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1 Introduction

Sequential sampling is a classic statistical problem in which a decision-maker, using the
information from previous observations, chooses whether to make an additional costly obser-
vation.1 This problem provides a framework for examining the trade-off between continued
exploration and stopping to exploit the value of a given sequential random sample—a trade-
off that is clearly relevant for a range of applications involving innovation activity.2 In this
paper, we examine a model of sequential-sampling competition3 with a public leaderboard –
a feature that has become prevalent among innovation-contest platforms such as Kaggle.com,
drivendata.org, and challenge.gov. In particular, we demonstrate that, in the subgame per-
fect equilibrium of the sequential-sampling competition with a fixed ending date (i.e., finite
horizon), the public leaderboard feedback competition may not always generate a higher
expected quality of the winning innovation than the corresponding private-feedback compe-
tition. We conduct a controlled laboratory experiment to test this theoretical prediction and
find that the experimental results largely support the theory.

To understand how leaderboard feedback affects the competition, note that the presence
of a leaderboard generates two distinct effects on the dynamics of effort provision that are
not present with private feedback. With a leaderboard the trailing competitor (henceforth,
follower) may condition her choice of whether or not to make an additional costly observation
on the leader’s score. When the leader’s score is low, the follower is more likely to be able
to overtake the leader, and thus, leaderboard feedback may encourage followers to continue
searching. Conversely, when the leader’s score is high, a follower is less likely to be able to
overtake the leader, and thus, leaderboard feedback may discourage followers from continuing
to search. We show that in equilibrium: (i) followers who trail in the competition are more
likely to invest in additional search than leaders, and (ii) all competitors reduce their search
efforts as the leader’s existing innovation quality increases. The results of our experiment
confirm these theoretical predictions that current leaders tend to exert less search effort than
followers and that both leaders and followers become less willing to exert search effort as the
leader’s innovation quality increases.

1This problem appears to have been first formulated in Wald (1947). Early work includes Robbins (1952),
Bradt and Karlin (1956), Feldman (1962), and Berry (1972). In economics, early applications include Stigler
(1961) and the following literature on search, and Rothschild (1974) and the following literature on two-armed
bandits.

2For an introduction to sequential-sampling problems, see DeGroot (1970). In addition to innovation
competition, which we discuss in more detail below, recent applications include, among others, dynamic
public-goods problems (Keller, Rady and Cripps, 2005), long-term contracts (Halac, Kartik and Liu, 2016),
moral hazard in teams (Bonatti and Hörner, 2011), voting for reforms (Strulovici, 2010; Khromenkova, 2015),
and decision timing (Fudenberg, Strack and Strzalecki, 2018).

3In sequential-sampling competition, each draw of an innovation quality may be thought of as a new
innovation, and then each competitor submits their best innovation. An alternative interpretation is that
each competitor is working on one specific innovation and that each draw of an innovation quality is in
regards to searching over quality improvements to that particular innovation.
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The dynamics of innovation e�ort provision help provide insight as to why leaderboard
feedback may result in a lower expected value of the winning innovation for contests with
a �xed ending date. Beginning with the case of an in�nite horizon, leaderboard feedback
generates a higher equilibrium expected value of the winning innovation than private feedback
does.4 However, a �xed ending date (i.e., a �nite horizon) presents an additional obstacle
for a follower that is attempting to overtake the leader. As a result, the leader score at
which leaderboard feedback changes from encouraging e�ort by followers to discouraging
e�ort by followers decreases as the length of the contest decreases. Because contest length
has a less pronounced discouragement e�ect on the private-feedback contest, we �nd that
there exist �xed contest lengths that, given the other model parameters, are su�ciently short
as to result in leaderboard feedback generating a lower equilibrium expected quality for the
winning innovation than the corresponding private-feedback contest.

An additional consideration with leaderboard feedback is its potential to generate an
escalation of commitment (i.e., sunk-cost fallacy) that is reminiscent of the dollar auction
and the penny auction.5 That is, with a leaderboard, the follower knows that he or she
is not in the lead and may consider his or her sunk research costs when deciding whether
to try to take the lead by making an incremental investment in additional research e�ort.
We investigate how individual characteristics, including sunk-cost fallacy, a�ect competitive
sequential-sampling activity. Despite the fact that players engaged in sequential-sampling
competition make escalating research investments, we �nd that performance on a sunk-
cost-fallacy elicitation task is not a signi�cant predictor of behavior with the leaderboard,
or without the leaderboard. However, risk aversion is a signi�cant predictor of behavior
both with and without leaderboard feedback, and we �nd that the direction of this e�ect is
consistent with the theoretical predictions.

Our paper contributes to several active streams of literature. First, we contribute to the
experimental literature on feedback in innovation contests. There are several recent exam-
ples of experimental work that examine potential drawbacks of providing feedback in related
contest environments, including Kuhnen and Tymula (2012), Ludwig and Lünser (2012), and
Deck and Kimbrough (2017). Most closely related is Deck and Kimbrough (2017) who exper-
imentally examine the exponential-bandit based innovation competition in Halac, Kartik and
Liu (2017). In that setting, Deck and Kimbrough (2017) �nd that withholding information
leads to better innovation outcomes. This result arises from the fact that the information
that your opponents have not procured the zero-one innovation lowers your own belief about
the probability that innovation is possible. That is, information may only be discouraging,
and thus, hiding information may be valuable. In a variation of a two-stage di�erence-form
contest, Ludwig and Lünser (2012) �nd that feedback in�uences the dynamics of e�ort pro-

4For further details on the in�nite horizon version of the model, see Appendix A.2
5See, for example, Hinnosaar (2016) on the penny auction and Shubik (1971) and O'Neill (1986) on the

dollar auction.
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vision but not total e�ort. Kuhnen and Tymula (2012) �nd a similar result in an experiment
that is modeled as a single-stage di�erence-form contest that is repeatedly played and feed-
back a�ects ego utility which may evolve over time. Lastly, In a recent survey, Dechenaux,
Kovenock and Sheremeta (2015) highlight that in environments where it is di�cult for the
follower to overtake the leader, feedback may result in the trailing player dropping out (e.g.,
Fershtman and Gneezy, 2011). In the case of sequential-sampling competition, our experi-
mental results are consistent with some of the �ndings on the dynamics of e�ort provision
observed in these papers. In particular, we �nd that followers who trail in the competition
are more likely to continue to search than leaders, and all competitors reduce their search
e�ort as the leader's existing innovation quality increases and it becomes more di�cult for
the follower to overtake the leader.

Second, our work is related to the literature on factors that motivate individuals to
innovate. In particular, on the experimental side, recent studies have examined the role of
incentives (Ederer and Manso, 2013), preferences (Herz, Schunk and Zehnder, 2014; Rosokha
and Younge, 2017), and biases (Herz, Schunk and Zehnder, 2014). On the empirical side, two
recent surveys by Astebro et al. (2014) and Koudstaal, Sloof and Van Praag (2015) highlight
that entrepreneurs are typically less risk and loss averse. In the current paper, we consider
the extent to which risk aversion, loss aversion, and the sunk-cost fallacy play a role in
sequential-sampling competition.6 Speci�cally, as part of our experiment, we elicited those
three measures with incentivized multiple-price list tasks. In addition, we asked subjects
to complete several unincentivized personality questionnaires. We �nd that risk aversion
is a signi�cant predictor of the number of costly innovation actions in the contest, with
more risk-averse subjects taking fewer actions. However, we did not �nd that loss aversion,
the sunk-cost fallacy, or unincentivized measures of personality were predictive of subjects'
behavior in the contest.

Finally, we contribute to the literature on innovation competition. Existing approaches
include but are not limited to variations of all-pay auctions (e.g., Che and Gale, 2003;
Chawla, Hartline and Sivan, 2015), exponential-bandit contests (e.g., Halac, Kartik and Liu,
2017; Bimpikis, Ehsani and Mostagir, 2019), two-stage di�erence-form contests (e.g., Aoyagi,
2010; Klein and Schmutzler, 2017; Goltsman and Mukherjee, 2011; Gershkov and Perry, 2009;
Mihm and Schlapp, 2018; Yildirim, 2005), crowdsourcing contests (e.g,. Terwiesch and Xu,
2008; DiPalantino and Vojnovic, 2009; Erat and Krishnan, 2012; Ales, Cho and Körpeo§lu,
2017), dynamic contests (e.g., Lang, Seel and Strack, 2014; Seel and Strack, 2016), and
structural/empirical models of innovation contests (e.g. Gross (2017); Lemus and Marshall
(Forthcoming)). For example, Lemus and Marshall (Forthcoming) examine Markov Perfect

6We focus on risk aversion and loss aversion as characteristics that have been documented to matter in
the lab (e.g., Herz, Schunk and Zehnder, 2014; Rosokha and Younge, 2017) and �eld (Astebro et al., 2014;
Koudstaal, Sloof and Van Praag, 2015) settings. In addition, we consider the sunk-cost fallacy because it
has been shown to a�ect behavior in a related setting of penny auctions (Augenblick, 2015).
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equilibrium in a variation of continuous-time sequential-sampling competition which includes
features such as: (i) new contestants exogenously entering the competition at a constant rate
over time and (ii) for each contestant innovation opportunities arrive stochastically over time.
In this framework, Lemus and Marshall (Forthcoming) �nd that the e�ect of leaderboard
feedback is theoretically ambiguous.7

In contrast, our work is most closely related to classic sequential-sampling competition,
as in Taylor (1995), Fullerton and McAfee (1999), Baye and Hoppe (2003), and Rieck (2010),
which readily lends itself to both multi-period competition and standard exploration versus
exploitation considerations. Within this line of research, Fullerton and McAfee (1999) and
Baye and Hoppe (2003) consider the case of no feedback and Taylor (1995) considers the
case of private feedback. Our focus in this study is on leaderboard feedback in a setting with
an arbitrary, but �xed, number of periods and in which the contestants may have general
utility functions. The special case of our model with risk-neutral players and two periods
is examined in Rieck (2010), who �nd that private feedback generates a higher equilibrium
expected value of the winning innovation. Conversely, we �nd that with an in�nite hori-
zon, leaderboard feedback makes for a more engaging competition that generates a higher
expected value of the winning innovation than private feedback does. In the remaining case
of a �xed contest length between the extremes of2 periods and an in�nite horizon, we �nd
that there exist a range of �nite contest lengths that are su�ciently short that leaderboard
feedback generates a lower equilibrium expected value for the winning innovation than the
corresponding private-feedback contest.

The rest of the paper is organized as follows: in section 2, we present the theoretical
model. In section 3, we provide details of the experimental design. In section 4, we develop
predictions for our environment and organize them into four hypotheses. In section 5, we
present the main results of the experiment. Finally, in section 6, we conclude.

2 Theory

Consider a two-playerT-period dynamic innovation contest, along the lines of Taylor (1995).
In this model, innovation activity takes the form of a search process with perfect recall. In
each periodt 2 f 1; : : : ; Tg, each playeri 2 f 1; 2g has the opportunity to exert e�ort at a
cost of c > 0. For simplicity, the discussion in this section is for the case of risk-neutral
players, and the case of a general utility function that allows for risk aversion, loss aversion,
and/or sunk-cost fallacy considerations is addressed in Appendices A and B. If playeri exerts
e�ort, she obtains an innovation, with quality level si;t , a random variable that is distributed

7Lemus and Marshall (2019) estimate their model on data obtained from kaggle.com for competitions
with public leaderboard. The authors then run a series of counterfactual simulations to show a positive
e�ect of leaderboard on the number of submissions and the quality of winning submission. The authors also
conduct a set of student competitions on kaggle.com to experimentally support their results.
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according to F , where F has a continuous and strictly-positive density everywhere on its
support, which is assumed to be a convex subset ofR+ with a lower bound of 0.8 In the
event that player i does not exert e�ort in period t, let si;t = 0. Player i 's innovation �score�
at the end of periodt is denoted bysi;t � maxf si; 1; : : : ; si;t g. After T periods, the contest
ends and the player with the higher innovation score at the end of periodT, that is, the
player i with si;T = maxf s1;T ; s2;T g, is awarded a prize with valuev � 2c.9 In the case of a
tie, the winner is randomly chosen.

We examine two levels of feedback in the dynamic-innovation contest: (i) private feed-
back and (ii) leaderboard feedback. With the private-feedback innovation contest, at the
beginning of each periodt, each playeri knows her current score (si;t � 1), and at the end of
period t, player i observes her periodt innovation quality si;t . With the leaderboard-feedback
innovation contest, at the beginning of each periodt, each playeri knows, in addition to
her own private feedback, the current max score,10 maxf s1;t � 1; s2;t � 1g. In the following sub-
section, we characterize the subgame perfect equilibrium for the public-feedback innovation
contest.

Throughout the rest of the paper, we use the convention, due to Taylor (1995), of referring
to each draw of an innovation qualitysi;t as a new innovation. Recall that an equivalent
interpretation is that player i is working on one speci�c innovation and that each draw of an
innovation quality si;t is in regards to searching over quality improvements to that particular
innovation. Depending on the application, this second interpretation may be more natural.

2.1 Subgame Perfect Equilibrium in Innovation Contests

In Appendix A, we characterize the SPNE in the leaderboard-feedback innovation contest
for the case of a general utility function that allows for risk aversion, and in Appendix B, we
address the modeling of loss aversion and sunk-cost fallacy considerations. For simplicity, we
focus here on the case of risk neutral players. Note that for the special case of risk-neutral
players, the analysis of the �nal stageT coincides with the analysis of the second stage of
the two-stage model in Rieck (2010).

Private Feedback

The subgame perfect equilibrium for the private-feedback innovation contest is characterized
by Taylor (1995). In particular, Proposition 2 of that paper establishes that the unique

8In the experiment, we assume that innovations are exponentially distributed (F (x; � ) = 1 � e� �x and
f (x; � ) = �e � �x , where � > 0 is the rate parameter).

9For the remaining cases ofv 2 [0; 2c), note that if c > v then the contest is trivial, and it is straightfor-
ward to extend our analysis to the case ofv 2 [c;2c).

10Note that the characterization of the subgame perfect equilibrium of the leaderboard feedback game in
Section 2.1, also applies to the variation of the game in which at the beginning of each period, each player
observes both players' scores.
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subgame perfect equilibrium takes the form of a stopping rule in which each playeri continues
to exert e�ort until her max score hits a threshold � denoted by� i � and she stops exerting
e�ort.

Figure 1: Period T Local Best Response for Private Feedback

Notes: sT � own score in period T; F (:) � distribution of innovation quality; p0
T �

probability that the other player draws in period T; ND (pT = 0) � decision not to draw;
D(pT = 1) � decision to draw; � � threshold determined by equation (1).

The equilibrium value of the threshold� i is determined by the equation

v
Z 1

� i

(1 � F T (� i ))
F (x) � F (� i )

1 � F (� i )
dF(x) � c = 0: (1)

For example, in our experiment, we assume that when a player exerts e�ort in a given
period, the quality of the innovation in that period is a random variable that is distributed
according toF (x; � ) = 1 � e� �x with � = 0:125, which implies that for T = 10, the unique
subgame-perfect equilibrium stopping rule has a threshold of� = 12:16.

Leaderboard Feedback

Let f t (l t ) denote the follower (leader) in an arbitrary periodt. We begin by characterizing
the �nal-stage local equilibrium strategies and corresponding equilibrium expected payo�s,
and then make our way back through the game tree. Given a leader score ofsT at the
beginning of the �nal stageT, note that the probability that a stage T random draw by
the follower does [does not] overtake a leader who does not draw in stageT is 1 � F (sT )
[F (sT )]. Similarly, the probability that a stage T random draw by the follower does [does not]
overtake a leader who also draws in stageT is F (sT )(1 � F (sT )) + (1� F (sT )) 2

2 = (1� (F (sT )) 2 )=2
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[(1+( F (sT )) 2 )=2]. In the �nal period T, if the max score at the beginning of periodT is sT , then
we have the following matrix game:

Table 1: Period T Local Subgame

From Table 1, we see that the periodT follower's (f T 's) �nal-stage local expected payo�
from choosing to draw (D) when the periodT leader (lT ) chooses not to draw (ND) is
v(1 � F (sT )) � c. Similarly, f T 's expected payo� from choosingD when lT choosesD is
v(1� F (sT )2 )

2 � c. Regardless oflT 's period T action, the payo� to f T from choosingND in
period T is 0. The expected payo�s for the periodT leader (lT ) follow along similar lines.

To calculate the �nal-stage local equilibrium, letplT (pf T ) denote the probability that the
period T leader lT (period T follower f T ) draws in period T. Figure 2 presents the players'
best-response correspondences as a function of the leader's max score at the beginning of
period-T, sT , and of the probability that the opponent draws in periodT and receives a
stochastic period-T innovation quality distributed according to F (�).
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Figure 2: Period T Local Best Responses for Leaderboard Feedback

Notes: sT � score in period T; F (:) � distribution of innovation quality; pf T � probability
that follower draws in period T; pl T � probability that the leader draws in period T;
ND (pi T = 0) � decision not to draw by player i 2 f leader; follower g; D (pi T = 1) �
decision to draw by player i 2 f leader; follower g;

Proposition 1 characterizes the �nal-stage local equilibrium strategies and expected pay-
o�s that follow directly from the best-response correspondences given in Figure 2. In partic-

ular, if 1 �
q

2c
v � F (sT ) and pf t = 1, then we see from the Leader's Best-Response panel of

Figure 2 that D(plT = 1) is a best response for the the leader. Similarly, if1�
q

2c
v � F (sT ),

then we see from the Follower's Best-Response panel of Figure 2 that for any value of
pf t 2 [0; 1], the follower's best response isD(pf T = 1) . The remaining cases of values of
F (sT ) follow along similar lines.

Proposition 1. The �nal-stage local equilibrium strategies are characterized as follows:
8
>>><

>>>:

Both draw if 1 �
q

2c
v � F (sT )

only follower draws if 1 � c
v � F (sT ) > 1 �

q
2c
v

neither draws if F (sT ) > 1 � c
v

:

The corresponding �nal-stage local equilibrium expected payo�s for the leader and follower
are given in Table 1.

Regarding intuition for the �nal-stage local equilibrium strategies, recall that the proba-
bility that a random draw by the follower overtakes a leader who does not draw (1� F (sT )),
is decreasing in the leader's score (sT ). If the leader's score at the beginning of the �nal

8



period is not su�ciently high ( 1 � F (sT ) � c
v ), then the marginal gain to the follower from

making an additional draw is greater than the cost of making that draw. The follower's
decision to draw, in turn, generates a strictly positive probability that the follower overtakes
the leader. To counter this probability, the leader will draw, but only if the current score

is su�ciently low ( 1 � F (sT ) �
q

2c
v ). However, if the leader's score is above this threshold

(1 � F (sT ) <
q

2c
v ), then the marginal gain to the leader from making an additional draw is

su�ciently low that the leader's best response is to not draw even if the follower draws.
To calculate the (closed-form) subgame-perfect equilibrium strategies, we may take the

Proposition 1 �nal-stage local expected payo�s and work back through the game tree to
stageT � 1. The only issue in continuing the backward-induction process all the way to the
root of the game in stage 1 is the calculation of the expected continuation payo�s in the
period t local subgame. We provide details on these calculations in Appendix A.

3 Experimental Design

In this section, we describe the experimental design and provide predictions for our experi-
ment using the theory developed above. In particular, the primary goal of the experiment is
to address the role of feedback in sequential-search innovation competition. To this end, the
main part of our experiment consists of two within-subject treatments: (i) a private-feedback
treatment and (ii) a leaderboard-feedback treatment. In addition to the primary goal, our
aim is to better understand factors that may in�uence individuals to innovate. To this end,
our design includes an individual search task that removes the strategic aspect present in the
two competitions and the elicitation of individual (e.g., risk aversion) and personality (e.g.,
grit) characteristics that may be important in an innovation setting. Next, we elaborate on
details of the design and our implementation of the experiment.

3.1 Private-Feedback and Leaderboard-Feedback Contests

At the beginning of the experiment, each subject individually reads instructions that are
displayed on their computer screen. In particular, we implemented a within-subject design,
whereby each subject starts the experiment with either eight private-feedback contests or
eight leaderboard-feedback contests and then switches to the other feedback type for contests
9 through 16. Thus, before contests 1 and 9, subjects are provided with detailed instructions
and practice tasks that explain the setting of the upcoming eight contests. During the
practice tasks, subjects were matched with a computer that made decisions randomly, and
subjects were informed about the random behavior of the opponent in the practice task.
A copy of the instructions used in the experiment and the practice tasks is provided in
Appendix C.
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Each contest consists of two subjects matched for 10 periods of decision-making. Prior
to the �rst period, each subject is given an endowment of $10.00. Within each period,
subjects have the opportunity to pay a costc = $1:00 to draw an innovation quality from
an exponential distribution with parameter � = 0:125. At the end of 10 periods, the contest
ends and the subject with the highest-quality innovation (the highest score) wins the prize
of v = $10:00. Each subject keeps any money left over from her endowment. We chose
these parameters because they provide interesting qualitative model predictions in a simple
environment and were the same for the private and leaderboard treatments as well as for the
individual search task described in section 3.2.

The �rst treatment is a two-player private-feedback contest in which each subject only
receives feedback on their own innovations. Speci�cally, in each period, subjects decide
whether to innovate. Although subjects know the quality of their own innovation, they
do not know whether they are winning or losing until all decision periods are over. That
is, the winning innovation is revealed only at the end of the contest. A screenshot of the
private-feedback treatment is presented in Figure 3(a). In particular, during each period,
each subject has access to the number of times she has drawn, the quality of each of the past
innovations she has drawn, and her current innovation score (her innovation with the highest
quality). To simplify decision-making, subjects are told the probability that an additional
draw will result in a higher individual innovation score. At the end of the contest, subjects
are informed of the winner of the contest and the amount of money they have earned for the
contest.

The second treatment is a two-player leaderboard-feedback contest in which each subject
receives feedback on her own innovation as well as the innovation that is currently lead-
ing the contest. Speci�cally, similar to the private-feedback contest, in each period of the
leaderboard-feedback contest, subjects decide whether to innovate; however, the contest's
best innovation is now revealed at the start of each period. Thus, each participant knows
whether she is a leader or a follower. A screenshot of the leaderboard-feedback treatment is
presented in Figure 3(b). Although most aspects of the leaderboard-feedback treatment are
the same as in the private-feedback treatment, subjects receive additional feedback regarding
the current highest score in the contest. That is, subjects always know whether they are
currently winning or losing the contest and the probability that their next draw will result
in their score being higher than the current maximum score.11

11Subjects are no longer shown the probability that an additional draw will result in a higher individual
innovation score.
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Figure 3: Screenshots of the Experimental Interface

(a) Private Feedback

(b) Leaderboard Feedback

3.2 Individual Tasks and Questionnaires

After completing both treatments, subjects were presented with several individual tasks. In
particular, subjects completed three elicitation tasks: (i) a risk-aversion task, (ii) a loss-
aversion task, and (iii) a sunk-cost-fallacy task. In each of these three tasks, subjects chose
one of two options for each of the 20 decisions. The decisions were organized into a multiple
price list as is common in the literature (e.g., Holt and Laury, 2002; Rubin, Samek and
Sheremeta, 2018). In particular, the �rst task was the risk-aversion task. In this task, each
participant chose between a risky option (50% chance of $10.00 and a 50% percent chance of
$0.00) and a safe option that was varied across decisions (started at $0.50 and increased by
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$0.50 in each subsequent decision). The second task was the loss-aversion task. In this task,
each participant chose between a safe option of $0.00 and a risky option that had a 50%
chance at $0.00 and a 50% chance of a loss (varied from� $0:50 to � $10:00 in increments
of $0.50). The third elicitation task was the sunk-cost-fallacy task. In this task, subjects
were given an endowment of $15.00 and were required to pay $5.00 to initiate a project.
Each subject then decided whether to complete the project at various completion costs.
Completing the project was always worth $7.50; however, the cost varied between decisions.
The completion cost started at $0.50 and increased by $0.50 in each subsequent decision.
The sunk-cost fallacy occurs if the subject completes the project at a cost greater than $7.50.
Screenshots of the three individual elicitation tasks are presented in Figures D1-D3 in the
Appendix.

In addition to the above elicitation tasks, each subject participated in eight individual
search tasks. The individual search tasks were similar to the two contests except that the
human opponent was replaced with an existing innovation of a known quality. In particular,
the existing innovation took on �ve values: 15.177, 16.832, 18.421, 20.205, and 23.966.12

Each subject saw all �ve values, and the values 15.177, 18.421, and 23.966 were repeated
twice. The �ve values were displayed in random order. If the subject ended the period
with an innovation of greater quality than the existing innovation, she won $10.00. Thus,
these tasks allow us to analyze individual behavior in a similar environment but without
competition against another human subject. A screenshot of the individual search task is
presented in Figure D4 in the Appendix.

The experiment concluded with three unincentivized personality questionnaires. In par-
ticular, the �rst questionnaire measured the psychological construct of grit through the
12-item Grit Scale (Duckworth et al., 2007). The second questionnaire measured the big �ve
characteristics (agreeableness, extraversion, neuroticism, openness, and conscientiousness)
through the 44-item big-�ve inventory (John and Srivastava, 1999). The third question-
naire measured achievement-striving and competitiveness through the 10- and 6-item scales
obtained from the International Personality Item Pool.13

3.3 Experimental Administration

All parts of the experiment, including instructions, innovation contests, individual elicita-
tion tasks, and personality questionnaires, were implemented in oTree (Chen, Schonger and
Wickens, 2016). In total, subjects participated in 27 compensation-relevant tasks. Speci�-
cally, the compensation-relevant tasks included the eight private-feedback contests, the eight
leaderboard-feedback contests, the risk-aversion elicitation task, the loss-aversion elicitation

12These values correspond to the 85th, 88th, 90th, 92nd, and 95th percentiles of the exponential dis-
tribution, respectively. In particular, the risk-neutral agent would be indi�erent between drawing and not
drawing if the existing innovation was 18.421.

13https://ipip.ori.org/
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task, the sunk-cost-elicitation task, and the eight individual search tasks. At the end of the
experiment, two of these 27 tasks were chosen at random by the computer for payment.

We recruited 96 students on the campus of Purdue University using ORSEE software
(Greiner, 2015). Participants were split into 12 sessions, with eight participants per session.
As mentioned above, to ensure that the order of treatments did not a�ect the main results,
half of the sessions started out with eight private-feedback contests, whereas the other half
of the sessions started out with eight leaderboard-feedback contests. The experiment lasted
under 60 minutes, with average earnings of $19.91.

4 Predictions

In this section, we present predictions for the experiment that were obtained by solving for
the closed-form subgame-perfect equilibrium described in section 2 for the particular model
parameters speci�ed in the experiment. In particular, using the model, the resulting predic-
tions were organized into four hypotheses: the �rst hypothesis pertains to the comparison of
the private- and leaderboard-feedback contests; the second hypothesis pertains to the com-
parison of leader and follower behavior; the third hypothesis pertains to the dynamics of
the draws in the two contests; and the fourth hypothesis pertains to the role of individual
characteristics such as risk aversion, loss aversion, and the sunk-cost fallacy. Note that these
hypotheses are for the particular model parameters speci�ed in the experiment (v = $10,
c = $1, T = 10, and an exponential distribution of innovation quality with � = 0:125), which
we chose because they provide interesting qualitative model predictions in a simple environ-
ment. Furthermore, it is straightforward to provide examples of parameter con�gurations
that generate qualitatively di�erent model predictions.14

14For example, if the number of periods, which is set atT = 10 in the experiment, becomes arbitrarily
large, then the prediction of which level of feedback leads to more draws and a higher winning innovation
switches from private-feedback to leaderboard-feedback.
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Table 2: Summary of Predictions

Private Feedback Leaderboard Feedback
Winning Innovation 23.42 21.84
Aggregate Draws 8.36 6.34
Proportion of Draws

Leader
Known Score 0�15 0.67/0.30/0.03 0.59/0.04/0.00
Known Score 15�25 0.11/0.02/0.00 0.00/0.00/0.00

Follower
Known Score 0�15 0.90/0.62/0.37 0.59/0.55/1.00
Known Score 15�25 0.58/0.19/0.08 0.14/0.38/0.32

Notes: Aggregate draws refers to the predicted number of draws that occurs in a contest
in each treatment. Winning innovation refers to the predicted quality of the winning
innovation in each treatment. Known score refers to the individual score in the private-
feedback treatment and the maximum score in the leaderboard-feedback treatment. The
third row displays the draw rate of the leader and the follower in periods 2, 6, and 10
of the experiment. The fourth row displays the draw rate in periods 2, 6, and 10 of the
experiment for known scores in the 20th-80th percentiles for that period. The �fth row
displays the di�erence in draw rates for known scores in the lower half and the upper
half of the known score distribution for periods 2, 6, and 10.

The top part of Table 2 shows that a contest with private feedback is predicted to induce
more draws (8:36) and result in a greater winning innovation score (23:42) than a contest
with leaderboard feedback (6:34 draws; winning innovation of21:84).15 We summarize this
prediction with Hypothesis 1.

Hypothesis 1. The private-feedback contest leads to more draws and a higher winning in-
novation than the leaderboard-feedback contest.

The bottom part of Table 2 presents the proportion of time subjects chose to draw an
innovation. The proportions are broken down by the period of the contest (presented as a
triple of the 2nd/6th/10th periods), the current score (grouped into ranges 0�15 and 15�25),
and whether the player was a leader or a follower.16 By comparing the proportion of draws
between leaders and followers, the follower is clearly predicted to be at least as likely to draw
as the leader across most of the ranges of innovation scores and periods.17 We summarize
this prediction with Hypothesis 2.

Hypothesis 2. Followers draw more frequently than leaders.

15We used a simulation approach to obtain moments presented in Table 2. In particular, we simulate one
million contests for two players following equilibrium strategies derived in Appendix A.1.

16Figures D6 in Appendix D present further evidence on the proportion of draws obtained in the simula-
tions.

17Overall, leaders draw 8.73% of the time in the simulated contests and followers draw 39.20% of the time
in the simulated contests.
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The bottom part of Table 2 also provides an insight regarding the dynamics of decision-
making. In the private-feedback treatment, as the individual innovation score increases,
each player becomes less willing to draw. This decrease in willingness to draw can be seen
by comparing the proportion of draws between relatively low individual scores (0�15) and
relatively high individual scores (15�25) for both leaders and followers. Additionally, in the
leaderboard-feedback treatment, as the maximum score increases, each player becomes less
willing to draw. This can be seen by comparing the proportion of draws between relatively
low maximum scores (0�15) and relatively high maximum scores (15�25) for both leaders
and followers. We summarize this prediction with Hypothesis 3.

Hypothesis 3. Players become less willing to draw as their individual score increases in the
private-feedback treatment and as the maximum score increases in the leaderboard-feedback
treatment.

Lastly, we incorporate three behavioral characteristics: risk aversion, loss aversion, and
the sunk-cost fallacy.18 The three panels of Figure 4 present the comparative statics as we
vary these characteristics one at a time. For example, to vary risk aversion, we model both
players as having a CRRA utility function with parameter 
 , and we vary this parameter
across a range of values typically observed in the experimental literature.

Figure 4: Decision to Draw and Comparative Statics

Notes: This �gure displays equilibrium predictions under di�erent levels of (a) risk aver-
sion, (b) the sunk-cost fallacy, and (c) loss aversion. The orange line is the private-
feedback treatment, and the blue line is the leaderboard-feedback treatment.

Figure 4 shows that as risk aversion and loss aversion increase, the number of total draws
made in the contest decreases. The sunk-cost fallacy, however, has an opposite e�ect. In
particular, as the sunk-cost fallacy increases, we observe more total draws. We summarize
these predictions with Hypothesis 4.

Hypothesis 4. The number of draws increases with (a) a decrease in risk aversion, (b) a
decrease in loss aversion, and (c) an increase in the sunk-cost fallacy.

18Speci�cations of the three utility functions as well as the general procedure for obtaining predictions
are provided in Appendix B.
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5 Results

In this section, we present the results of our experiment. In particular, �rst, in section 5.1 we
compare the outcomes of the private and leaderboard treatments. Next, in section 5.2, we
test for di�erences in behavior between the leader and the follower. Then, in section 5.3, we
consider the dynamics observed in the experimental data. Finally, in section 5.4, we discuss
the role of individual characteristics in determining innovation-contest outcomes.

5.1 Private vs Leaderboard Contests

The columns of Table 3 display the summary statistics from the two treatments. In particu-
lar, the table is divided into two parts. In the top part, we present the aggregate results on
the �nal innovation quality and the total number of draws that we observed in each of the
treatments, on average. In the bottom part, we present the results on the proportion of draws
conditional on the period in the game (periods 2, 6, and 10 are separated by "/"), current
score (we group scores into two ranges 0�15 and 15�25), and whether the decision-maker
was a leader or a follower.19

Table 3: Contest Results

Private Feedback Leaderboard Feedback
Winning Innovation 22.87 21.47
Aggregate Draws 8.50 7.54
Proportion of Draws

Leader
Known Score 0�15 0.59/0.60/0.33 0.37/0.36/0.20
Known Score 15�25 0.16/0.16/0.11 0.08/0.08/0.07

Follower
Known Score 0�15 0.61/0.64/0.40 0.60/0.59/0.63
Known Score 15�25 0.45/0.41/0.38 0.49/0.50/0.49

Notes: Aggregate draws refers to the predicted number of draws that occur in a contest
in each treatment. Winning innovation refers to the predicted quality of the winning
innovation in each treatment. The third row displays the draw rate of the leader and
the follower in periods 2, 6, and 10 of the experiment. The fourth row displays the draw
rate in periods 2, 6, and 10 of the experiment for scores that range in the 20th-80th
percentiles for that period. The �fth row displays the di�erence in draw rates for scores
in the lower half and the upper half of the score distribution for periods 2, 6, and 10.

The top part of Table 3 shows the average number of contest draws and the average value
of the winning innovation in each treatment. In particular, in the private-feedback treatment,
the average number of draws (8.50) and the average value of the winning innovation (22.87)

19Recall that although the role of leader/follower is known to the decision-makers in the leaderboard-
feedback treatment, it is not known to the decision-makers in the private-feedback treatment.
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are not signi�cantly di�erent from the theoretically predicted values (8.36 draws, p-value
0.67; score of 23.42, p-value 0.36).20 In terms of the leaderboard feedback, we also �nd
no di�erence in the value of the winning innovation between theory and the experiment
(21.84 vs. 21.47, p-value 0.42). However, we do �nd a di�erence between theory and the
experiment in terms of the number of draws for the leaderboard-feedback treatment (6.34
vs. 7.54, p-value 0.000).

The main focus of the aggregate results is on the comparison between private and leader-
board feedback (i.e., Hypothesis 1). Table 3 shows that in our experiment, the number
of draws in the private-feedback contest (8.50) is greater than in the leaderboard-feedback
contest (7.54). We test whether this di�erence is signi�cant using a random-e�ects regres-
sion with session-level e�ects.21 We �nd that this di�erence is signi�cant ( p-value=0.000).22

Similarly, Table 3 shows that the winning technology is greater in a private-feedback contest
(22.87) than in a leaderboard-feedback contest (21.47). Again, using a random-e�ects regres-
sion with session-level e�ects, we �nd that this di�erence is signi�cant (p-value=0.029).23

Table D4 in the Appendix shows that our conclusions are robust when we control for the
order in which the two contests were presented as well as when we restrict the analysis to
the �rst contest faced by the participant. We summarize these tests with Result 1.

Result 1. A private-feedback contest results in more draws and a greater winning innovation
value than a leaderboard-feedback contest (evidence supporting Hypothesis 1).

5.2 Leaders vs. Followers

The bottom part of Table 3 shows that the proportion of time that a follower draws is greater
than the proportion of time that a leader draws. Although the di�erence is observed in both
the private and leaderboard treatments, the di�erence is much larger in the latter. Figure
5 presents further evidence regarding this comparison. Formally, each panel of the �gure
shows a panel data logistic regression of the decision to draw on the maximum score. The
bottom row of the �gure presents the comparison of of the leader's decision (blue) and the
follower's decision (red). The �gure clearly shows that in almost every combination of period
and maximum score, followers are more likely to draw than leaders. Thus, Figure 5 suggests
that Hypothesis 2 holds.24

20Hypothesis tests in this paragraph are conducted using bootstrapped regressions, with 5,000 bootstrap
samples, on the session-level averages.

21We use random e�ects instead of �xed e�ects throughout this section because time-invariant factors
will drop out using �xed e�ects and because random e�ects is more e�cient. Among recent papers that
use random-e�ects regressions are Embrey, Fréchette and Yuksel (2018), Noussair, Trautmann and van de
Kuilen (2014), and Anderson, Friedman and Oprea (2010).

22The p-value is 0.000 if we utilize a �xed-e�ects regression with session-level e�ects.
23The p-value is 0.030 if we utilize a �xed-e�ects regression with session-level e�ects.
24Figure B5 provides similar �gures for the remaining periods.
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Figure 5: Decision to Draw in the Leaderboard-Feedback Treatment

Notes: This �gure displays two sets of graphs. The �rst set of graphs display logistic
regressions of the decision to draw in the private-feedback treatment for periods 2, 6, and
10. The second set of graphs display logistic regressions of the leader's decision (blue) to
draw and the follower's decision (red) to draw in the leaderboard-feedback treatment for
periods 2, 6, and 10.

To formally test the di�erence between leader and follower behavior, we use a panel data
logistic regression. In particular, we regress the decision to draw on an indicator variable
for whether the subject was a leader, while accounting for subject-level random e�ects and
clustering standard errors at the session level.25 The coe�cient on the leader variable is
negative and signi�cant at the 1% level. We summarize these observations with Result 2.

Result 2. Leaders draw less frequently than followers in the leaderboard-feedback treatment
(evidence supporting Hypothesis 2).

5.3 Dynamics of Decision-Making

Figure 5 suggests that subjects are less willing to draw as the individual score increases
in the private-feedback treatment and as the maximum score increases in the leaderboard-
feedback treatment. To formally test Hypothesis 3, we run panel data logistic regressions,
with subject-level random e�ects and session-level clustered standard errors, of the decision to

25Note that the regression is run on the observations where the score is greater than zero (and thus there
is a leader and a follower).
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draw on the individual score. We run these regressions for the last nine periods of the private-
feedback treatment. We �nd that in each of the regressions, the coe�cient on the individual
score is negative and signi�cant at the 1% level. Additionally, we run similar regressions for
the leaderboard-feedback treatment, with the di�erence being that the decision to draw is
regressed on the maximum score. Again, for each of the regressions, the coe�cient on the
maximum score is negative and signi�cant at the 1% level. We summarize these results with
Result 3.

Result 3. Subjects are less willing to draw as their individual score increases in the private-
feedback treatment and as the maximum score increases in the leaderboard-feedback treatment
(evidence supporting Hypothesis 3).

5.4 Role of Individual Characteristics

In our experiment, subjects completed various elicitation tasks. We used these tasks to shed
light on factors that may in�uence subjects' decision to draw. Table 4 displays three sets of
regressions that analyze the decision to draw on the elicited characteristics.26 In particular,
the regressions are carried out using a panel data logistic regression with subject-level random
e�ects, and standard errors are obtained by clustering at the session level.

Table 4 shows that the regression analyses yield results consistent with our prior analysis
in terms of the role of the treatments and leader/follower behavior. In terms of elicited
individual characteristics, we �nd that risk aversion has a signi�cantly negative e�ect across
a number of speci�cations. At the same time, we �nd that our measures of loss aversion and
sunk-cost fallacy are not signi�cant in any of the speci�cations. We summarize these results
with Result 4.

Result 4. Risk aversion leads to a lower likelihood of drawing an innovation (evidence
supporting Hypothesis 4a).

Recall that in addition to the incentivized elicitation of risk aversion, loss aversion, and
the sunk-cost fallacy, we conducted a number of non-incentivized personality questionnaires
that addressed personality characteristics. In particular, in addition to a broad questionnaire
(i.e., Big 5), we selected a few characteristics as potentially important to behavior in an
innovation-contest setting (i.e., Grit and Competitiveness). Table 4 shows that virtually
no personality characteristics are signi�cant in explaining drawing behavior for any of the
regression speci�cations.

26Results for the individual search task are similar (see regression results presented in Table D2 of the
Appendix).
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Table 4: Regression Results

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: Pooled Private Leaderboard
Draw Decision All Leader Follower All Leader Follower
L-Board -0.70*** � � � � � �

(0.20) � � � � � �
Priv. x Score -0.17*** -0.21*** -0.25*** -0.18*** � � �

(0.01) (0.02) (0.04) (0.02) � � �
L-Board x MaxScore -0.11*** � � � -0.11*** -0.23*** -0.11***

(0.01) � � � (0.01) (0.02) (0.01)
Period -0.12*** -0.13*** -0.19*** -0.11*** -0.10*** -0.24*** -0.03

(0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.05)
Risk Aversion -1.13�� -1.41** -1.50 -1.20** -1.05** -1.01 -0.31

(0.50) (0.72) (1.32) (0.56) (0.46) (0.87) (1.15)
Loss Aversion -0.22 -0.10 1.15 -0.83 -0.30 -1.12 -0.43

(0.65) (0.83) (1.02) (0.70) (0.63) (1.09) (0.89)
Sunk Cost Fallacy 0.06 0.14 -1.07 0.25 -0.12 -0.55 0.02

(0.61) (0.94) (0.87) (0.96) (0.45) (0.87) (0.94)
Grit -0.08 -0.15 -0.29 -0.03 -0.01 -0.09 -0.11

(0.13) (0.21) (0.25) (0.18) (0.08) (0.22) (0.25)
Competitiveness -0.10 0.07 0.00 0.24 -0.24 -0.04 -0.15

(0.18) (0.24) (0.26) (0.23) (0.16) (0.21) (0.20)
Achievement Striving 0.18 0.08 0.03 -0.09 0.27 0.31 0.04

(0.19) (0.26) (0.32) (0.24) (0.17) (0.22) (0.33)
Extraversion 0.03 -0.03 0.07 -0.06 0.08 -0.18 0.11

(0.09) (0.11) (0.14) (0.10) (0.10) (0.19) (0.11)
Agreeableness 0.11 0.06 0.02 0.00 0.16 0.12 0.16

(0.13) (0.17) (0.22) (0.18) (0.14) (0.20) (0.20)
Neuroticism 0.05 0.05 -0.12 0.10 0.03 0.11 -0.07

(0.11) (0.14) (0.18) (0.12) (0.11) (0.18) (0.22)
Openness -0.10 -0.11 -0.16 -0.14 -0.13 -0.27 -0.14

(0.10) (0.15) (0.19) (0.14) (0.09) (0.19) (0.15)
Conscientiousness 0.02 0.18 0.25 0.06 -0.14 -0.20 -0.24

(0.17) (0.29) (0.27) (0.26) (0.10) (0.35) (0.20)
Constant 1.67*** 1.98** 4.41*** 1.32 1.00* 2.01** 1.75**

(0.60) (0.81) (0.82) (0.85) (0.51) (0.83) (0.69)
Observations 15,360 7,680 3,451 3,451 7,680 3,411 3,411

Notes: The regression pools the data from the individual search tasks, the private-
feedback treatment, and the leaderboard-feedback treatment. Personality characteristics
are standardized to have mean 0.00 and standard deviation of 1.00.� ;�� ; and ��� denote
signi�cance at the 0.10, 0.05, and 0.01 levels, respectively.

6 Conclusion

In this paper, we investigate the role of leaderboard feedback in sequential-search innovation
competition. In particular, our contribution is threefold. First, we contribute to the exper-
imental literature that investigates contest and innovation competitions. Our experiment
yields several results that support theory. Speci�cally, we �nd that for a two-player �nite-
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horizon contest, leaderboard feedback may yield less e�ort and lower innovation quality than
private feedback. We also �nd that the internal dynamics present in the data are consistent
with the model. In particular, when feedback is provided, leaders of the contest reduce their
e�ort, whereas followers do not. In addition, as the quality of innovation increases, agents
become less likely to invest resources to generate a new innovation.

Second, our work also contributes to a stream of literature that studies the role of indi-
vidual characteristics in determining an individual's propensity to innovate. In particular,
we elicit three individual characteristics that have been shown to be important in the innova-
tion and contest setting: risk aversion, loss aversion, and the sunk-cost fallacy. We �nd that
among these individual characteristics, risk aversion stands out as being an important driver
of behavior in our experiment. At the same time, loss aversion and the sunk-cost fallacy
are not signi�cant in explaining the data. In addition, we �nd no evidence that personality
characteristics are predictive of behavior in the dynamic contests studied in this paper.

Finally, we contribute to the existing theoretical literature by examining equilibrium in a
model of sequential-sampling competition with a �nite, or in�nite, horizon and perfect recall.
We �nd that with a �nite horizon, leaderboard feedback may result in lower search e�ort as
captured by the number of costly innovation decisions, which in turn yields lower expected
quality of the winning innovation with leaderboard feedback than with private feedback.

Our work has several shortcomings that open interesting avenues for future research.
First, our laboratory experiment investigates a �nite-horizon innovation competition. Com-
paring it to with an in�nite-horizon setting would be interesting. Second, we considered a
two-player contest; the extent to which these results translate to a setting with more than
two players is not known. Finally, subjects in our experiment participated in the contest
(although they had an option not to draw). Investigating the extent to which our results
hold if subjects could select to withdraw from the contests entirely would be interesting.
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Appendices

A Theory Appendix: Equilibrium

In this appendix we examine equilibrium strategy pro�les for sequential-sampling competi-
tion with and without leaderboard feedback in a setting with an arbitrary number of periods
and general utility functions. In subsection A.1, we consider the case of a �nite horizon.27

In subsection A.2, we consider the in�nite-horizon case.

A.1 Finite-Horizon Leaderboard-Feedback Sampling Competition

In this subsection of Appendix A, we describe the process for characterizing the subgame
perfect Nash equilibria of the �nite horizon leaderboard-feedback innovation contest. For the
corresponding case of the private-feedback innovation contest, it is straightforward to extend
the analysis of Taylor (1995) to allow for a general utility function, and hence we omit the
discussion of that case. Recall thatf t (l t ) denotes the follower (leader) in an arbitrary period
t. We begin by characterizing the �nal-stage local equilibrium strategies and corresponding
equilibrium expected payo�s, and then make our way back through the game tree. As risk
aversion is found to be an important driver of behavior in the experiment, we focus here on
a speci�cation of utility that allows for risk aversion. In particular, we assume that: (i) total
utility is time separable and (ii) the utility within a given stage, denoted by u(�), satis�es
u(� c) < 0 and u(v � c) > 0. Risk-aversion may then be modeled viau(�), the utility within
a given stage. In Appendix B, we provide additional details on the speci�cations of utility
that we use to model risk aversion, loss aversion and sunk-cost fallacy considerations. Lastly,

27Recall that the special case of our model with risk-neutral players and two periods is examined in Rieck
(2010).
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the following analysis focuses on the case thatu(v � c) + u(� c) � 0, which in the case of
risk neutrality requires that v � 2c.28

Period T

Let plT [pf T ] denote the probability that the period T leaderlT [period T follower f T ] draws
in period T, and let � f T (D; plT jsT ) denote the the payo� to the period T follower f T from
drawing in period T given plT and the scoresT . In the �nal period T, if the max score at
the beginning of periodT is sT , then the bene�t to the period T follower from drawing (i.e.
pf T = 1) when the periodT leader does not draw (i.e.plT = 0) is

� f T (D; plT = 0jsT ) = (1 � F (sT ))u(v � c) + F (sT )u(� c): (2)

Next, the bene�t to the period T follower from drawing when the periodT leader does draw
is

� f T (D; plT = 1jsT ) =
�

1 � [F (sT )]2

2

�
u(v � c) +

�
1 + [F (sT )]2

2

�
u(� c): (3)

Thus, at the beginning of periodT and given anyplT 2 [0; 1], we have that

� f T (D; plT jsT ) = (1 � plT )� f T (D; plT = 0jsT ) + plT � f T (D; plT = 1jsT ): (4)

For all plT 2 [0; 1], the payo� to the period T follower from not drawing in periodT, denoted
� f T (ND; p lT jsT ), is 0.

For the characterization of when playerf T is indi�erent between drawing and not drawing
as a function of the beginning of periodT leader scoresT and the leader's �nal-stage-local
strategy plT , it will be convenient to refer to the change in playerf T 's payo� in moving
from drawing to not drawing given that either plT = 0 or plT = 1, which we denote by
� � f T (plT = 0jsT ) and � � f T (plT = 1jsT ) respectively, where

� � f T (plT = 0jsT ) = � f T (ND; p lT = 0jsT ) � � f T (D; plT = 0jsT ) (5)

and
� � f T (plT = 1jsT ) = � f T (ND; p lT = 1jsT ) � � f T (D; plT = 1jsT ) (6)

If
� f T (D; plT = 0jsT )

� f T (D; plT = 0jsT ) � � f T (D; plT = 1jsT )
2 [0; 1]

28Note however, that it is straightforward to extend the analysis to the case ofu(v � c) + u(� c) < 0.
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then for

pindif f
lT

=
� � f T (plT = 0jsT )

� � f T (plT = 0jsT ) � � � f T (plT = 1jsT )

=
(1 � F (sT ))u(v � c) + F (sT )u(� c)
(u(v � c) � u(� c)) 1

2 (1 � [F (sT )]2)

(7)

it follows from equation (4) that

� f T (D; pindif f
lT

jsT ) = � f T (ND; p indif f
lT

jsT ) = 0

and the periodT follower is indi�erent between drawing and not drawing. Because� � f T (plT =
0jsT ) � � � f T (plT = 1jsT ), it follows that if � � f T (plT = 0jsT ) = � � f T (D; plT = 0jsT ) >
0, then player f T would have incentive to not draw for all plT 2 [0; 1]. Similarly, if
� � f T (plT = 1jsT ) = � � f T (D; plT = 1jsT ) < 0, then player f T would have incentive to
draw for all plT 2 [0; 1]. Thus, it follows that for the term pindif f

lT
de�ned by equation

(7) to take values in the interval [0; 1], it must be the case that � � f T (plT = 0jsT ) =
� � f T (D; plT = 0jsT ) � 0 and � � f T (plT = 1jsT ) = � � f T (D; plT = 1jsT ) � 0, or equiva-

lently, F (sT ) 2
hq

u(v� c)+ u(� c)
u(v� c)� u(� c) ;

u(v� c)
u(v� c)� u(� c)

i
.29

For the purpose of stating playerf T 's �nal-stage-local best-response correspondence as a
function of (plT ; sT ) 2 [0; 1] � supp(F ), let

� indif f
f T

=
n

sT

�
�
� � � f T (plT = 0jsT ) � 0 and � � f T (plT = 1jsT ) � 0

o

denote the set of periodT beginning scoressT such that pindif f
lT

2 [0; 1]. Similarly, let

� 1
f T

=
n

sT

�
�
� � � f T (plT = 1jsT ) < 0

o

and let
� 0

f T
=

n
sT

�
�
� � � f T (plT = 0jsT ) > 0

o

and note that � indif f
f T

, � 1
f T

, and � 0
f T

form a partition of supp(F ). Player f T 's �nal-stage-local

29Note that in the case of risk neutrality, the equation (7) expression for pindif f
l T

becomespindif f
l T

=
v(1 � F (sT )) � c

v
2 (1 � F (sT )) 2 which takes values in[0; 1] when F (sT ) 2

hq
1 � 2c

v ; 1 � c
v

i
.
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best-response correspondence is given by:

BR f T (plT jsT ) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

pf T = 1 if sT 2 � 1
f T

or sT 2 � indif f
f T

and plT < p indif f
lT

pf T 2 [0; 1] if sT 2 � indif f
f T

and plT = pindif f
lT

pf T = 0 if sT 2 � 0
f T

or sT 2 � indif f
f T

and plT > p indif f
lT

(8)

Moving on to the periodT leader's problem, the payo� to the periodT leader from not
drawing when the periodT follower draws is

� lT (ND; p f T = 1jsT ) = F (sT )u(v)

verses a payo� of

� lT (D; pf T = 1jsT ) =
�

1 + [F (sT )]2

2

�
u(v � c) +

�
1 � [F (sT )]2

2

�
u(� c):

when both the periodT and the periodT follower draw. Similarly, the payo� to the period
T leader from not drawing when the periodT follower does not draw is

� lT (ND; p f T = 0jsT ) = u(v)

verses a payo� of
� lT (D; pf T = 0jsT ) = u(v � c)

from drawing. Thus, the payo� to the period T leader from drawing in periodT given any
pf T 2 [0; 1], denoted� lT (D; pf T jsT ) is

� lT (D; pf T jsT ) = (1 � pf T )� lT (D; pf T = 0jsT ) + pf T � lT (D; pf T = 1jsT ) (9)

and the payo� to the period T leader from not drawing in periodT, denoted� lT (ND; p f T jsT )
is

� lT (ND; p f T jsT ) = (1 � pf T )� lT (ND; p f T = 0jsT ) + pf T � lT (ND; p f T = 1jsT ): (10)

To de�ne pindif f
f T

, we use the expressions� � lT (pf T = 0jsT ) and � � lT (pf T = 1jsT ) where

� � lT (pf T = 0jsT ) = � lT (ND; p f T = 0jsT ) � � lT (D; pf T = 0jsT ) (11)
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and
� � lT (pf T = 1jsT ) = � lT (ND; p f T = 1jsT ) � � lT (D; pf T = 1jsT ): (12)

It follows from equations (9) and (10), that if

� lT (ND; p f T = 0jsT ) � � lT (D; pf T = 0jsT )
[� lT (ND; p f T = 0jsT ) � � lT (D; pf T = 0jsT )] � [� lT (ND; p f T = 1jsT ) � � lT (D; pf T = 1jsT )]

2 [0; 1]

then for

pindif f
f T

=
� � lT (pf T = 0jsT )

� � lT (pf T = 0jsT ) � � � lT (pf T = 1jsT )

=
u(v) � u(v � c)

(1 � F (sT ))u(v) � (u(v � c) � u(� c)) 1
2 (1 � [F (sT )]2)

(13)

it follows from equations (9) and (10) that

� lT (D; pindif f
f T

jsT ) = � lT (ND; p indif f
f T

jsT ) = 0

and the periodT leader is indi�erent between drawing and not drawing.
Next, because� � lT (pf T = 0jsT ) � maxf 0; � � lT (pf T = 1jsT )g, it follows that if � � lT (pf T =

1jsT ) > 0 then for all pf;T 2 [0; 1] player lT would have incentive to not draw. For the term
pf T de�ned by equation (13) to take values in the interval(0; 1), it must be the case that
� � lT (pf T = 1jsT ) � 0.

In a manner similar to that used above for playerf T 's �nal-stage-local best-response
correspondence, we let

� indif f
lT

=
n

sT

�
�
� � � lT (pf T = 1jsT ) � 0

o

denote the set of periodT beginning scoressT such that pindif f
lT

2 [0; 1]. Similarly, let

� 0
lT =

n
sT

�
�
� � � lT (pf T = 1jsT ) > 0

o

and note that � indif f
f T

and � 0
f T

form a partition of supp(F ). Then, the period T leader's
�nal-stage local best-response correspondence as a function of(pf T ; sT ) 2 [0; 1] � supp(F )
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may be written as,

BR lT (pf T jsT ) =

8
>>>>>>>>>><

>>>>>>>>>>:

plT = 1 if sT 2 � indif f
lT

and pf T > p indif f
f T

plT 2 [0; 1] if sT 2 � indif f
lT

and pf T = pindif f
f T

plT = 0 if sT 2 � 0
lT

or sT 2 � indif f
lT

and pf T < p indif f
f T

(14)

Combining the period T follower's �nal-stage-local best-response correspondence from
equation (8) with the period T leader's �nal-stage-local best-response correspondence from
equation (14), we can now solve for the subgame perfect �nal-stage-local equilibrium strate-
gies.

First note that because� � f T (plT = 1jsT ) � 0 implies that � � lT (pf T = 1jsT ) � 0, it
follows that � indif f

lT
\ � indif f

f T
= ; and thus, there exists no non-degenerate �nal-stage-local

equilibrium. Futhermore, note that � indif f
lT

� � 1
f T

and that � indif f
f T

� � 0
lT . For �nal-stage-

local pure-strategy equilibria, we have the following:

8
>><

>>:

Both draw if sT 2 � indif f
lT

� � 1
f T

only follower draws if sT 2 � 0
lT \ � 1

f T

neither draws if sT 2 � 0
lT \

�
� 0

f T
[ � indif f

f T

�

Note that there exists ansB;T 2 [0; 1] such that the set� indif f
lT

� � 1
f T

is equivalent to[0; sB;T ].

Similarly, there exists asN;T 2 [0; 1] such that the set� 0
lT \

�
� 0

f T
[ � indif f

f T

�
is equivalent to

[sN;T ; 1]. The remaining set� 0
lT \ � 1

f T
is equivalent to [sB;T ; sN;T ]. At the points where there

exist multiple equilibria (i.e. sB;T and sN;T ) we will make the simplifying assumption that
the player that is indi�erent between drawing and not drawing chooses to draw. That is, at
sT = sB;T we focus on the �nal-stage-local equilibrium in which both player's draw and at
sT = sN;T we focus on the �nal-stage-local equilibrium in which playerf T draws. GivensB;T

and sN;T , the �nal-stage-local equilibria may be characterized as:

8
>><

>>:

Both draw if sT 2 [0; sB;T ]

only follower draws if sT 2 (sB;T ; sN;T ]

neither draws if sT 2 (sN;T ; 1]

The corresponding subgame perfect �nal-stage local equilibrium expected payo�s for the
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leader and follower, respectively, are

8
>><

>>:

� lT (D; pf T = 1jsT ) & � f T (D; plT = 1jsT ) if sT 2 [0; sB;T ]

� lT (ND; p f T = 1jsT ) & � f T (D; plT = 0jsT ) if sT 2 (sB;T ; sN;T ]

� lT (ND; p f T = 0jsT ) & � f T (ND; p lT = 0jsT ) if sT 2 (sN;T ; 1]

Periods 1 to T � 1

In moving from period T to any period t 2 f 1; : : : ; T � 1g, the procedure for calculating
the subgame perfect period-t-local equilibrium strategies and payo�s follows along the exact
same lines as in periodT given the changes to the expressions� f t (pf t ; pl t jst ) and � l t (pl t ; pf t jst )
respectively. In particular, for each periodt 2 f 1; : : : ; T � 1g we take the periodt + 1
continuation payo�s as given and then calculate� f t (pf t ; pl t jst ) and � l t (pl t ; pf t jst ). Note that
in the case oft 2 f 1; : : : ; T � 1g, there are twelve possible transitions to consider:

in t + 1 st+1 is such that:

O
ut

co
m

e

State Leader Drawsjst+1

O1 st+1 = st l t Neither BR l t +1 (ND jst+1 ) = ND , BR f t +1 (ND jst+1 ) = ND
O2 st+1 = st l t f t+1 BR l t +1 (D jst+1 ) = ND , BR f t +1 (ND jst+1 ) = D
O3 st+1 = st l t l t+1 BR l t +1 (ND jst+1 ) = D, BR f t +1 (D jst+1 ) = ND
O4 st+1 = st l t Both BR l t +1 (D jst+1 ) = D, BR f t +1 (D jst+1 ) = D
O5 st+1 > s t l t Neither BR l t +1 (ND jst+1 ) = ND , BR f t +1 (ND jst+1 ) = ND
O6 st+1 > s t l t f t+1 BR l t +1 (D jst+1 ) = ND , BR f t +1 (ND jst+1 ) = D
O7 st+1 > s t l t l t+1 BR l t +1 (ND jst+1 ) = D, BR f t +1 (D jst+1 ) = ND
O8 st+1 > s t l t Both BR l t +1 (D jst+1 ) = D, BR f t +1 (D jst+1 ) = D
O9 st+1 > s t f t Neither BR l t +1 (ND jst+1 ) = ND , BR f t +1 (ND jst+1 ) = ND
O10 st+1 > s t f t f t+1 BR l t +1 (D jst+1 ) = ND , BR f t +1 (ND jst+1 ) = D
O11 st+1 > s t f t l t+1 BR l t +1 (ND jst+1 ) = D, BR f t +1 (D jst+1 ) = ND
O12 st+1 > s t f t Both BR l t +1 (D jst+1 ) = D, BR f t +1 (D jst+1 ) = D

Note that although O3, O7 and O11 do not arise in equilibrium [i.e. there exists not with
a period-t-local equilibrium in which only the leader draws], we include that here as a pos-
sibility. Also observe that in statesO5-O8 it must be the case that l t draws and in states
O9-O12 it must be the case thatf t draws.
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For the period-t follower we have:

� f t (D; pl t = 0jst ) = Prob(O1jst ; D; pl t = 0)E
�
� f t +1 (ND; p l t +1 = 0jst+1 )jO1

�

+ Prob(O2jst ; D; pl t = 0)E
�
� f t +1 (D; pl t +1 = 0jst+1 )jO2

�

+ Prob(O3jst ; D; pl t = 0)E
�
� f t +1 (ND; p l t +1 = 1jst+1 )jO3

�

+ Prob(O4jst ; D; pl t = 0)E
�
� f t +1 (D; pl t +1 = 1jst+1 )jO4

�

+ Prob(O9jst ; D; pl t = 0)E
�
� l t +1 (ND; p f t +1 = 0jst+1 )jO5

�

+ Prob(O10jst ; D; pl t = 0)E
�
� l t +1 (ND; p f t +1 = 1jst+1 )jO6

�

+ Prob(O11jst ; D; pl t = 0)E
�
� l t +1 (D; pf t +1 = 0jst+1 )jO7

�

+ Prob(O12jst ; D; pl t = 0)E
�
� l t +1 (D; pl t +1 = 1jst+1 )jO8

�

(15)

� f t (D; pl t = 1jst ) = Prob(O1jst ; D; pl t = 1)E
�
� f t +1 (ND; p l t +1 = 0jst+1 )jO1

�

+ Prob(O2jst ; D; pl t = 1)E
�
� f t +1 (D; pl t +1 = 0jst+1 )jO2

�

+ Prob(O3jst ; D; pl t = 1)E
�
� f t +1 (ND; p l t +1 = 1jst+1 )jO3

�

+ Prob(O4jst ; D; pl t = 1)E
�
� f t +1 (D; pl t +1 = 1jst+1 )jO4

�

+ Prob(O5jst ; D; pl t = 1)E
�
� f t +1 (ND; p l t +1 = 0jst+1 )jO5

�

+ Prob(O6jst ; D; pl t = 1)E
�
� f t +1 (D; pl t +1 = 0jst+1 )jO6

�

+ Prob(O7jst ; D; pl t = 1)E
�
� f t +1 (ND; p l t +1 = 1jst+1 )jO7

�

+ Prob(O8jst ; D; pl t = 1)E
�
� f t +1 (D; pl t +1 = 1jst+1 )jO8

�

+ Prob(O9jst ; D; pl t = 1)E
�
� l t +1 (ND; p f t +1 = 0jst+1 )jO5

�

+ Prob(O10jst ; D; pl t = 1)E
�
� l t +1 (ND; p f t +1 = 1jst+1 )jO6

�

+ Prob(O11jst ; D; pl t = 1)E
�
� l t +1 (D; pf t +1 = 0jst+1 )jO7

�

+ Prob(O12jst ; D; pl t = 1)E
�
� l t +1 (D; pl t +1 = 1jst+1 )jO8

�

(16)

� f t (ND; p l t = 0jst ) = Prob(O1jst ; ND; p l t = 0)E
�
� f t +1 (ND; p l t +1 = 0jst+1 )jO1

�

+ Prob(O2jst ; ND; p l t = 0)E
�
� f t +1 (D; pl t +1 = 0jst+1 )jO2

�

+ Prob(O3jst ; ND; p l t = 0)E
�
� f t +1 (ND; p l t +1 = 1jst+1 )jO3

�

+ Prob(O4jst ; ND; p l t = 0)E
�
� f t +1 (D; pl t +1 = 1jst+1 )jO4

�

(17)
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� f t (ND; p l t = 1jst ) = Prob(O1jst ; ND; p l t = 1)E
�
� f t +1 (ND; p l t +1 = 0jst+1 )jO1

�

+ Prob(O2jst ; ND; p l t = 1)E
�
� f t +1 (D; pl t +1 = 0jst+1 )jO2

�

+ Prob(O3jst ; ND; p l t = 1)E
�
� f t +1 (ND; p l t +1 = 1jst+1 )jO3

�

+ Prob(O4jst ; ND; p l t = 1)E
�
� f t +1 (D; pl t +1 = 1jst+1 )jO4

�

+ Prob(O5jst ; ND; p l t = 1)E
�
� f t +1 (ND; p l t +1 = 0jst+1 )jO5

�

+ Prob(O6jst ; ND; p l t = 1)E
�
� f t +1 (D; pl t +1 = 0jst+1 )jO6

�

+ Prob(O7jst ; ND; p l t = 1)E
�
� f t +1 (ND; p l t +1 = 1jst+1 )jO7

�

+ Prob(O8jst ; ND; p l t = 1)E
�
� f t +1 (D; pl t +1 = 1jst+1 )jO8

�

(18)

Given the expressions in equations (15)-(18) for the period-t follower and the correspond-
ing calculations for the period-t leader, the period-t-local equilibrium can be calculated by:
(i) forming the period-t version of the �̀ ' expressions in equations (5), (6), (11), and (12),
(ii) using the period-t version of the �̀ ' expressions to form the periodt indi�erence condi-
tions (7) and (13) and construct each player's period-t-local best-response correspondences
as in equations (14) and (8), and (iii), using the player's period-t-local best-response corre-
spondences characterize the period-t-local equilibrium.

As an example, consider the case oft = T � 1. Recall the characterization of the �nal-
stage-local pure-strategy equilibrium:

8
>><

>>:

Both draw if sT 2 [0; sB;T ]

only follower draws if sT 2 (sB;T ; sN;T ]

neither draws if sT 2 (sN;T ; 1]

:

Note that in period T � 1, we know that there exists no periodT equilibrium in which only
lT draws. Thus, there is no possible transition from stateT � 1 to state T in the form of
outcomesO3, O7, and O11.

If the max score at the beginning of periodT � 1 is sT � 1, then the probabilities Prob(Oj j�),
for j = 1; : : : ; 12 in equation (15) are given by:

Prob(O1jsT � 1; D; plT � 1 = 0) =

8
<

:
F (sT � 1) if sT � 1 2 (sN;T ; 1]

0 otherwise

Prob(O2jsT � 1; D; plT � 1 = 0) =

8
<

:
F (sT � 1) if sT � 1 2 (sB;T ; sN;T ]

0 otherwise
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Prob(O3jsT � 1; D; plT � 1 = 0) = 0

Prob(O4jsT � 1; D; plT � 1 = 0) =

8
<

:
F (sT � 1) if sT � 1 2 [0; sB;T ]

0 otherwise

Prob(O9jsT � 1; D; plT � 1 = 0) =

8
<

:
1 � F (sN;T ) if sT � 1 2 [0; sN;T ]

1 � F (sT � 1) if sT � 1 2 (sN;T ; 1]

Prob(O10jsT � 1; D; plT � 1 = 0) =

8
>><

>>:

F (sN;T ) � F (sB;T ) if sT � 1 2 [0; sB;T ]

F (sN;T ) � F (sT � 1) if sT � 1 2 (sB;T ; sN;T ]

0 if sT � 1 2 (sN;T ; 1]

Prob(O11jsT � 1; D; plT � 1 = 0) = 0

Prob(O12jsT � 1; D; plT � 1 = 0) =

8
<

:
F (sB;T ) � F (sT � 1) if sT � 1 2 [0; sB;T ]

0 if sT � 1 2 (sB;T ; 1]
:

The corresponding probabilities for equations (16)-(18) follow directly. This completes
the description of the process for characterizing the subgame perfect Nash equilibria of the
�nite horizon leaderboard-feedback innovation contest.

A.2 In�nite-Horizon Sampling Competition

In the following analysis of the in�nite-horizon game we focus on stationary Markov equilibria
in which both players use a stopping rule. Recall that a stationary Markov strategy ignores
all of the details of a history except the current state. In the case of leaderboard-feedback,
the state is the leader's score. Similarly, in the case of private feedback, the state for
each player is their own score. Lastly, recall that any subgame-perfect equilibrium strategy
pro�le in which each player utilizes a stationary Markov strategy forms a stationary Markov
equilibrium.

Case of Leaderboard Feedback

Let � L denote the threshold for the equilibrium stopping rule with leaderboard feedback.
The threshold � L is solved by setting the marginal gain from additional search equal to its
marginal cost. Given that at the start of an arbitrary period t, maxf si;t ; s� i;t g � � L and
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that the opponent uses a stationary Markov strategy in which they continue to search until
at least one player hits the threshold� L , the continuation payo� from searching in periodt,
denotedV(maxf si;t ; s� i;t g), is calculated as

V(maxf si;t ; s� i;t g) =
�
F (� L )

� 2
(V(maxf si;t +1 ; s� i;t +1 g) + u(� c))

+
�

F (� L )(1 � F (� L )) +
(1 � F (� L ))2

2

�
(u(v � c) + u(� c)) : (19)

Player i wins the contest in periodt and receives a utility ofu(v � c) at the end of period
t if in period t player i draws an innovation above the threshold� L but player � i does
not draw above the threshold� L , which occurs with probability, F (� L )(1 � F (� L )) , or if
both players draw an innovation above the threshold and playeri has the higher of the two
scores, which occurs with probability,(1� F (� L )) 2

2 . Player i loses the contest in periodt and
receives a utility ofu(� c) at the end of periodt if in period t player � i draws an innovation
above the threshold� L but player i does not draw above the threshold� L , which occurs with
probability, F (� L )(1 � F (� L )) , or if both players draw an innovation above the threshold and
player i has the lower of the two scores, which occurs with probability,(1� F (� L )) 2

2 . Lastly,
if both players draws are below� L , which occurs with probability (F (� L ))2, then player i
incurs a periodt payo� of u(� c) from searching in periodt but the game continues and the
continuation payo� in state maxf si;t +1 ; s� i;t +1 g � � L is V(maxf si;t +1 ; s� i;t +1 g).

In a stationary Markov equilibrium, if maxf si;t +1 ; s� i;t +1 g � � L , then it must be the case
that V(maxf si;t ; s� i;t g) = V(maxf si;t +1 ; s� i;t +1 g). Furthermore, because the continuation
payo� from stopping search is0, it follows that if maxf si;t ; s� i;t g � � L then V(maxf si;t ; s� i;t g) =
0. Thus, it follows from equation (19) that

(F (� L ))2u(� c) +
�

1 � (F (� L ))2

2

�
(u(v � c) + u(� c)) = 0 (20)

or equivalently

F (� L ) =

s
u(v � c) + u(� c)
u(v � c) � u(� c)

: (21)

Case of Private Feedback

The case of private feedback follows along similar lines. Let� P denote the threshold for
the equilibrium stopping rule with private feedback. The threshold� P is solved by setting
the marginal gain from additional search equal to its marginal cost. Given thatsi;t � � P

and that the opponent uses a strategy in which they continue to search until they hit the
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threshold � P , the continuation payo� from searching is

V(si;t ) = F (� ) (V(si;t +1 ) + u(� c)) +
(1 � F (� ))

2
(u(v � c) + u(� c)) : (22)

In a stationary Markov equilibrium, if si;t +1 � � P , then it must be the case thatV(si;t ) =
V(si;t +1 ). Furthermore, because the continuation payo� from stopping search is0, it follows
that if si;t � � P then V(si;t ) = 0 . Thus, it follows from equation (22), that

F (� P ) =
u(v � c) + u(� c)
u(v � c) � u(� c)

: (23)

Comparison of In�nite Horizon with Leaderboard Feedback to that of Private
Feedback

Now we compare the expected value of the winning innovation with leaderboard feedback
to that of private feedback. First, note that from equations (21) and (23) it follows that
(F (� L ))2 = F (� P ). Then, to compare the expected value of the winning innovation with
leaderboard feedback to that of private feedback, note that with feedback it can be shown
that the distribution of the winning innovation, denoted by � L (x), is, for x � � L , given by:

� L (x) =
(F (x))2 � (F (� L ))2

1 � (F (� L ))2
; (24)

whereas with private feedback, the distribution of the winning innovation, denoted by� P (x),
is, for x � � P , given by:

� P (x) =
�

F (x) � F (� P )
1 � F (� P )

� 2

: (25)

Because(F (� L ))2 = F (� P ), it follows that � L (x) �rst-order stochastic dominates� P (x), and
thus the leaderboard feedback contest has a higher expected value for the winning innovation.

B Incorporating Behavioral Characteristics

We obtain predictions for risk aversion, loss aversion, and the sunk cost fallacy using the
following procedure:

ˆ First, for a maximum score in the leader-board feedback treatment and an individual
score in the private feedback treatment, we calculate the expected utility from drawing
or not drawing in the last period. At this stage, we incorporate the relevant behavioral
characteristic (risk aversion, loss aversion, sunk cost fallacy) into that calculation and
repeat this process for various scores in each treatment.
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ˆ We then calculate the expected utility, and the optimal decisions, in the penultimate
period for the same scores. We calculate the expected utility of drawing and not
drawing in the penultimate period through backward induction as we have solved for
the last period.

ˆ We continue this process using backward induction. Once we have solved for the
optimal decisions for each score and period, we use simulations to obtain moments of
interest and make contest predictions.

We use the following speci�cations:

ˆ Risk aversion is modeled using CRRA utility, that is, u(x) = x1� r

1� r .

ˆ Loss aversion is modeled as an individual being reference dependent around losses.
Let TC be the total cost an agent has spent in the contest andE be the agent's
endowment. When an individual loses the contest, her utility is given byE � � � TC,
where� > 1. Note that an individual can never lose money when she wins the prize in
our experiment. When an individual wins the contest, her utility is given byE+ V� TC,
whereV is the prize value.

ˆ The sunk cost fallacy is modeled as an individual having a preference for drawing
when she has accumulated sunk costs in the contest. An individual's expected utility
in the last period from drawing is given byE � TC + � � TC + p(V) � V , where� > 0
and p(V) is the probability that she wins the contest.

Figure B1: E�ect of Risk Aversion on Period T Local Best Responses

Appendix B, p. 13



C Experimental Instructions

C.1 Introduction

Welcome and thank you for participating! Today's experiment will last about 60 minutes.
Everyone will earn at least $5. If you follow the instructions carefully, you might earn even
more money. This money will be paid at the end of the experiment in private and in cash.

It is important that during the experiment you remain silent. If you have a question or
need assistance of any kind, please raise your hand, but do not speak - and an experiment
administrator will come to you, and you may then whisper your question. In addition, please
turn o� your cell phones and put them away during the experiment. Anybody that violates
these rules will be asked to leave.

In this experiment you will face 27 tasks in which you will take the role of an entrepreneur.
Prior to each task, you will be provided with the information regarding the task. At the end
of the experiment, two of the tasks will be chosen randomly to determine your actual money
earnings. Thus, your decisions in one task will not a�ect your earnings in any other task. In
addition, at the end of the 27 tasks, you will be asked to �ll out several questionnaires.

Next, you will be provided detailed information pertaining to Task #1-8 of the experi-
ment. Before starting with the actual tasks, you will face one practice task. Your compen-
sation for the experiment will not depend on the practice task

C.2 Tasks #1�8: Description

In Tasks #1�8 of the experiment, you will be given an endowment of $10 and choose whether
to develop up to 10 technologies at a cost of $1 per technology. The quality of each technology
is uncertain and will be determined randomly using the probability distribution to the right.
However, only the best technology can be brought to the market and yield revenue.

The decisions whether to develop a technology will be made sequentially. In particular,
you will �rst decide whether to develop technology #1. If you decide to do so, you will incur
a cost of $1 and observe the quality of technology #1. Next, you will decide whether to
develop technology #2. If so, you will incur a cost of $1. And so on. Each new technology
will be obtained using an independent draw from the distribution to the right. That is,
quality of technology #2 does not depend on technology #1, quality of technology #3 does
not depend on technology #2, etc. At each decision, you will be provided with the summary
information in the graphical and text forms.

For example, suppose you have developed 4 technologies. Each of them will be marked
on the graph with a line. At the time of each decision, you will be provided with the proba-
bility that a new technology will be better (or worse) than the best known technology. For
example, suppose you are deciding whether to develop technology #5, then the probability
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that technology #5 will be better than the best known technology is shaded in green, and
is equal to 36%. The probability that technology #5 will be worse than the best known
technology is shaded in red, and is equal to 64%.

For each task, you will be randomly matched with another participant in this room. Each
of you will simultaneously and independently decide whether to develop up to 10 technologies
(one technology at a time). At the time of each decision you will not know the technology
that has the best quality among all of the technologies developed so far (either by you or by
the participant that you are matched with). After all of the decisions have been made, the
best technology developed in during the task (either by you or by the participant that you
are matched with) will be revealed. The best technology will be adopted by the market and
yield $10 revenue.

At this time you can get some experience of drawing from the distribution. You can
click `Draw' to draw a random number from the distribution. You can also click `Reset'
to clear all the draws. Reminder, each draw is independent from all other draws. Note,
that although the diagram shows domain to be [0,50], the domain is unbounded and there
is a small chance (less than a quarter of one percent) that a draw from the distribution will
exceed 50. When you are done drawing random numbers from the distribution, please click
`Continue to Practice Task'.

Figure C1: Screenshots of Distribution Presented in Instructions

Appendix C, p. 15



C.3 Tasks #1–8: Practice Task

Figure C2: Screenshots of the Practice Task
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D Additional Tables and Figures

Figure D1: Screenshots of the Risk Aversion Elicitation Task

Figure D2: Screenshots of the Loss Aversion Elicitation Task
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Figure D3: Screenshots of the Sunk Cost Fallacy Elicitation Task

Figure D4: Screenshots of the Individual Search Task
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