8 0.995 69.403 8.8% -0.033 0.506 6.4% 0.090 0.550 7.1%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.1% -0.001 0.051 5.3%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.2% -0.001 0.043 4.4%

λ0 = 0.4 -0.079 0.318 11.7% 0.023 0.217 8.8% -0.031 0.224 9.8%
ρ0 = −0.1 0.007 0.439 13.1% -0.052 0.429 7.8% -0.159 0.396 8.4%
β10 = 0.8 0.411 76.428 9.5% -0.053 0.531 7.3% 0.075 0.550 8.1%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.2% -0.001 0.043 4.3%

J = 500 λ0 = 0.4 -0.178 0.661 18.0% 0.034 0.822 4.8% -0.319 0.641 14.5%
ρ0 = −0.9 0.584 1.018 26.1% 0.446 0.808 13.7% 0.066 0.378 1.0%
β10 = 0.8 -0.794 155.654 17.3% -0.078 1.921 4.8% 0.745 1.508 13.8%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.2% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.7% -0.001 0.043 4.7% -0.001 0.043 4.2%

λ0 = 0.4 -0.152 0.667 20.2% 0.092 0.815 6.1% -0.274 0.606 13.4%
ρ0 = −0.7 0.483 0.985 28.7% 0.297 0.755 14.2% -0.116 0.397 0.8%
β10 = 0.8 -0.658 169.215 18.9% -0.215 1.903 5.9% 0.639 1.425 12.9%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.050 5.0%
β30 = 1.5 -0.001 0.043 4.7% -0.001 0.043 4.5% -0.001 0.043 4.1%

λ0 = 0.4 -0.114 0.680 23.7% 0.221 0.819 10.0% -0.177 0.550 11.6%
ρ0 = −0.3 0.313 0.931 34.8% -0.015 0.724 15.3% -0.455 0.614 2.8%
β10 = 0.8 0.963 196.273 22.1% -0.515 1.913 9.5% 0.414 1.295 11.1%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.051 4.9%
β30 = 1.5 -0.001 0.043 4.7% -0.000 0.043 4.5% -0.001 0.043 4.2%

λ0 = 0.4 -0.104 0.684 24.7% 0.263 0.844 11.8% -0.151 0.539 11.4%
ρ0 = −0.2 0.271 0.913 36.0% -0.094 0.734 15.3% -0.531 0.681 4.5%
β10 = 0.8 0.360 202.638 23.0% -0.614 1.968 11.3% 0.353 1.269 10.8%
β20 = 0.2 -0.001 0.051 5.3% -0.000 0.051 5.1% -0.001 0.051 4.9%
β30 = 1.5 -0.001 0.043 4.7% -0.000 0.043 4.5% -0.001 0.043 4.3%

λ0 = 0.4 -0.093 0.687 25.8% 0.307 0.863 13.5% -0.127 0.534 11.3%
ρ0 = −0.1 0.233 0.895 37.6% -0.175 0.754 15.7% -0.603 0.748 6.5%
β10 = 0.8 -0.476 209.142 24.1% -0.715 2.009 12.8% 0.298 1.260 10.8%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.050 5.0% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.7% -0.000 0.043 4.5% -0.001 0.043 4.3%
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Table 2.A7: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 < 0, ρ0 = −0.4)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 50 λ0 = −0.9 0.050 0.173 4.6% -0.004 0.265 4.8% 0.068 0.179 5.4%
ρ0 = −0.4 -0.055 0.270 2.6% -0.036 0.267 3.0% -0.144 0.285 4.9%
β10 = 0.8 -0.037 0.200 3.5% 0.003 0.249 4.7% -0.050 0.203 3.9%
β20 = 0.2 0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.000 0.043 4.9% -0.001 0.043 4.7% -0.001 0.043 4.7%

λ0 = −0.7 -0.004 0.209 4.7% -0.002 0.248 4.9% 0.024 0.201 5.8%
ρ0 = −0.4 -0.022 0.287 4.9% -0.031 0.270 3.1% -0.112 0.288 5.5%
β10 = 0.8 0.003 0.231 4.0% 0.002 0.255 4.6% -0.020 0.225 4.6%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.001 0.043 5.0% -0.001 0.043 4.6% -0.001 0.043 4.6%

λ0 = −0.3 -0.031 0.223 7.5% -0.000 0.208 5.1% 0.001 0.194 7.2%
ρ0 = −0.4 -0.005 0.305 7.7% -0.022 0.275 3.3% -0.097 0.291 6.3%
β10 = 0.8 -0.060 9.366 5.7% 0.000 0.271 4.5% -0.001 0.258 5.4%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.001 0.043 5.0% -0.001 0.043 4.8% -0.001 0.043 4.7%

λ0 = −0.2 -0.032 0.217 7.4% -0.000 0.197 5.1% -0.002 0.185 7.2%
ρ0 = −0.4 -0.005 0.306 7.8% -0.020 0.276 3.3% -0.094 0.290 6.1%
β10 = 0.8 -0.163 14.247 5.9% 0.000 0.275 4.5% 0.003 0.265 5.4%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.001 0.043 5.0% -0.001 0.043 4.7% -0.001 0.043 4.7%

λ0 = −0.1 -0.033 0.210 7.3% 0.000 0.185 5.2% -0.005 0.177 7.1%
ρ0 = −0.4 -0.004 0.306 7.6% -0.019 0.276 3.4% -0.091 0.290 6.1%
β10 = 0.8 -0.130 20.040 5.9% -0.000 0.280 4.5% 0.006 0.272 5.5%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.001 0.043 5.0% -0.001 0.043 4.7% -0.001 0.043 4.7%

J = 100 λ0 = −0.9 0.081 0.231 4.6% 0.015 0.393 5.7% 0.093 0.223 4.3%
ρ0 = −0.4 -0.047 0.376 3.7% -0.031 0.393 5.2% -0.234 0.377 2.1%
β10 = 0.8 -0.324 27.040 3.6% -0.010 0.327 4.6% -0.069 0.225 3.5%
β20 = 0.2 0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 0.000 0.043 4.8% -0.000 0.043 4.6% 0.000 0.043 4.7%

λ0 = −0.7 0.011 0.268 5.0% 0.015 0.368 5.6% 0.034 0.243 4.3%
ρ0 = −0.4 -0.009 0.398 6.0% -0.019 0.399 5.5% -0.196 0.374 2.1%
β10 = 0.8 -0.135 33.490 3.8% -0.011 0.340 4.7% -0.028 0.253 4.0%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.000 0.043 4.8% -0.000 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.3 -0.052 0.321 5.7% 0.014 0.311 5.9% -0.013 0.260 6.5%
ρ0 = −0.4 0.024 0.437 10.1% -0.003 0.406 5.7% -0.165 0.380 2.5%
β10 = 0.8 -0.708 46.302 4.8% -0.015 0.367 4.8% 0.014 0.320 5.3%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.2 -0.059 0.323 6.3% 0.013 0.294 5.9% -0.021 0.258 6.5%
ρ0 = −0.4 0.026 0.441 10.2% 0.001 0.407 5.6% -0.159 0.381 2.6%
β10 = 0.8 -0.574 51.389 5.1% -0.015 0.374 4.9% 0.024 0.338 5.3%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.1 -0.063 0.323 7.8% 0.012 0.277 5.7% -0.026 0.252 6.3%
ρ0 = −0.4 0.028 0.445 10.1% 0.004 0.407 5.5% -0.153 0.382 2.6%
β10 = 0.8 -0.337 54.842 6.0% -0.015 0.383 4.9% 0.033 0.356 5.3%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.5% -0.000 0.043 4.7%

J = 500 λ0 = −0.9 0.260 0.616 8.7% 0.207 1.244 7.4% 0.168 0.407 6.8%
ρ0 = −0.4 0.299 0.856 30.1% 0.207 0.761 22.2% -0.459 0.541 2.5%
β10 = 0.8 0.814 152.743 6.7% -0.154 0.934 6.8% -0.124 0.337 5.8%
β20 = 0.2 0.000 0.051 5.7% 0.000 0.051 5.6% 0.000 0.051 5.4%
β30 = 1.5 0.001 0.043 4.9% 0.000 0.043 4.8% 0.000 0.043 4.7%

λ0 = −0.7 0.162 0.627 10.1% 0.217 1.186 7.5% 0.060 0.423 7.5%
ρ0 = −0.4 0.336 0.887 32.8% 0.197 0.756 21.6% -0.443 0.537 2.3%
β10 = 0.8 1.943 163.742 7.9% -0.179 0.993 6.8% -0.049 0.381 6.2%
β20 = 0.2 -0.000 0.051 5.7% 0.000 0.051 5.6% 0.000 0.051 5.3%
β30 = 1.5 0.000 0.043 4.9% 0.000 0.043 4.7% 0.000 0.043 4.6%

λ0 = −0.3 0.017 0.681 13.6% 0.239 1.075 8.1% -0.094 0.497 7.3%
ρ0 = −0.4 0.370 0.928 35.3% 0.164 0.748 19.6% -0.417 0.539 1.9%
β10 = 0.8 0.323 180.475 11.5% -0.258 1.171 7.4% 0.102 0.558 6.5%
β20 = 0.2 -0.000 0.051 5.6% 0.000 0.051 5.6% -0.000 0.051 5.4%
β30 = 1.5 -0.000 0.043 4.8% 0.001 0.043 4.8% 0.000 0.043 4.6%

λ0 = −0.2 -0.013 0.691 14.1% 0.232 1.049 8.3% -0.122 0.514 7.9%
ρ0 = −0.4 0.379 0.938 36.1% 0.149 0.742 19.1% -0.411 0.539 1.7%
β10 = 0.8 -1.420 183.357 12.2% -0.273 1.237 7.5% 0.142 0.620 7.1%
β20 = 0.2 -0.000 0.051 5.7% 0.000 0.051 5.5% -0.000 0.051 5.4%
β30 = 1.5 -0.000 0.043 4.9% 0.001 0.043 4.8% -0.000 0.043 4.6%

λ0 = −0.1 -0.040 0.699 15.1% 0.233 1.010 8.5% -0.145 0.529 8.7%
ρ0 = −0.4 0.381 0.943 36.2% 0.140 0.739 18.4% -0.403 0.541 1.7%
β10 = 0.8 0.302 185.535 13.3% -0.297 1.299 7.6% 0.185 0.692 7.8%
β20 = 0.2 -0.000 0.051 5.7% 0.000 0.051 5.5% -0.000 0.051 5.3%
β30 = 1.5 -0.000 0.043 4.9% 0.000 0.043 4.8% -0.000 0.043 4.6%
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Table 2.A8: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 = 0.4, ρ0 ≥ 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = 0.4 -0.001 0.126 7.0% 0.238 0.342 39.9% 0.070 0.161 5.4%
ρ0 = 0.9 -0.007 0.046 10.1% -0.144 0.239 26.0% -0.041 0.086 3.6%

β10 = 0.8 0.020 2.195 6.3% -0.547 0.896 34.8% -0.167 0.612 7.3%
β20 = 0.2 -0.001 0.049 5.4% -0.003 0.066 5.3% 0.001 0.049 4.7%
β30 = 1.5 -0.002 0.045 5.2% -0.018 0.058 4.8% 0.009 0.046 4.2%

λ0 = 0.4 -0.009 0.124 9.0% 0.030 0.154 12.8% 0.021 0.118 10.2%
ρ0 = 0.7 -0.009 0.084 10.0% -0.053 0.109 8.1% -0.032 0.090 7.2%

β10 = 0.8 0.023 0.374 6.6% -0.064 0.440 9.2% -0.048 0.357 7.6%
β20 = 0.2 -0.001 0.050 5.4% -0.002 0.058 5.0% -0.001 0.049 5.2%
β30 = 1.5 -0.003 0.045 5.0% -0.009 0.048 4.3% 0.001 0.044 4.3%

λ0 = 0.4 -0.009 0.088 6.2% 0.004 0.085 6.2% 0.002 0.083 6.9%
ρ0 = 0.3 -0.004 0.110 6.6% -0.016 0.109 5.1% -0.021 0.110 6.4%

β10 = 0.8 0.023 0.268 5.3% -0.007 0.262 4.8% -0.003 0.257 5.2%
β20 = 0.2 -0.001 0.051 5.5% -0.001 0.051 5.1% -0.001 0.050 5.3%
β30 = 1.5 -0.002 0.043 4.5% -0.003 0.043 4.4% -0.002 0.043 4.4%

λ0 = 0.4 -0.006 0.073 5.5% 0.002 0.070 5.5% -0.001 0.068 5.2%
ρ0 = 0.1 -0.004 0.114 5.8% -0.010 0.112 4.9% -0.017 0.110 5.4%

β10 = 0.8 0.017 0.235 5.1% -0.003 0.230 4.7% 0.004 0.227 4.7%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.2% -0.001 0.051 5.2%
β30 = 1.5 -0.001 0.043 4.7% -0.002 0.043 4.3% -0.001 0.043 4.4%

λ0 = 0.4 -0.005 0.066 5.4% 0.002 0.065 5.2% -0.002 0.062 5.2%
ρ0 = 0 -0.004 0.115 5.4% -0.009 0.113 4.8% -0.013 0.108 5.0%

β10 = 0.8 0.014 0.222 5.1% -0.001 0.220 4.7% 0.007 0.215 4.7%
β20 = 0.2 -0.001 0.051 5.5% -0.001 0.051 5.2% -0.001 0.051 5.2%
β30 = 1.5 -0.001 0.043 4.8% -0.002 0.043 4.5% -0.001 0.043 4.5%

J = 20 λ0 = 0.4 -0.000 0.177 9.2% 0.356 0.446 55.8% 0.108 0.204 10.4%
ρ0 = 0.9 -0.017 0.078 13.0% -0.247 0.339 35.7% -0.066 0.114 4.8%

β10 = 0.8 0.010 5.554 8.6% -0.825 1.094 52.0% -0.253 0.667 11.7%
β20 = 0.2 -0.001 0.050 5.3% -0.002 0.055 4.4% 0.000 0.050 4.4%
β30 = 1.5 -0.002 0.044 4.8% -0.008 0.048 4.3% 0.007 0.044 3.8%

λ0 = 0.4 -0.018 0.175 11.3% 0.072 0.213 19.0% 0.038 0.159 14.2%
ρ0 = 0.7 -0.018 0.121 12.3% -0.096 0.176 10.3% -0.060 0.133 8.5%

β10 = 0.8 0.044 0.477 8.4% -0.164 0.552 15.5% -0.088 0.437 10.6%
β20 = 0.2 -0.001 0.050 5.3% -0.002 0.053 4.8% -0.001 0.050 4.9%
β30 = 1.5 -0.003 0.044 4.7% -0.007 0.045 4.2% 0.001 0.043 4.1%

λ0 = 0.4 -0.021 0.133 7.6% 0.009 0.120 7.9% 0.003 0.115 8.4%
ρ0 = 0.3 -0.005 0.157 7.9% -0.031 0.156 5.0% -0.042 0.154 6.3%

β10 = 0.8 0.051 0.356 6.1% -0.018 0.330 5.9% -0.005 0.320 6.3%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.050 5.2%
β30 = 1.5 -0.002 0.043 4.5% -0.003 0.043 4.3% -0.001 0.043 4.3%

λ0 = 0.4 -0.015 0.108 6.1% 0.005 0.099 6.4% -0.003 0.096 6.7%
ρ0 = 0.1 -0.005 0.163 6.1% -0.022 0.160 4.9% -0.034 0.156 5.9%

β10 = 0.8 0.038 0.303 5.3% -0.008 0.284 5.2% 0.008 0.278 5.2%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.051 5.1%
β30 = 1.5 -0.001 0.043 4.4% -0.002 0.043 4.3% -0.001 0.043 4.4%

λ0 = 0.4 -0.013 0.098 5.7% 0.003 0.092 5.9% -0.005 0.088 6.0%
ρ0 = 0 -0.005 0.165 5.8% -0.019 0.162 4.8% -0.027 0.154 5.7%

β10 = 0.8 0.033 0.282 5.0% -0.005 0.268 4.8% 0.014 0.261 4.8%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.0% -0.001 0.051 5.1%
β30 = 1.5 -0.001 0.043 4.5% -0.002 0.043 4.3% -0.001 0.043 4.4%

J = 100 λ0 = 0.4 -0.028 0.356 16.1% 0.556 0.612 71.3% 0.227 0.319 33.8%
ρ0 = 0.9 -0.060 0.214 31.7% -0.495 0.617 41.4% -0.218 0.303 13.3%

β10 = 0.8 3.503 115.793 12.7% -1.298 1.448 69.5% -0.529 0.843 32.1%
β20 = 0.2 -0.001 0.050 5.1% -0.001 0.051 4.7% -0.000 0.050 4.1%
β30 = 1.5 -0.002 0.043 4.6% -0.000 0.043 3.9% 0.003 0.043 3.6%

λ0 = 0.4 -0.082 0.397 19.1% 0.339 0.478 41.7% 0.096 0.261 24.5%
ρ0 = 0.7 -0.046 0.294 26.5% -0.338 0.527 26.5% -0.215 0.333 11.2%

β10 = 0.8 3.643 123.965 12.4% -0.791 1.128 39.3% -0.224 0.646 20.9%
β20 = 0.2 -0.001 0.050 5.1% -0.001 0.051 4.7% -0.001 0.050 4.4%
β30 = 1.5 -0.003 0.043 4.7% -0.001 0.043 3.8% 0.000 0.043 4.0%

λ0 = 0.4 -0.091 0.370 15.9% 0.091 0.291 16.4% -0.001 0.241 13.5%
ρ0 = 0.3 -0.017 0.392 18.8% -0.134 0.442 14.8% -0.189 0.374 10.1%

β10 = 0.8 2.054 106.014 12.4% -0.211 0.698 14.0% 0.003 0.590 11.5%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.0%
β30 = 1.5 -0.002 0.043 4.7% -0.002 0.043 4.1% -0.001 0.043 4.3%

λ0 = 0.4 -0.087 0.348 13.9% 0.039 0.244 10.0% -0.020 0.231 11.6%
ρ0 = 0.1 -0.003 0.421 16.0% -0.067 0.420 10.0% -0.174 0.387 9.9%

β10 = 0.8 1.372 89.569 11.0% -0.089 0.592 8.4% 0.048 0.567 9.8%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.1%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.1% -0.001 0.043 4.3%

λ0 = 0.4 -0.085 0.336 12.9% 0.021 0.228 7.8% -0.028 0.224 10.2%
ρ0 = 0 0.003 0.432 14.8% -0.038 0.414 8.5% -0.161 0.387 9.4%

β10 = 0.8 0.685 83.668 10.3% -0.047 0.555 6.6% 0.067 0.551 8.4%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.6% -0.001 0.042 4.0% -0.001 0.043 4.4%
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Table 2.A9: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 = −0.4, ρ0 ≥ 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = −0.4 -0.002 0.116 5.5% 0.366 0.519 19.8% 0.031 0.144 7.3%
ρ0 = 0.9 -0.001 0.022 7.0% -0.046 0.177 17.1% -0.011 0.038 4.2%

β10 = 0.8 0.001 0.532 4.8% -0.377 0.698 13.8% -0.035 0.530 6.4%
β20 = 0.2 -0.001 0.049 5.6% 0.002 0.073 3.2% 0.000 0.049 5.3%
β30 = 1.5 -0.002 0.048 4.7% 0.014 0.076 4.6% 0.006 0.050 5.5%

λ0 = −0.4 -0.003 0.127 6.0% 0.060 0.222 9.4% 0.022 0.137 6.7%
ρ0 = 0.7 -0.003 0.054 6.6% -0.034 0.078 6.5% -0.019 0.064 5.1%

β10 = 0.8 0.004 0.262 5.2% -0.062 0.335 6.7% -0.024 0.265 5.7%
β20 = 0.2 -0.001 0.050 5.6% 0.000 0.059 5.2% 0.000 0.050 5.4%
β30 = 1.5 -0.002 0.048 4.9% -0.001 0.059 4.6% 0.003 0.048 4.7%

λ0 = −0.4 -0.005 0.122 6.4% 0.010 0.131 6.4% 0.011 0.121 6.7%
ρ0 = 0.3 -0.005 0.100 7.1% -0.030 0.102 5.4% -0.023 0.103 6.2%

β10 = 0.8 0.006 0.210 5.7% -0.011 0.217 5.4% -0.010 0.209 5.5%
β20 = 0.2 -0.001 0.051 5.7% -0.000 0.051 5.4% -0.000 0.051 5.5%
β30 = 1.5 -0.002 0.045 5.0% -0.001 0.046 4.8% 0.000 0.045 4.7%

λ0 = −0.4 -0.005 0.113 6.2% 0.005 0.114 5.7% 0.008 0.111 6.4%
ρ0 = 0.1 -0.005 0.113 6.8% -0.023 0.110 4.9% -0.023 0.113 6.1%

β10 = 0.8 0.006 0.200 5.7% -0.005 0.199 5.2% -0.007 0.197 5.3%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.002 0.044 5.0% -0.001 0.044 4.7% -0.001 0.044 4.7%

λ0 = −0.4 -0.005 0.109 6.1% 0.004 0.108 5.5% 0.006 0.101 5.4%
ρ0 = 0 -0.005 0.117 6.6% -0.020 0.114 5.0% -0.020 0.113 5.8%

β10 = 0.8 0.005 0.195 5.6% -0.003 0.193 5.1% -0.006 0.189 4.9%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.6% -0.000 0.051 5.6%
β30 = 1.5 -0.002 0.044 5.1% -0.001 0.043 4.8% -0.001 0.043 4.8%

J = 20 λ0 = −0.4 -0.001 0.180 5.7% 0.615 0.765 39.3% 0.063 0.217 4.3%
ρ0 = 0.9 -0.004 0.035 8.7% -0.186 0.374 23.7% -0.023 0.061 2.8%

β10 = 0.8 0.024 2.667 5.4% -0.624 0.858 34.4% -0.067 0.547 7.3%
β20 = 0.2 -0.000 0.050 5.5% 0.002 0.058 3.6% 0.001 0.050 5.3%
β30 = 1.5 -0.001 0.046 5.1% 0.017 0.057 5.3% 0.006 0.047 4.7%

λ0 = −0.4 -0.003 0.196 7.0% 0.137 0.329 15.5% 0.050 0.208 6.9%
ρ0 = 0.7 -0.009 0.083 8.5% -0.075 0.137 7.3% -0.040 0.099 4.7%

β10 = 0.8 0.003 0.302 5.5% -0.139 0.403 11.1% -0.052 0.308 6.0%
β20 = 0.2 -0.000 0.050 5.6% 0.000 0.054 5.0% 0.000 0.050 5.3%
β30 = 1.5 -0.002 0.046 5.2% 0.000 0.050 4.3% 0.004 0.046 4.8%

λ0 = −0.4 -0.010 0.184 7.9% 0.025 0.194 7.9% 0.023 0.179 8.5%
ρ0 = 0.3 -0.012 0.145 8.5% -0.058 0.150 5.3% -0.048 0.151 7.0%

β10 = 0.8 0.010 0.252 6.1% -0.025 0.260 5.9% -0.023 0.247 6.2%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.4% -0.000 0.051 5.6%
β30 = 1.5 -0.002 0.045 5.2% -0.001 0.045 4.7% 0.000 0.044 4.8%

λ0 = −0.4 -0.011 0.171 7.4% 0.013 0.168 6.6% 0.015 0.163 7.9%
ρ0 = 0.1 -0.011 0.163 7.9% -0.046 0.158 4.9% -0.047 0.165 7.0%

β10 = 0.8 0.011 0.237 5.9% -0.013 0.235 5.4% -0.015 0.231 5.7%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.6% -0.000 0.051 5.6%
β30 = 1.5 -0.002 0.044 5.0% -0.001 0.044 4.8% -0.001 0.043 4.7%

λ0 = −0.4 -0.011 0.163 7.3% 0.010 0.159 6.2% 0.010 0.150 6.8%
ρ0 = 0 -0.011 0.169 7.4% -0.040 0.163 4.8% -0.041 0.164 6.4%

β10 = 0.8 0.011 0.230 5.8% -0.010 0.226 5.3% -0.009 0.219 5.2%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.002 0.044 5.0% -0.001 0.043 4.7% -0.001 0.043 4.7%

J = 100 λ0 = −0.4 0.031 0.423 5.6% 1.098 1.197 75.7% 0.333 0.540 13.4%
ρ0 = 0.9 -0.037 0.172 24.8% -0.701 0.842 44.6% -0.169 0.267 5.0%

β10 = 0.8 -0.271 95.603 9.2% -1.102 1.225 73.7% -0.340 0.690 16.5%
β20 = 0.2 -0.000 0.051 5.8% 0.001 0.051 5.1% 0.001 0.051 4.9%
β30 = 1.5 -0.001 0.044 4.8% 0.009 0.045 5.1% 0.005 0.044 4.2%

λ0 = −0.4 0.009 0.429 8.6% 0.586 0.806 43.6% 0.250 0.466 18.2%
ρ0 = 0.7 -0.050 0.274 21.0% -0.440 0.597 20.7% -0.242 0.372 10.2%

β10 = 0.8 -1.977 116.313 8.3% -0.588 0.829 39.8% -0.252 0.511 15.7%
β20 = 0.2 -0.000 0.051 5.8% 0.001 0.051 5.3% 0.000 0.051 5.2%
β30 = 1.5 -0.001 0.044 4.8% 0.004 0.044 4.5% 0.003 0.043 4.3%

λ0 = −0.4 -0.023 0.394 9.3% 0.175 0.460 16.4% 0.111 0.358 16.0%
ρ0 = 0.3 -0.035 0.383 18.5% -0.222 0.448 11.1% -0.252 0.428 12.6%

β10 = 0.8 -0.684 99.172 7.7% -0.175 0.487 13.7% -0.111 0.395 12.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.4% -0.000 0.051 5.5%
β30 = 1.5 -0.001 0.043 4.9% 0.000 0.043 4.5% 0.000 0.043 4.6%

λ0 = −0.4 -0.032 0.372 8.9% 0.086 0.390 10.4% 0.067 0.325 13.7%
ρ0 = 0.1 -0.024 0.415 17.1% -0.143 0.412 7.7% -0.236 0.431 11.8%

β10 = 0.8 0.053 81.565 6.9% -0.086 0.420 7.9% -0.067 0.363 10.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.000 0.043 4.6% -0.000 0.043 4.6%

λ0 = −0.4 -0.035 0.362 8.5% 0.054 0.368 7.9% 0.047 0.307 11.7%
ρ0 = 0 -0.018 0.426 16.3% -0.106 0.401 6.5% -0.222 0.424 10.9%

β10 = 0.8 -0.325 74.845 6.7% -0.054 0.400 6.2% -0.047 0.344 8.6%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.6% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.000 0.043 4.5% -0.001 0.043 4.6%
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Table 2.A10: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 = 0.4, ρ0 < 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = 0.4 -0.004 0.039 3.9% -0.009 0.046 3.6% -0.070 0.239 3.5%
ρ0 = −0.9 0.007 0.096 2.1% 0.040 0.101 3.0% 0.103 0.362 2.3%
β10 = 0.8 0.011 0.172 5.3% 0.020 0.195 4.9% 0.165 0.591 5.1%
β20 = 0.2 -0.001 0.049 5.4% 0.000 0.055 5.2% -0.001 0.050 5.0%
β30 = 1.5 0.000 0.046 4.7% 0.003 0.047 4.4% -0.001 0.054 4.6%

λ0 = 0.4 -0.002 0.044 5.1% -0.001 0.048 4.6% -0.014 0.100 4.7%
ρ0 = −0.7 -0.006 0.117 5.3% 0.004 0.115 4.3% 0.010 0.180 5.7%
β10 = 0.8 0.007 0.180 5.7% 0.004 0.194 5.1% 0.035 0.278 5.3%
β20 = 0.2 -0.001 0.050 5.4% -0.001 0.053 5.1% -0.001 0.050 5.3%
β30 = 1.5 -0.001 0.045 5.0% -0.001 0.046 4.6% -0.001 0.046 4.8%

λ0 = 0.4 -0.003 0.054 5.3% 0.001 0.055 4.9% -0.001 0.055 5.4%
ρ0 = −0.3 -0.005 0.117 5.2% -0.004 0.116 4.9% -0.015 0.119 5.4%
β10 = 0.8 0.010 0.199 5.3% 0.001 0.202 5.0% 0.005 0.200 5.2%
β20 = 0.2 -0.001 0.051 5.5% -0.001 0.051 5.1% -0.001 0.050 5.3%
β30 = 1.5 -0.001 0.044 4.9% -0.001 0.044 4.7% -0.001 0.044 4.7%

λ0 = 0.4 -0.004 0.057 5.2% 0.001 0.058 4.9% -0.001 0.057 5.5%
ρ0 = −0.2 -0.005 0.117 5.2% -0.005 0.115 4.7% -0.016 0.117 5.4%
β10 = 0.8 0.011 0.205 5.2% 0.001 0.206 5.0% 0.004 0.204 5.2%
β20 = 0.2 -0.001 0.051 5.5% -0.001 0.051 5.1% -0.001 0.051 5.3%
β30 = 1.5 -0.001 0.044 4.8% -0.001 0.044 4.7% -0.001 0.043 4.7%

λ0 = 0.4 -0.004 0.061 5.2% 0.001 0.061 5.1% -0.001 0.060 5.4%
ρ0 = −0.1 -0.004 0.116 5.3% -0.007 0.114 4.8% -0.016 0.116 5.4%
β10 = 0.8 0.013 0.213 5.2% -0.000 0.212 4.9% 0.004 0.210 5.1%
β20 = 0.2 -0.001 0.051 5.5% -0.001 0.051 5.1% -0.001 0.051 5.2%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.6% -0.001 0.043 4.6%

J = 20 λ0 = 0.4 -0.009 0.053 3.1% -0.014 0.060 3.3% -0.062 0.207 3.2%
ρ0 = −0.9 0.026 0.134 2.3% 0.079 0.149 3.5% 0.086 0.323 2.0%
β10 = 0.8 0.023 0.194 4.7% 0.036 0.211 4.3% 0.145 0.510 4.4%
β20 = 0.2 -0.001 0.050 5.3% -0.001 0.052 5.0% -0.000 0.050 5.0%
β30 = 1.5 0.001 0.044 4.5% 0.003 0.045 4.5% 0.003 0.046 4.5%

λ0 = 0.4 -0.006 0.059 4.7% -0.003 0.063 3.9% -0.018 0.117 4.3%
ρ0 = −0.7 -0.003 0.166 2.4% 0.012 0.159 2.5% -0.001 0.217 2.1%
β10 = 0.8 0.016 0.206 5.1% 0.010 0.215 4.6% 0.043 0.313 4.6%
β20 = 0.2 -0.001 0.050 5.5% -0.001 0.052 5.0% -0.001 0.050 5.3%
β30 = 1.5 -0.001 0.044 4.5% -0.000 0.044 4.4% -0.001 0.044 4.4%

λ0 = 0.4 -0.009 0.076 5.1% 0.001 0.076 5.3% -0.003 0.075 5.8%
ρ0 = −0.3 -0.006 0.169 5.3% -0.011 0.167 4.8% -0.030 0.170 5.7%
β10 = 0.8 0.022 0.237 5.1% 0.000 0.237 4.8% 0.010 0.235 5.0%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.2% -0.001 0.051 5.3%
β30 = 1.5 -0.001 0.043 4.5% -0.001 0.043 4.4% -0.001 0.043 4.5%

λ0 = 0.4 -0.010 0.082 5.3% 0.002 0.080 5.5% -0.003 0.078 6.0%
ρ0 = −0.2 -0.005 0.168 5.4% -0.014 0.166 4.7% -0.032 0.168 5.6%
β10 = 0.8 0.025 0.249 5.1% -0.002 0.245 4.8% 0.009 0.242 5.1%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.051 5.2%
β30 = 1.5 -0.001 0.043 4.5% -0.001 0.043 4.4% -0.001 0.043 4.5%

λ0 = 0.4 -0.011 0.089 5.4% 0.002 0.085 5.6% -0.002 0.083 6.4%
ρ0 = −0.1 -0.005 0.166 5.6% -0.016 0.164 4.7% -0.034 0.165 5.8%
β10 = 0.8 0.029 0.264 5.0% -0.003 0.255 4.8% 0.007 0.251 5.1%
β20 = 0.2 -0.001 0.051 5.4% -0.001 0.051 5.1% -0.001 0.051 5.1%
β30 = 1.5 -0.001 0.043 4.5% -0.001 0.043 4.4% -0.001 0.043 4.4%

J = 100 λ0 = 0.4 -0.052 0.192 3.9% -0.018 0.163 3.5% -0.175 0.372 2.9%
ρ0 = −0.9 0.142 0.356 4.7% 0.196 0.375 5.6% 0.189 0.493 2.3%
β10 = 0.8 0.136 31.221 3.9% 0.043 0.409 3.6% 0.410 0.883 3.1%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.2% -0.000 0.051 4.8%
β30 = 1.5 -0.000 0.043 4.6% 0.000 0.043 4.6% 0.001 0.043 4.1%

λ0 = 0.4 -0.054 0.224 5.4% -0.011 0.171 4.2% -0.119 0.304 3.1%
ρ0 = −0.7 0.078 0.394 5.6% 0.110 0.376 5.2% 0.042 0.415 2.0%
β10 = 0.8 -0.287 42.068 5.2% 0.027 0.425 4.1% 0.278 0.729 3.4%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.1% -0.001 0.051 5.0%
β30 = 1.5 -0.001 0.043 4.7% -0.001 0.043 4.3% 0.000 0.043 4.2%

λ0 = 0.4 -0.069 0.289 9.7% 0.008 0.196 6.4% -0.046 0.227 6.9%
ρ0 = −0.3 0.019 0.444 8.1% -0.010 0.412 5.1% -0.131 0.397 3.6%
β10 = 0.8 1.143 65.945 8.1% -0.016 0.484 5.7% 0.109 0.555 6.2%
β20 = 0.2 -0.001 0.051 5.3% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.2% -0.001 0.043 4.3%

λ0 = 0.4 -0.075 0.305 10.7% 0.015 0.206 7.5% -0.038 0.225 8.3%
ρ0 = −0.2 0.013 0.444 10.3% -0.032 0.420 5.7% -0.148 0.400 6.5%
β10 = 0.8 0.933 69.677 8.8% -0.033 0.506 6.4% 0.090 0.551 7.1%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.3%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.2% -0.001 0.043 4.4%

λ0 = 0.4 -0.079 0.318 11.8% 0.023 0.217 8.8% -0.031 0.225 9.8%
ρ0 = −0.1 0.007 0.439 13.1% -0.051 0.429 7.8% -0.159 0.396 8.4%
β10 = 0.8 0.349 76.675 9.6% -0.053 0.531 7.3% 0.075 0.550 8.1%
β20 = 0.2 -0.001 0.051 5.2% -0.001 0.051 5.0% -0.001 0.051 5.2%
β30 = 1.5 -0.002 0.043 4.7% -0.001 0.043 4.2% -0.001 0.043 4.3%
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Table 2.A11: GMM, GS2SLS, and II under Circular Weight Matrices (n = 1000, λ0 < 0, ρ0 = −0.4)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

J = 10 λ0 = −0.9 0.007 0.089 3.3% 0.000 0.110 5.0% 0.015 0.090 3.7%
ρ0 = −0.4 -0.014 0.120 4.3% -0.013 0.127 4.9% -0.029 0.122 4.6%
β10 = 0.8 -0.006 0.168 4.8% 0.001 0.178 5.2% -0.011 0.168 4.8%
β20 = 0.2 0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.050 5.6%
β30 = 1.5 -0.001 0.043 5.0% -0.001 0.043 4.8% -0.001 0.043 4.8%

λ0 = −0.7 -0.003 0.101 5.9% 0.000 0.105 4.9% 0.005 0.100 5.8%
ρ0 = −0.4 -0.006 0.129 6.3% -0.011 0.127 4.9% -0.020 0.128 6.0%
β10 = 0.8 0.002 0.176 5.4% 0.001 0.180 5.2% -0.004 0.174 5.2%
β20 = 0.2 -0.000 0.051 5.7% -0.000 0.051 5.5% -0.000 0.050 5.6%
β30 = 1.5 -0.001 0.043 5.0% -0.001 0.043 4.8% -0.001 0.043 4.8%

λ0 = −0.3 -0.004 0.089 5.7% 0.000 0.092 5.0% 0.003 0.088 5.8%
ρ0 = −0.4 -0.006 0.126 6.0% -0.007 0.125 5.1% -0.019 0.126 6.0%
β10 = 0.8 0.004 0.181 5.3% 0.001 0.185 5.3% -0.003 0.180 5.1%
β20 = 0.2 0.000 0.051 5.7% -0.000 0.051 5.4% -0.000 0.050 5.6%
β30 = 1.5 -0.001 0.043 4.9% -0.001 0.043 4.8% -0.001 0.043 4.6%

λ0 = −0.2 -0.004 0.085 5.7% -0.000 0.087 5.1% 0.002 0.084 5.7%
ρ0 = −0.4 -0.006 0.126 6.0% -0.006 0.124 5.1% -0.019 0.125 5.9%
β10 = 0.8 0.004 0.182 5.3% 0.001 0.186 5.2% -0.002 0.181 5.1%
β20 = 0.2 0.000 0.051 5.7% -0.000 0.052 5.4% -0.000 0.050 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.7% -0.001 0.043 4.6%

λ0 = −0.1 -0.004 0.080 5.6% 0.000 0.083 5.3% 0.001 0.079 5.7%
ρ0 = −0.4 -0.006 0.124 5.9% -0.005 0.123 5.3% -0.019 0.124 5.8%
β10 = 0.8 0.005 0.184 5.3% 0.001 0.188 5.2% -0.002 0.182 5.1%
β20 = 0.2 0.000 0.051 5.7% -0.000 0.052 5.5% -0.000 0.050 5.6%
β30 = 1.5 -0.001 0.044 4.8% -0.001 0.044 4.7% -0.001 0.044 4.6%

J = 20 λ0 = −0.9 0.022 0.119 3.9% 0.003 0.162 5.0% 0.033 0.123 4.7%
ρ0 = −0.4 -0.031 0.170 4.0% -0.027 0.179 4.5% -0.063 0.175 4.8%
β10 = 0.8 -0.016 0.178 4.2% -0.002 0.198 5.0% -0.024 0.179 4.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.5%
β30 = 1.5 -0.000 0.043 4.9% -0.001 0.043 4.8% -0.001 0.043 4.7%

λ0 = −0.7 -0.005 0.144 4.3% 0.003 0.152 5.0% 0.010 0.141 6.0%
ρ0 = −0.4 -0.012 0.183 6.0% -0.024 0.179 4.7% -0.044 0.184 6.0%
β10 = 0.8 0.004 0.195 5.2% -0.002 0.201 5.0% -0.008 0.194 5.1%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.9% -0.001 0.043 4.7% -0.001 0.043 4.7%

λ0 = −0.3 -0.009 0.129 6.0% 0.002 0.129 5.2% 0.003 0.124 6.2%
ρ0 = −0.4 -0.010 0.184 6.3% -0.018 0.178 4.7% -0.040 0.183 6.2%
β10 = 0.8 0.010 0.208 5.6% -0.002 0.209 5.0% -0.003 0.204 5.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.6% -0.001 0.043 4.6%

λ0 = −0.2 -0.009 0.122 5.9% 0.002 0.122 5.1% 0.002 0.117 6.1%
ρ0 = −0.4 -0.010 0.183 6.1% -0.017 0.177 4.8% -0.040 0.181 6.1%
β10 = 0.8 0.011 0.210 5.4% -0.002 0.211 5.0% -0.002 0.206 5.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.9% -0.001 0.043 4.7% -0.001 0.043 4.7%

λ0 = −0.1 -0.009 0.115 5.7% 0.002 0.114 5.1% 0.001 0.110 6.1%
ρ0 = −0.4 -0.010 0.182 6.0% -0.016 0.177 4.9% -0.039 0.180 6.1%
β10 = 0.8 0.012 0.212 5.4% -0.002 0.213 5.0% -0.001 0.208 5.3%
β20 = 0.2 -0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 -0.001 0.043 4.9% -0.001 0.043 4.7% -0.001 0.043 4.7%

J = 100 λ0 = −0.9 0.081 0.231 4.6% 0.015 0.393 5.6% 0.093 0.223 4.4%
ρ0 = −0.4 -0.047 0.376 3.7% -0.031 0.393 5.2% -0.234 0.377 2.1%
β10 = 0.8 -0.324 27.040 3.6% -0.010 0.328 4.6% -0.069 0.225 3.5%
β20 = 0.2 0.000 0.051 5.8% -0.000 0.051 5.5% -0.000 0.051 5.7%
β30 = 1.5 0.000 0.043 4.9% -0.000 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.7 0.011 0.268 5.0% 0.014 0.368 5.6% 0.034 0.243 4.3%
ρ0 = −0.4 -0.009 0.398 6.0% -0.018 0.399 5.5% -0.196 0.374 2.1%
β10 = 0.8 -0.135 33.490 3.8% -0.011 0.340 4.7% -0.028 0.253 4.0%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.000 0.043 4.8% -0.000 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.3 -0.052 0.321 5.7% 0.014 0.311 5.9% -0.013 0.260 6.5%
ρ0 = −0.4 0.024 0.437 10.1% -0.003 0.405 5.7% -0.165 0.380 2.5%
β10 = 0.8 -0.708 46.302 4.8% -0.015 0.367 4.8% 0.014 0.319 5.3%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.2 -0.059 0.323 6.3% 0.013 0.293 5.9% -0.021 0.258 6.5%
ρ0 = −0.4 0.026 0.441 10.2% 0.002 0.407 5.6% -0.159 0.381 2.6%
β10 = 0.8 -0.574 51.389 5.1% -0.014 0.374 4.8% 0.024 0.338 5.3%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.6% -0.000 0.043 4.7%

λ0 = −0.1 -0.063 0.323 7.8% 0.012 0.277 5.8% -0.026 0.252 6.3%
ρ0 = −0.4 0.028 0.445 10.1% 0.004 0.407 5.5% -0.153 0.382 2.6%
β10 = 0.8 -0.337 54.842 6.0% -0.015 0.384 4.9% 0.034 0.356 5.3%
β20 = 0.2 -0.000 0.051 5.9% -0.000 0.051 5.5% -0.000 0.051 5.6%
β30 = 1.5 -0.001 0.043 4.8% -0.001 0.043 4.5% -0.000 0.043 4.7%
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Table 2.A12: GMM, GS2SLS, and II under Circular Weight Matrices

(n = 5000, J = 100, λ0 = ±0.4, ρ0 ≥ 0)

GMM GS2SLS II

θ0 Bias RMSE P (5%) Bias RMSE P (5%) Bias RMSE P (5%)

λ0 = 0.4 0.001 0.182 9.2% 0.349 0.439 54.7% 0.107 0.206 11.7%
ρ0 = 0.9 -0.019 0.080 13.7% -0.226 0.321 34.7% -0.064 0.112 4.5%

β10 = 0.8 -0.007 0.502 8.2% -0.818 1.034 53.6% -0.253 0.526 11.5%
β20 = 0.2 -0.001 0.022 4.4% -0.001 0.022 4.6% -0.001 0.022 3.5%
β30 = 1.5 0.000 0.019 5.1% -0.001 0.019 4.3% 0.002 0.019 4.8%

λ0 = 0.4 -0.013 0.177 10.7% 0.076 0.210 18.6% 0.044 0.163 15.5%
ρ0 = 0.7 -0.021 0.124 11.9% -0.093 0.173 11.1% -0.064 0.137 9.2%

β10 = 0.8 0.032 0.429 10.6% -0.175 0.499 18.3% -0.102 0.395 14.7%
β20 = 0.2 -0.001 0.022 4.4% -0.001 0.022 5.0% -0.001 0.022 4.2%
β30 = 1.5 -0.000 0.019 5.1% -0.001 0.019 5.2% 0.001 0.019 5.5%

λ0 = 0.4 -0.015 0.134 8.1% 0.015 0.117 9.0% 0.009 0.115 8.1%
ρ0 = 0.3 -0.013 0.158 7.9% -0.038 0.160 6.3% -0.048 0.157 6.5%

β10 = 0.8 0.037 0.326 7.8% -0.033 0.283 7.5% -0.018 0.281 8.1%
β20 = 0.2 -0.001 0.022 4.3% -0.001 0.022 4.7% -0.001 0.022 4.6%
β30 = 1.5 -0.000 0.019 5.5% -0.000 0.019 5.5% 0.000 0.019 5.6%

λ0 = 0.4 -0.011 0.111 7.0% 0.010 0.095 7.1% 0.002 0.094 7.2%
ρ0 = 0.1 -0.011 0.167 6.7% -0.031 0.164 5.3% -0.040 0.160 6.4%

β10 = 0.8 0.027 0.271 6.7% -0.021 0.234 6.1% -0.003 0.231 6.7%
β20 = 0.2 -0.001 0.022 4.4% -0.001 0.022 4.8% -0.001 0.022 4.6%
β30 = 1.5 0.000 0.019 5.6% 0.000 0.019 5.7% 0.000 0.019 5.6%

λ0 = 0.4 -0.008 0.100 6.5% 0.009 0.088 6.8% 0.001 0.084 6.4%
ρ0 = 0 -0.012 0.170 6.0% -0.029 0.167 5.1% -0.035 0.159 6.5%

β10 = 0.8 0.022 0.246 6.0% -0.018 0.217 5.9% 0.001 0.209 6.2%
β20 = 0.2 -0.001 0.022 4.6% -0.001 0.022 4.5% -0.001 0.022 4.7%
β30 = 1.5 0.000 0.019 5.4% 0.000 0.019 5.5% 0.000 0.019 5.6%

λ0 = −0.4 0.010 0.193 5.3% 0.635 0.799 39.9% 0.075 0.226 4.3%
ρ0 = 0.9 -0.005 0.034 6.7% -0.196 0.396 26.1% -0.023 0.057 3.5%

β10 = 0.8 -0.008 0.298 5.5% -0.633 0.816 39.2% -0.073 0.315 6.7%
β20 = 0.2 -0.001 0.022 3.9% -0.001 0.022 3.4% -0.001 0.022 3.9%
β30 = 1.5 -0.001 0.019 4.6% 0.003 0.020 4.2% 0.001 0.020 4.8%

λ0 = −0.4 0.007 0.208 6.6% 0.151 0.345 15.3% 0.064 0.223 7.9%
ρ0 = 0.7 -0.011 0.081 6.7% -0.075 0.144 6.8% -0.042 0.098 4.7%

β10 = 0.8 -0.004 0.229 5.9% -0.148 0.356 13.6% -0.062 0.241 5.7%
β20 = 0.2 -0.001 0.022 4.0% -0.001 0.022 4.6% -0.001 0.022 4.0%
β30 = 1.5 -0.001 0.020 5.0% -0.001 0.020 4.8% 0.000 0.020 4.8%

λ0 = −0.4 -0.004 0.191 7.2% 0.029 0.204 8.1% 0.029 0.187 8.7%
ρ0 = 0.3 -0.012 0.138 5.8% -0.055 0.145 4.3% -0.047 0.147 6.4%

β10 = 0.8 0.007 0.205 6.4% -0.026 0.216 6.8% -0.026 0.200 7.1%
β20 = 0.2 -0.001 0.022 4.0% -0.001 0.022 4.7% -0.001 0.022 4.1%
β30 = 1.5 -0.001 0.019 5.1% -0.001 0.019 5.0% -0.001 0.019 5.1%

λ0 = −0.4 -0.007 0.175 7.6% 0.017 0.175 6.7% 0.018 0.167 7.9%
ρ0 = 0.1 -0.009 0.155 5.6% -0.043 0.153 4.0% -0.044 0.159 5.8%

β10 = 0.8 0.011 0.188 6.2% -0.014 0.188 5.5% -0.015 0.181 6.6%
β20 = 0.2 -0.001 0.022 3.8% -0.001 0.022 4.2% -0.001 0.022 4.1%
β30 = 1.5 -0.001 0.019 5.1% -0.001 0.019 5.1% -0.001 0.019 5.0%

λ0 = −0.4 -0.008 0.167 7.0% 0.013 0.166 6.1% 0.014 0.156 7.6%
ρ0 = 0 -0.008 0.162 5.3% -0.037 0.159 3.9% -0.041 0.162 6.0%

β10 = 0.8 0.011 0.180 6.0% -0.010 0.179 5.5% -0.011 0.169 6.5%
β20 = 0.2 -0.001 0.022 3.8% -0.001 0.022 4.2% -0.001 0.022 4.2%
β30 = 1.5 -0.001 0.019 5.1% -0.001 0.019 5.1% -0.001 0.019 4.9%
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Appendix C: Matlab Code

The following is the Matlab code (with line number added) used in this paper to implement the
indirect inference estimation of SARA(1,1).

1 % Matlab source code to implement II estimation of SARAR(1,1)
2 % Bao and Liu, Spatial Economic Analysis, "Estimating a Spatial Autoregressive Model with ...
3 % Autoregressive Disturbances Based on the Indirect Inference Principle"
4 %
5 % INPUTS
6 % y, X: sample data y X
7 % W, M: spatial weights matrices W and M
8 % wm: matrix norms of W and M
9 % lamrho0: initial SARA(1,1) parameters consisting of [lam;rho]

10 % options0: options for fmincon to search for parameters
11 % OUTPUTS
12 % thetaII: II estimator of [beta;lam;rho]
13 % se: standard error of thetaII
14 % inegative: indicator for negative estimated variance matrix
15 %
16 % REMARKS
17 % This code uses "fmincon" to minimize (quadratic) distance based on the sample...
18 % binding function of the II estimator
19 % With row-normalized weight matrices, lam and rho are bounded by 1 (wm=[1,1]) in magnitude;
20 % Parameter constraints by fminconstr;
21 %
22 function [thetaII,se,inegative]=II SARAR(y,X,W,M,wm,lamrho0,options0)
23 inegative=0; % to record whether components of estimated variance are negative or not
24 [n,k]=size(X);
25 thetaII=NaN*zeros(k+2,1);
26 se=thetaII;
27 if isempty(options0) % options for fminsearch with gradient specified
28 options0=optimoptions('fmincon','TolX',1e-20,'MaxFunEvals',5000,'Display','off',...
29 'SpecifyObjectiveGradient',true);
30 end
31 if isempty(lamrho0)
32 lamrho0=[0.1; 0.1]; % as column vector, initial values for lambda and rho
33 end
34 warning('off','all');
35 [lamrhoII,¬,exitflag]=fmincon(@(lamrho)IIsolve(lamrho,y,X,W,M),lamrho0,...
36 [],[],[],[],[],[],@(lamrho)fminconstrII(lamrho,wm),options0);
37 if exitflag>0 % fsolve successful
38 I=speye(n); % sparse identity matrix
39 S=I-W*lamrhoII(1);
40 R=I-M*lamrhoII(2);
41 RX=R*X;
42 betaII=regress(R*S*y,RX);
43 thetaII=[betaII;lamrhoII]; % return as a column vector
44 V=IIV(thetaII,y,X,W,M); % estimated variance matrix of II estimator
45 se=sqrt(diag(V));
46 end
47 if ¬isreal(se)
48 se=zeros(k+2,1);
49 inegative=1;
50 end
51 end
52

53 % To be used by "fsolve" or "fmincon" for the II procedure
54 % The second output is the gradient of quadratic objection function
55 % The third output is the gradient of sample binding function
56 % B,D,F,G,H,K,R,GR,XRRXinvXR,v are to be used in calculating the variance of the II estimator
57 function [f2,g,B,D,F,G,H,K,R,GR,XRRXinvXR,v]=IIsolve(lamrho,y,X,W,M)
58 n=length(y);
59 I=speye(n);
60 R=I-M*lamrho(2);
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61 dR=decomposition(R,'lu');
62 F=M/dR;
63 K=diag(F);
64 RX=R*X;
65 XRRXinvXR=(RX/(RX'*RX))'; % (X'R'RX)ˆ{-1}*(X'R')
66 H=I-RX*XRRXinvXR;
67 HR=H*R;
68

69 S=I-W*lamrho(1);
70 dS=decomposition(S,'lu');
71 G=W/dS;
72 GR=G/dR;
73 Ry=R*y;
74 D=dg(HR,GR);
75 Wy=W*y;
76 HRWy=HR*Wy;
77

78 RS=R*S;
79 RSy=RS*y;
80 [¬,¬,v]=regress(RSy,RX); % possibly faster than H*R*S*y
81

82 Fv=F*v;
83 RRv=dR\v;
84 % sample binding function related to lambda
85 flam=(sum(HRWy.*Ry)-sum(D.*(v.ˆ2)))/sum(HRWy.ˆ2)-lamrho(1);
86 % sample binding function related to rho
87 frho=(sum(RRv.*Fv)-sum(K.*(v.ˆ2)))./sum(Fv.ˆ2,1)-lamrho(2);
88 f2=flamˆ2+frhoˆ2;
89

90 if nargout > 1 % gradient w.r.t. lambda and rho
91 Blam=(2*sum(D.*HRWy.*v)-sum(dg(HR,G*GR).*(v.ˆ2)))/sum(HRWy.ˆ2)-1;
92 Sy=S*y;
93 Hrho=H*M*X*XRRXinvXR;
94 Hrho=Hrho+Hrho'; % dirative of H w.r.t. rho {j}
95 HM=H*M;
96 t1=Hrho*R-HM;
97 tempj=(F')/dR;
98 FF=F*F;
99 t2=tempj*F+FF'/dR;

100 t3=t1'*tempj+2*(HM.*K)';
101 t4=2*Hrho.*K+H.*diag(FF);
102 ej1j2=2*sum((F*Hrho*RSy-F*HM*Sy+FF*v).*Fv);
103 ej1=sum(Fv.ˆ2);
104 eji=-2*sum(Fv.*(F*HRWy));
105 RWy=R*Wy;
106 dij=sum(RWy.*(Hrho*RWy))-2*sum((M*Wy).*HRWy);
107 Dij=dg(Hrho*R-H*M,GR)+dg(HR,GR*F);
108 di=sum(HRWy.ˆ2);
109 Brho=(sum(((dR\t1)*Sy).*Fv)...
110 +sum(sum(v'.*t2.*v,1))...
111 +sum(sum(v'.*t3.*Sy,1))...
112 -sum(sum(RSy'.*t4.*v,1)))/ej1...
113 -(sum(sum(v'.*tempj.*v,1))-sum(K.*(v.ˆ2)))*ej1j2/ej1ˆ2-1;
114 Brholam=(2*sum(v.*K.*HRWy)-sum((tempj*HRWy).*v)...
115 -sum((tempj*v).*HRWy))/ej1...
116 -(sum(sum(v'.*tempj.*v,1))-sum(K.*(v.ˆ2)))*eji/ej1ˆ2;
117 t1=M'*HR;
118 t1=R'*Hrho*R-(t1+t1');
119 Blamrho=(sum(Wy.*(t1*y))...
120 +2*sum(v.*D.*((H*M-Hrho*R)*Sy))...
121 -sum(Dij.*(v.ˆ2)))/di...
122 -(sum(HRWy.*Ry)-sum(D.*(v.ˆ2)))*dij/diˆ2;
123 B=[[Blam,Blamrho];[Brholam,Brho]];
124 g=2*(B')*[flam;frho]; % may want to devide by n
125 end
126 end
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127

128 % Cacluate variance matrix of II estimator of [beta;lam;rho]
129 function V=IIV(theta,y,X,W,M)
130 [n,k]=size(X);
131 beta=theta(1:k);
132 lamrho=theta(k+1:k+2);
133 Xb=X*beta;
134 [¬,¬,B,D,F,G,H,K,R,GR,XRRXinvXR,v]=IIsolve(lamrho,y,X,W,M);
135 Sigma=v.ˆ2; % as a column vector
136 RGXb=R*G*Xb;
137 HRGXb=H*RGXb;
138 HRGR=H*R*GR;
139 Ed=tr(HRGR'.*Sigma,HRGR)+sum(HRGXb.ˆ2);
140 En2=HRGXb'*(HRGXb.*Sigma); % second part of numerator in Xi lam
141 E=HRGR-diag(D);
142 SigmaE=E.*Sigma;
143 En1=tr(SigmaE, (E+E').*Sigma);
144 Xi lam=(En1+En2)/(Edˆ2);
145

146 J1=XRRXinvXR*RGXb;
147 J2=XRRXinvXR*(HRGXb.*Sigma)./Ed;
148 L=F-diag(K);
149 t1=tr(F'.*Sigma,F); % row vector of tr(Sigma*Fi'*Fi)
150 SigmaL=L.*Sigma;
151 t2=tr(SigmaL,(L+L').*Sigma);
152 Xi rho=t2/(t1ˆ2);
153 tt2=tr(SigmaE,(L+L').*Sigma);
154 Xi lamrho=tt2/(Ed*t1);
155 Xi rholam=Xi lamrho;
156

157 Xi=n.*[[Xi lam,Xi lamrho];[Xi rholam,Xi rho]];
158 Binv=inv(B);
159 V1=(B\Xi)/(B'); % variance of sqrt(n)*(lamrhoII-lamrho)
160 V2=n.*XRRXinvXR*((XRRXinvXR').*Sigma);
161 J1BJ2=J1*Binv(1,1)*(J2');
162 V2=V2+J1*V1(1,1)*(J1')-n.*(J1BJ2+J1BJ2');
163 Vlamb=n.*Binv(1,1)*(J2')-V1(1,1)*(J1');
164 Vrhob=n.*Binv(2,1)*(J2')-V1(2,1)*(J1');
165 V12=[Vlamb;Vrhob];
166 V=[[V2,V12'];[V12,V1]]./n;
167 end
168

169 function [c,ceq]=fminconstrII(lamrho,wm)
170 c1=abs(lamrho(1))-(wm(1)-0.0001);
171 c2=abs(lamrho(2))-(wm(2)-0.0001);
172 c=[c1;c2]; % parameter nonlinear inequality constraints
173 ceq=[]; % set II as equality constraints
174 end
175

176 % trace function of product of two comformable matrices
177 function t=tr(A,B)
178 t=sum(dg(A,B));
179 end
180

181 % diagonal elements of product of two comformable matrices
182 function d=dg(A,B)
183 d=sum(A.*(B'),2);
184 end

References

Kelejian, H. H., & Prucha, I. R. (2001). On the asymptotic distribution of the Moran I test
statistic with applications. Journal of Econometrics, 104, 219–257.

22



Lee, L. F. (2004). Asymptotic distribution of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72, 1899–1925.

Phillips, P. C. B. (2012). Folklore theorems, implicit maps, and indirect inference. Economet-
rica, 80, 425–454.

Ullah, A. (2004). Finite Sample Econometrics. New York, NY: Oxford University Press.

23


	SARAR-main
	Introduction
	Model Specification
	Estimation Procedure
	The OLS Estimator
	The II Estimator

	Simulation Results
	Empirical Studies
	Teenage Pregnancy Rates
	Airbnb Listing Prices

	Conclusions

	SARAR-Appendix

